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We perform what we believe is the first computational study of phase jitter and comb linewidths in a nonsolitonic
fiber laser with large changes in the pulse on each round trip. For fiber lasers operating in or near the similariton
regime, we investigate how the pulse parameters and noise performance depend on the system parameters. Across
a large dispersion range, the dechirped pulse width, timing jitter, phase jitter, and comb linewidths are smaller
when the gain in the optical amplifier is larger. Over a narrow range of negative dispersion values near zero, the
timing jitter and comb linewidths are smaller with a wider optical filter. However, with the wider optical filter, the
pulse width increases significantly, and the noise performance deteriorates rapidly as the dispersion increases
above zero. These trends are in general agreement with experimental studies of timing jitter and the linewidth
of the carrier-envelope offset frequency in Yb-fiber lasers and are consistent with the Namiki–Haus theory of
timing jitter in a stretched-pulse laser. © 2018 Optical Society of America
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1. INTRODUCTION

In this paper, we compute the width of a line in the frequency
comb generated by a similariton laser due to amplified sponta-
neous emission (ASE) quantum noise, and we study the sensi-
tivity of the linewidth to changes in the system parameters. Our
approach is based on a formula for the power spectral density of
the optical pulse train in terms of the power spectrum of the
noise-free optical pulse, the timing jitter, and the phase jitter
[1]. Since analytical expressions are not available for the timing
jitter and the phase jitter, we use numerical methods to
determine the periodically stationary noise-free pulse and to
compute the timing and phase jitter.

By a similariton laser, we mean a laser that includes a normal
dispersion fiber amplifier in which the pulse exiting the fiber
amplifier has an approximately parabolic intensity and linear
local frequency [2]. To obtain a periodically stationary pulse,
these lasers typically also include a narrowband optical filter
after the fiber amplifier [3]. Since the periodically stationary
pulses in these lasers undergo large changes each round trip,
their noise performance can be quite different from that pre-
dicted by models based on classical soliton perturbation theory,
in which the pulse is assumed to be stationary [4–6]. For ex-
ample, a computational simulation by Paschotta [5] showed
that the power spectral density of the timing jitter of a
particular similariton laser was substantially larger than what

was predicted by a simple analytical model. The noise perfor-
mance of similariton lasers must therefore be modeled using a
computational method such as that of Paschotta [7,8], or the
method we use here.

Fiber lasers designed to generate frequency combs typically
consist of a mode-locked fiber laser, an external highly nonlin-
ear fiber to facilitate the generation of an octave-spanning
supercontinuum, and electronic feedback mechanisms to stabi-
lize the comb. Newbury and Swann [9] describe a number of
intracavity and extracavity noise sources that perturb the fre-
quency comb. They argue that intracavity noise broadens
the comb linewidths, while extracavity noise increases the noise
floor.

Telle et al. [10] describe the fluctuations in a frequency
comb due to system perturbations using the analogy of an elas-
tic tape marked with equally spaced frequency lines that is held
fixed at one point and randomly stretched due to the pertur-
bations. Their model highlights the fundamental role that per-
turbations in the central time and phase of the pulse have on
the uncertainty in the comb frequencies. The frequency of the
nth line in the comb is given by νn � fceo � nf rep. In the pres-
ence of intracavity noise, the repetition frequency, f rep, and the
carrier-envelope offset (ceo) frequency, fceo, fluctuate on a time
scale, T , that is slow compared to the round-trip time, resulting
in a fluctuation, δνn�T �, of the frequency of the nth line.
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In their study of the frequency comb generated by a solitonic or
stretched-pulse fiber laser, Newbury and Washburn [11] de-
rived formulas for the perturbations in fceo and f rep due to per-
turbations in the central time and phase of the pulse. They also
derived a system of equations for the perturbations in the cen-
tral time, phase, and other pulse parameters due to fluctuations
in cavity length, gain and loss, and higher-order nonlinear and
dispersive effects. However, they did not include perturbations
due to ASE noise.

The power spectral density, Sn�f �, of the frequency noise on
the nth comb line is the Fourier transform with respect to T of
the frequency fluctuation, δνn�T �. In the case of ASE noise, Sn
is independent of f and the full width at half-maximum of the
linewidth at optical frequency, νn, is Ln � πSn�0� [9]. Building
on fundamental work of Haus and Mecozzi [4] for solitonic
lasers, Paschotta and coworkers [5,7,8,12] and Menyuk and
Wang [6] derived analytical formulas for the power spectral
density of the frequency noise due to various quantum and
technical noise perturbations. Their results were obtained for
general-shaped stationary pulses but have also been applied
to periodically stationary pulses with limited variations in
the pulse parameters each round trip of the laser cavity.
Based on the models of Paschotta, Newbury and Swann [9]
calculated the contributions that the various noise sources make
to the power spectral density of the frequency noise and hence
to the linewidths, Ln. In particular, they showed that away from
the center of the comb, the linewidth is dominated by the con-
tribution due to pump-induced noise. However, analytical
methods such as these are not valid for similariton lasers in
which there are large changes in the pulse parameters each
round trip.

Wahlstrand et al. [13] computed the optical comb linewidth
as a function of frequency for a mode-locked Ti:sapphire laser
using values of the phase and timing jitter obtained from ex-
perimentally derived parameters for the linear response of the
laser to perturbations. More recently, Nugent-Glandorf et al.
[14] measured the dependence of the linewidth of the ceo fre-
quency, fceo, on the round-trip dispersion for a Yb-fiber laser
without a narrowband optical filter. Since fceo is the product of
the repetition rate and the carrier-envelope phase change per
round trip, the linewidth of fceo is related to the timing jitter
(due to noise on the repetition rate) and the phase jitter (due to
noise on the carrier-envelope phase). For their system, the line-
width was minimized at zero dispersion, and increased more
rapidly as the dispersion increased from zero than when it
decreased from zero.

The idea for the similariton laser originated in the work of
Fermann et al. [15], who found exact self-similar asymptotic
solutions of the nonlinear Schrödinger equation in a fiber am-
plifier with normal dispersion and simple gain. They showed
that after a sufficiently long propagation distance, an arbitrary
pulse asymptotically evolves into a pulse with a parabolic power
profile and a linear local frequency. The amplitude, pulse
width, and spectral width of the asymptotic pulse increase ex-
ponentially with distance along the fiber and only depend on
the energy of the input pulse. These similariton solutions
therefore grow self-similarly in the fiber amplifier. However,
the distance required before an initial pulse agrees with the

asymptotic solution to within a specified tolerance depends
on how closely the two solutions agree at the input. The exist-
ence of similaritons in a fiber amplifier led to the development
of similariton lasers, which are based on two key ideas. The first
key idea is that if the pulse entering the fiber amplifier is suf-
ficiently close to the asymptotic solution, then it will rapidly
converge to the asymptotic solution as it propagates through
the fiber amplifier [15–17]. The existence of this attracting
asymptotic solution thereby facilitates the formation of periodi-
cally stationary pulses. However, the parabolic pulse exiting the
fiber amplifier is very far from the desired asymptotic solution
at the entrance to the fiber amplifier. Therefore, in order to
obtain a periodically stationary solution, the exiting pulse must
be modified before re-entering the fiber amplifier. To achieve
this goal, the second key idea is to insert a narrowband optical
filter and a loss element after the fiber amplifier to ensure that
the spectral width and energy of the pulse re-entering the fiber
amplifier are sufficiently close to those of the asymptotic sol-
ution [18,19]. In addition to narrowing the pulse spectrum,
since the local frequency of the pulse is linear in time, the op-
tical filter also decreases the temporal width of the pulse to
approximate that of the asymptotic solution. Chong et al.
[3] showed that the key parameters affecting the shape of
the pulses produced in the similariton laser are the nonlinearity,
spectral bandwidth, and round-trip dispersion.

Taken together, a series of experimental studies [14,20–24]
demonstrate that the design of similariton lasers can be further
improved using a third key idea. For soliton and stretched-pulse
lasers, the noise performance of the laser depends on the
dispersion [4,25]. The idea is to insert a dispersive delay
line into the loop to vary the round-trip dispersion. Since
the asymptotic pulse only depends on the energy at the input
to the fiber amplifier, the round-trip dispersion can be varied
across a wide range from the normal to the anomalous
dispersion regime without introducing large changes to the
pulse at the exit to the fiber amplifier [20]. In this manner,
it is possible to optimize the noise performance of the laser
without introducing significant changes to the parameters of
the pulse exiting the system.

In this paper, for a fiber laser with large changes in the pulse
parameters each round trip, we systematically investigate how
both the pulse parameters and the noise performance depend
on the system parameters, and especially on the round-trip
dispersion. The pulse parameters we consider are the energy,
pulse width, peak power, chirp, and spectral width, and we
quantify the noise performance in terms of the jitter in the en-
ergy, frequency, central time, phase of the pulse, and the width
of the lines in the frequency comb. Our results are obtained for
a fiber laser operating in or near the similariton regime. In ad-
dition to a baseline system whose design is close to that of sev-
eral experimental systems [14,17,23], we consider two variants,
a more nonlinear system with larger gain in the fiber amplifier,
and a system with a wider optical filter. We show that the op-
timally compressed pulse width after the pulse exits the laser is
smallest for the more nonlinear system and is insensitive to
the round-trip dispersion. The width of the frequency comb
is also largest for this system. Moreover, across the entire
dispersion range we considered, the timing jitter, phase jitter,
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and linewidths are also smaller for this variant of the system
than for the baseline system. We also found that over a nar-
rower range of negative dispersion values near zero, the timing
jitter and comb linewidths are somewhat smaller for the system
with the wider optical filter. However, with the wider optical
filter, the pulse width increases significantly, and the noise per-
formance deteriorates rapidly as the dispersion increases above
zero. The trends that we report here are in general agreement
with experimental studies of timing jitter [22,23] and the line-
width of the ceo frequency [14] in Yb-fiber lasers. To our
knowledge, our work is the first computational study of phase
jitter and the linewidth in a nonsolitonic fiber laser, and our
results are consistent with trends observed in the Namiki–
Haus theory of timing jitter in a stretched-pulse laser [25].

In Section 2, we describe our laser model, and in Section 3
we discuss the method that we used to compute the timing and
phase jitter. In particular, we provide some theoretical
justification for an intuitive method of McKinstrie and Xie
[26] for computing phase jitter in a Monte Carlo simulation.
In Section 4, we discuss the formulas we used for the power
spectral density of the frequency comb and for the widths of
the lines in the comb. We discuss numerical implementation
issues in Section 5, and in Section 6 we present the results of
our numerical simulations. In Section 7, we discuss relation-
ships between our results and previous experimental and theo-
retical studies, and in Section 8 we present our conclusions and
directions for future work.

2. LASER MODEL

We study mode-locked fiber laser systems in which an optical
pulse is generated in a loop that consists of a nonlinear fiber
amplifier, followed by a saturable absorber, an optical filter,
a dispersive delay line, and an output coupler. After the optical
pulse exits the loop, it is compressed by an external dispersive
delay line to obtain the minimum possible pulse width. The
system parameters can be chosen so that this simplified laser
system is similar to several experimental Yb-fiber laser combs
that operate in the stretched-pulse or similariton regimes
[2,14,16,17,19–21,23,27–29]. Because of the large changes
in the pulse parameters each round trip, an averaged (or dis-
tributed) laser model is not appropriate. Instead, we use a
full (or lumped) laser model in which we model the action
of each laser component on the light as it passes through that
component [6].

We model the fiber amplifier using the nonlinear
Schrödinger equation with band-limited saturable gain,

∂u
∂z

�
�
g
2

�
1� 1

Ω2
g

∂2

∂t2

�
− i

β

2

∂2

∂t2
� iγjuj2

�
u: (1)

Here u � u�z, t� is the electric field envelope of the light,
where z denotes position in the fiber amplifier, and t is retarded
time across the pulse. The saturable gain, g , is given by

g�z� � g0
1� E�z�∕E sat

, (2)

where g0 is the unsaturated gain, E�z� is the pulse energy at
position z, and E sat is the saturation energy. For simplicity,
in Eq. (1) we model the finite bandwidth of the amplifier using

a Gaussian filter with bandwidth Ωg . For simulations with
noise, we add white Gaussian noise in the fiber amplifier.
The chromatic dispersion coefficient, β, is negative in the
anomalous dispersion regime and positive in the normal
dispersion regime, and the γ is the nonlinear Kerr coefficient
of the fiber. We model the saturable absorber using the fast
saturable loss transfer function

uout �
�
1 −

l0
1� juinj2∕Psat

�
uin, (3)

where l 0 is the unsaturated loss and Psat is the saturation power.
We model the optical filter as a Gaussian filter, which typically
has a much narrower bandwidth than that of the fiber amplifier.

3. TIMING AND PHASE JITTER

In this section, we discuss the method we used to compute the
timing and phase jitter in a mode-locked laser, and in the next
section, we will use the computed timing and phase jitter in a
formula for the width of a comb line. For the laser systems we
studied, the variances of the timing and phase shifts are linear
functions of the number of round trips of the laser. We there-
fore define the timing and phase jitter per round trip to be the
square root of the timing and phase variance per round trip. To
calculate the timing and phase variances, we need definitions
for the timing and phase shifts of a pulse due to noise
perturbations.

Following standard practice [30], we define the central time,
tC , of an optical pulse, u, using the moment integral

tC �
R∞
−∞ tju�t�j2dtR∞
−∞ ju�t�j2dt , (4)

and the timing shift, Δt , of a noise-perturbed pulse to be the
amount that tC changes due to the perturbation. In situations
where it is applicable, perturbation theory can be used to pro-
vide an alternate definition of the timing shift. Specifically, in
the existing perturbation theories for soliton and stretched-
pulse lasers [4,25], the noise-perturbed optical pulse is given
in terms of several pulse parameters, including the central time
and phase. In this situation, the timing shift is defined to be the
shift in the time parameter due to the perturbation. An evolu-
tion equation for the timing shift is then derived by taking an
inner product between the noise-perturbed pulse and the dual
of the timing mode of the linearization of the governing equa-
tion. Significantly, these two definitions of the timing shift
agree: Menyuk and Wang [6] proved that the timing shift
obtained from perturbation theory is equal to that obtained
from Eq. (4).

However, unlike the case of the timing shift, there is no uni-
versally agreed-upon definition for the phase shift, and there
can be a lack of agreement between the phase shifts computed
using the different definitions in the literature. For example, in
situations where soliton perturbation theory is applicable, the
phase shift obtained from the projection of the noise-perturbed
pulse onto the phase mode of the linearized equation is not
consistent with intuitive definitions of the phase shift, such
as the definition of McKinstrie and Xie we discuss below
[26]. This lack of agreement has implications for the quanti-
tative application of perturbation theories to the noise

1202 Vol. 35, No. 5 / May 2018 / Journal of the Optical Society of America B Research Article



performance of mode-locked lasers and is a topic that merits
further investigation. Specifically, in their study of the phase
jitter in a soliton-based optical communications system,
McKinstrie and Xie [26] introduced two methods to numeri-
cally compute the phase shift of a noise-perturbed pulse in a
Monte Carlo simulation. In the first method, they define
the phase of the pulse in terms of moment integrals for the real
and imaginary parts of the complex field envelope. This defi-
nition, which forms the basis of the method that we will use for
the results in this paper, is given below. In the second method,
after filtering out high-frequency noise, they define the phase of
the pulse to be the time average of the instantaneous phase.
Using Monte Carlo simulations, they showed (and we verified)
that although the phase jitters computed using these two meth-
ods agree, they are both significantly different from the formula
for the phase jitter derived by Iannone et al. [31] using soliton
perturbation theory. In soliton perturbation theory, any func-
tion can be decomposed as a linear combination of four discrete
modes (timing, phase, amplitude, and frequency) and the con-
tinuum. Based on results of Moore et al. [32], we suggest that
the lack of agreement observed by McKinstrie and Xie occurs
not because of a breakdown in soliton perturbation theory, but
because the phase shifts computed using the two numerical
methods of McKinstrie and Xie are influenced, not only by
the projection onto the phase mode, but also by contributions
from the continuum. To circumvent this problem, for the im-
portant sampling method they developed, Moore et al. [32]
computed the phase shift of a noise-perturbed pulse by numeri-
cally projecting the pulse onto the phase eigenfunction of the
linearized system. However, such an approach is only available
for laser systems for which there is a well-established perturba-
tion theory, either analytical or computational in nature [6],
and it is an open question as to whether such a definition
of the phase shift is relevant for the computation of comb line-
widths in an experimental system. Moreover, since we are not
aware of any published work on a perturbation theory for sim-
ilariton lasers, it is not currently possible to define the phase
shift for a pulse in a similariton laser using the method of
Moore et al. Therefore, for the results in this paper, we define
the phase shift using a modification of the first method of
McKinstrie and Xie, which, as we will show, is appropriate
for use in the formula that we will derive in the next section
for the width of a comb line.

We assume that, in the absence of noise, after the nth round
trip of the laser, the output optical pulse is of the form

un�t� � U �t − nTR� exp�inϕsl�, where

U �t� �
ffiffiffiffi
E

p
R�t� exp�−iϕ�t��: (5)

Here E is the pulse energy, and R is a real-valued function nor-
malized so that

R∞
−∞ jR�t�j2dt � 1. The parameter TR is the

round-trip time, and ϕsl is the phase slip from one round trip
to the next. We assume that the phase function, ϕ, is of
the form

ϕ�t� � ϕc � ωc t � Ct2: (6)

To first order, the effect that noise has on the pulse, u, is to
shift the energy, central time, phase, and central frequency of
the pulse. In addition, a continuum contribution is generated.

In contrast to the case of soliton perturbation theory, here we
simply assume that in the presence of noise, after the nth round
trip, the pulse exiting the loop at the output coupler is of the
form

un�t� � �1� ΔEn∕E�1∕2U �t − nTR − Δtn�
× exp�i�nϕsl � Δθn � Δωn�t − nTR���, (7)

for some random shifts ΔEn,Δtn,Δθn, and Δωn. However, we
ignore any radiation. We can compute ΔEn, Δtn, and Δωn
using moment integrals of the perturbed pulse, un [30].

We will now show that a slight modification of the first
method of McKinstrie and Xie can be used to compute the
phase shift, Δθn. Simplifying notation and transforming to
local time, we seek to extract the phase-shift parameter, Δθ,
from a noise-perturbed pulse of the form

u�t� � �1� ΔE∕E�1∕2U �t − Δt� exp�i�ψ sl � Δθ� Δωt��,
(8)

given that ΔE , Δt , and Δω have already been computed. To
that end, we first shift the frequency of u by Δω and then shift
the resulting pulse in time by Δt to obtain

v�t� � u�t � Δt� exp�−iΔω�t � Δt��
� �1� ΔE∕E�1∕2U �t� exp�i�ψ sl � Δθ��: (9)

Next, we compute the moment integrals

X �
Z

∞

−∞
R�v�jvj2dt and Y �

Z
∞

−∞
I�v�jvj2dt, (10)

and set ψ � arg�X � iY �. A calculation using trigonometric
addition formulas then shows that

Δθ � ψ − arg�CU � iSU � − ψ sl, (11)

where

CU �
Z

∞

−∞
R�U �jU j2dt and SU �

Z
∞

−∞
I�U �jU j2dt :

(12)

Since the parameters CU , SU , and ψ sl do not depend on the
noise, the phase variance is given by E��Δθ − E�Δθ��2� �
E�ψ2�, which can be computed using a Monte Carlo simulation.

4. COMB LINEWIDTHS

In this section, we compute the power spectral density of the
frequency comb generated by a mode-locked laser and the
linewidth of a comb line. Here, we summarize the derivation
of the formulas that we use to relate these quantities to
phase and timing jitter. More details may be found in [1].
For this calculation we assume that the width of a comb line
depends primarily on the timing variance, phase variance, and
time-phase covariance.

By Eq. (7), the output optical pulse train is of the form

u�t� �
X∞
n�−∞

AnU �t − nTR − Δtn� exp�iΔϕn�t − nTR��, (13)

where An��1�ΔEn∕E�1∕2 and Δϕn�t��nϕsl�Δθn�Δωnt.
The power spectral density of the stationary process, u, is
given by
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S�ω� � lim
T→∞

E�jbuT �ω�j2�, (14)

where E is the expectation operator, and

buT �ω� � 1ffiffiffiffiffiffiffi
2T

p
Z

T

−T
u�t� exp�−iωt�dt: (15)

A calculation shows that [1]

S�ω� � 1

TR

X∞
n�−∞

E�AoAn expfi�Δθ0 − Δθn � ω�Δtn − Δt0��g

× expfin�TRω − ϕsl�gbU �ω − Δω0�bU ��ω − Δωn��:
(16)

In Section 6, we will describe results of numerical simula-
tions of a similariton laser, which show that while the variances
of the timing and phase shifts grow linearly with the number of
round trips, the variances of the energy and frequency shifts are
small and essentially constant as a function of the number of
round trips of the laser. The reason for this behavior is that the
gain saturation of the fiber amplifier and the optical filter in the
loop stabilize the pulse energy and central frequency, respec-
tively. These results suggest that it is reasonable to assume that
the energy and central frequency perturbations in Eq. (16) are
zero, i.e., that A0 � An � A and Δω0 � Δωn � 0 for all
n. Consequently, we obtain

S�ω� � E
TR

jbU �ω�j2
X∞
n�−∞

E�expfi�Δθ0 − Δθn

� ω�Δtn − Δt0�g� × exp�in�TRω − ϕsl��: (17)

To evaluate the expectation in Eq. (17), we assume that the
timing variance, phase variance, and time-phase covariance
grow linearly with propagation distance, so that

E��Δθn�2� � CθθjnjTR , E��Δtn�2� � Ctt jnjTR , (18)

and E�ΔtnΔθn� � CtθjnjTR , where the coefficients Cθθ, Ctt ,
and Ctθ can be computed using Monte Carlo simulations.
Next, if we assume that the multivariate random variable
�Δθn,Δtn� follows a multivariate normal distribution, then
the expectation E�expfi�Δtnω − Δθn�g� is the Fourier trans-
form (characteristic function) of a two-dimensional Gaussian,
and so [33]

S�ω� � E
TR

jbU �ω�j2
X∞
n�−∞

exp�−L�ω�jnjTR∕2

� in�TRω − ϕsl��, (19)

where the optical comb linewidth function is given by

L�ω� � Cθθ − 2Ctθω� Cttω
2: (20)

After summing a geometric series, we find that

S�ω�� E
TR

jbU �ω�j2

×
1−exp�−L�ω�TR �

1−2exp�−L�ω�TR∕2�cos�TRω−ϕsl��exp�−L�ω�TR �
:

(21)

We observe that, except for the ω dependence of L, the final
factor in Eq. (21) is the transfer function of a Fabry–Perot filter.

The power spectral density, S, therefore consists of a comb of
spectral lines with spacing f rep � 1∕TR that is modulated by
�E∕TR�jbU �ω�j2. Since L�ω�TR is typically small, the shape of
the line at frequency ω is well approximated by a Lorentzian
function with a full width at half-maximum, FWHM �
L�ω�∕�2π� Hz. Equation (20) is consistent with the picture
of Telle et al. [10] in which an elastic tape marked with equally
spaced spectral lines is randomly stretched while it is held fixed
at a characteristic frequency, ωfix. Therefore, the fluctuations in
the line at frequency ω should increase as jω − ωfixj increases.
Using this picture, Newbury and Swann [9] provided a physi-
cally motivated formula for the linewidth due to ASE noise in a
solitonic laser that—like Eq. (20)—has a quadratic dependence
on the frequency of the line.

5. NUMERICAL IMPLEMENTATION

We used an evolutionary approach to determine periodically
stationary solutions, compute pulse dynamics, determine laser
stability, and quantify the noise performance of the laser [6].
We solved Eq. (1) using a modified split-step Fourier method
[34] with absorbing boundary conditions. To find periodically
stationary solutions, we propagated an initial Gaussian pulse for
a large number of round trips of the laser and identified those
system parameter regimes for which there was a sufficiently
small mean-square error between the solution at 80 and 100
round trips of the laser. To determine the noise performance
of the laser, the resulting periodically stationary pulse solution
was that used as the initial condition in a Monte Carlo simu-
lation. To study the effects that nonlinear interactions between
the pulse and ASE noise have on the noise performance of the
laser, we added white Gaussian noise to the pulse each time it
passed through the optical fiber amplifier. To obtain suffi-
ciently accurate results, we artificially increased the noise power
by a factor of between 10 and 104 and then rescaled the results
accordingly [7]. We then computed the induced shifts in the
pulse parameters at the output coupler, and we quantified the
uncertainty in their statistics using confidence intervals calcu-
lated from ensembles of Monte Carlo simulations and Student’s
t distribution [33]. We verified the correctness of our computa-
tional method by comparison to analytical results obtained
using soliton perturbation theory [6,26,35].

6. RESULTS

We present results for three laser systems: A, B, and C. The
baseline System A is closely related to the similariton Yb-fiber
laser of Hartl et al. [17], although it also includes a narrowband
optical filter to ensure the existence of stable pulses when the
round-trip dispersion is zero. For System A, we used a fiber
amplifier of length L � 2 m with a normal dispersion of
β � 25 kfs2 (1 kfs2 � 10−27 s2), a nonlinear Kerr coefficient
of γ � 0.0044 �Wm�−1, and an amplifier bandwidth of
Ωg � 50 THz. The unsaturated gain was g0 � 7 m−1, and
the saturation energy was E sat � 170 pJ. The unsaturated loss
of the saturable absorber was l 0 � 0.95, and the saturation
power was Psat � 1400 W. We used a Gaussian optical filter
with a full width at half-maximum of FWHM � 1.2 THz
(which corresponds to 4 nm at 1000 nm). The bandwidth
of the optical filter was therefore considerably narrower than
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that of the fiber amplifier. We adjusted the dispersion of the
delay line to vary the round-trip dispersion from βRT �
−100 kfs2 to βRT � 100 kfs2 in increments of 10 kfs2.
Although such a wide range of dispersion values is unlikely
to be realized in experimental systems, it is useful to illustrate
trends in the pulse dynamics and noise performance. For sim-
ulations with noise, we used a spontaneous emission factor of
nsp � 1 in the fiber amplifier. For computation of comb line-
widths, we assumed a round-trip time of TR � 10 ns. The
parameters for Systems B and C were the same as those for
System A, except that for System B we quadrupled the unsatu-
rated gain of the fiber amplifier to be g0 � 28 m−1, and for
System C we doubled the width of the Gaussian optical filter
to be FWHM � 2.4 THz.

In Fig. 1, with the solid curves we show plots of the optical
power (top row) and local frequency (bottom row) of the pulse
at the exit to the fiber amplifier for large negative dispersion
(βRT � −50 kfs2, left column), small positive dispersion
(βRT � 10 kfs2, middle column), and large positive dispersion
(βRT � 50 kfs2, right column). We first assess how close the
pulse is to a similariton. In the top row of Fig. 1, we show with
a dashed curve the pulse with parabolic power profile, P, that
has the same energy, central time, and root mean square (RMS)
pulse width as the pulse, u, exiting the fiber amplifier. The
agreement is best with Systems A and C at small positive
dispersion. In these two cases, the local frequency is also closest
to being linear across the pulse. The agreement is also good for
System A at large negative and at large positive dispersion,
although in these cases the local frequency is not as linear near

the edges of the pulse. On the other hand, for System C, the
pulse is closer to a Gaussian at large positive dispersion and
develops oscillations at large negative dispersion. In fact, for
System C at the even larger negative dispersion of
βRT � −100 kfs2, the solution we found was not periodically
stationary. Therefore, we have omitted this dispersion value in
subsequent figures that show the pulse dynamics and noise
performance of System C.

To further quantify these trends, in Fig. 2 (left), we plot the
relative mean-square error, E, between the pulse, u, and the
best-fit parabola, P, as a function of βRT. Here we set
E � R �ju�t�j2 − P�t��2dt∕ R P�t�2dt, where the integrals are
taken over the interval where P�t� > 0. Although the error
E is smallest with System C at small positive dispersion, the
fit becomes significantly worse as jβRTj increases, since the non-
parabolic sides of the pulse are not cut off as much by the wider
filter (see Fig. 1). On the other hand, the pulse in System A is
close to being parabolic when jβRTj < 50 kfs2. Comparing the
results for Systems A and B, we see that the degree to which the
pulse is parabolic depends on having the correct balance be-
tween nonlinearity and dispersion. In a wide interval about zero
dispersion, the fit is better for System A, whereas at large
negative dispersion, the fit is better for System B.

In Fig. 2 (middle), we plot the width of the dechirped pulse
at the exit to the system as a function of the round-trip
dispersion, βRT. For Systems A, B, and C, the smallest pulse
widths are 105 fs at βRT � 0 kfs2, 52 fs at βRT � 20 kfs2,
and 81 fs at βRT � 0 kfs2, respectively. For Systems A and
B, the pulse widths are less than 140 fs and 70 fs, respectively,

-3 -2 -1 0 1 2 3
Time [ps]

0

500

1000

1500

2000

2500

3000

3500

P
ow

er
 [W

]

β  = -50 kfs 2

A
B
C

-3 -2 -1 0 1 2 3
Time [ps]

0

500

1000

1500

2000

2500

3000

P
ow

er
 [W

]

β  = 10 kfs 2

A
B
C

-3 -2 -1 0 1 2 3
Time [ps]

0

500

1000

1500

2000

2500

3000

P
ow

er
 [W

]

β  = 50 kfs 2

A
B
C

-1 -0.5 0 0.5 1
Time [ps]

-5

-4

-3

-2

-1

0

1

2

3

4

5

Lo
ca

l F
re

qu
en

cy
 [T

H
z]

β  = -50 kfs 2

A
B
C

-1 -0.5 0 0.5 1
Time [ps]

-5

-4

-3

-2

-1

0

1

2

3

4

5

Lo
ca

l F
re

qu
en

cy
 [T

H
z]

β  = 10 kfs 2

A
B
C

-1 -0.5 0 0.5 1
Time [ps]

-5

-4

-3

-2

-1

0

1

2

3

4

5

Lo
ca

l F
re

qu
en

cy
 [T

H
z]

β  = 50 kfs 2

A
B
C

Fig. 1. Optical pulse at the exit to the fiber amplifier. In the top row, we show the pulse power, and in the bottom row we show the local frequency,
both as functions of time. (In the bottom row, the time window is one-third of that in the top row.) In the different columns, we show the results for
different values of the round-trip dispersion: βRT � −50 kfs2 (left), βRT � 10 kfs2 (middle), and βRT � 50 kfs2 (right). The results for Systems A,
B, and C are shown in red, blue, and black, respectively. The dotted curves in the top row show parabolic fits to the pulse power with the same energy
and pulse width.
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when jβRTj < 50 kfs2. These results corroborate those of
Renninger et al. [20] that the pulse width in a similariton laser
is largely independent of the round-trip dispersion. On the
other hand, for System C, the pulse width increases more rap-
idly as jβRTj increases.

In Fig. 3, we plot the RMS pulse width, peak power, and
RMS spectral width as functions of the round-trip dispersion,
βRT, at the entrance (top row) and exit (bottom row) of the
fiber amplifier. In Fig. 2 (right), we plot the chirp at the exit
to the fiber amplifier, which crosses zero near the minimally
compressed pulse width, and which behaves quite differently
for the wide-filter System C than for Systems A and B.
For all three systems, the pulse width at the entrance to the
fiber amplifier is minimized at small positive dispersion
(βRT � 10 kfs2), and at that dispersion value, it is smallest
for System C. However, for System C the pulse parameters

are more sensitive to variations in βRT than is the case for
Systems A and B.

For all three systems, the pulse dynamics are closest to that
of a similariton when the round-trip dispersion is close to zero.
In particular, the energy gain in the fiber amplifier (not shown)
is largest near zero dispersion, and ranges between a factor of 25
and 44 for System A, 18 and 41 for System B, and 11 and 36
for System C as the dispersion varies. In addition, the pulse
width and spectral width both increase by factors of between
3 and 8 in the fiber amplifier. In particular, the pulse width at
the entrance to the fiber amplifier is smallest when the round-
trip dispersion is small and positive (βRT ≈ 0 − 20 kfs2), which
results in greater nonlinear spectral broadening in the fiber am-
plifier. As a consequence, more of the pulse spectrum is cut out
by the narrowband optical filter, and so the input energy to
the fiber amplifier is also smallest in this dispersion range.
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Fig. 2. Left, relative error between the pulse at the exit to the fiber amplifier and the best-fit parabolic pulse as a function of βRT; middle,
minimum pulse width after pulse compression at the exit to the laser system as a function of βRT; right, chirp at entrance to fiber amplifier.
The results for Systems A, B, and C are shown with red crosses, blue circles, and black squares, respectively.
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Fig. 3. Pulse parameters as functions of round-trip dispersion, βRT, at the entrance (top row) and exit (bottom row) of the fiber amplifier. Left to
right: RMS pulse width, peak power, and RMS spectral width.
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In addition, for Systems A and C, the pulse is closest to being
parabolic in this same small positive dispersion interval. These
pulse dynamics are consistent with that expected of a fiber laser
operating in the similariton regime. However, the self-similar,
asymptotic solution of the nonlinear Schrödinger equation
with simple gain found by Fermann et al. [15] only provides
qualitative insight into the pulse dynamics in similariton lasers
due to the gain saturation, finite bandwidth, and relatively
short length of the fiber amplifier [2,16,18].

For Systems A and B, the greater the magnitude of the
round-trip dispersion, the less the pulse parameters increase
in the fiber amplifier, and the less the pulse behaves like a sim-
ilariton. Nevertheless, across the entire 200 kfs2 dispersion
range, there is still a large increase in the spectral width of
the pulse in the fiber amplifier by a factor of between 2.5
and 8, which is compensated by the action of the narrowband
optical filter.

For System C, with large positive dispersion
(βRT ≥ 60 kfs2), the pulse is only weakly influenced by the op-
tical filter. In this parameter regime, the pulse entering the fiber
amplifier has a lower peak power and a much larger pulse width
than is the case for Systems A and B. Therefore, the effect of the
nonlinearity in the fiber amplifier is weaker. As a consequence,
both the pulse width and spectral width only increase by factors
of between 1.2 and 1.6 in the fiber amplifier. In addition, as we
saw in Figs. 1 and 2, at the exit to the fiber amplifier the pulse is
close to a Gaussian and the minimum compressed pulse width
is much larger than for the other two systems. In summary, in
the positive dispersion regime, the pulse dynamics for System C
appear to be closer to that of a stretched-pulse laser [25] than to
that of a similariton laser.

We now examine the noise performance of the three sys-
tems. In the top row of Fig. 4, we plot the frequency jitter (left)
and energy jitter (middle) as functions of the round-trip
dispersion, βRT. Both quantities are constant as a function
of the number of round trips, which is to be expected since
the narrowband optical filter stabilizes the frequency, and
the gain saturation in the fiber amplifier stabilizes the energy.
However, both jitters vary as a function of βRT. This variation is
not due to statistical error, since the width of the confidence
intervals (not shown) is on the order of 5% of the mean jitter
values, and since the jitter plots are independent of the degree
of artificial noise scaling (see Section 5). The frequency jitter is
smaller for System B than for System A, since for System B the
pulse spectrum at the exit to the fiber amplifier occupies more
of the available bandwidth of the optical filter (see Fig. 3).
Consequently, the optical filter better stabilizes the central fre-
quency of the pulse in the case of System B than in the case of
System A. When βRT < −20 kfs2, the frequency jitter is the
same for Systems A and C. However, for βRT > 0, the fre-
quency jitter is about 3 times larger for System C than for
System A. We suggest that the larger frequency jitter of
System C when βRT > 0may be due to differences in the pulse
parameters of Systems A and C. Specifically, as we see in the
bottom row of Fig. 3, at the exit to the fiber amplifier as the
dispersion increases from zero, the pulse width tends to increase
more rapidly, and the peak power and spectral width tend to
decrease more rapidly for System C than for System A.

Next, we consider the timing and phase variance, which we
found both increase linearly as a function of the number of
round trips. Therefore, in the bottom row of Fig. 4, we plot
the timing jitter (left) and phase jitter (middle) per round trip
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Fig. 4. Jitter and comb linewidths as functions of the round-trip dispersion, βRT. Left column, frequency jitter (top) and timing jitter per round
trip (bottom); middle column, energy jitter (top) and phase jitter per round trip (bottom); right column, optical linewidth as a function of the round-
trip dispersion, βRT, for the comb lines at the frequency for which the power is 50% (top) and 10% (bottom) of the maximum spectral power for
System A at zero dispersion.
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as functions of βRT. We recall that these jitters equal the square
roots of the corresponding variances. Once again, the width of
the confidence intervals (not shown) is on the order of 5% of
the mean jitter values. In addition, we used hypothesis testing
to conclude that the time-phase covariance is zero.

In both experiments and theory, it is common practice to
plot the timing jitter spectrum, SΔt , as a function of frequency,
and to report values, σint, of timing jitter obtained by integrat-
ing SΔt over a specified frequency interval, �fmin, fmax�. Here
we report values of the timing jitter per round trip, σΔt , which
is related to the integrated timing jitter by the formula σΔt �
2π�fminTR �1∕2σint [4]. For the results reported in this paper, we
use fmin � 10 kHz and TR � 10 ns, so that σint � 15.9σΔt .

For the results in Fig. 4, the minimum timing jitter per
round trip is σΔt � 11 as, which occurs for System C at βRT �
−10 kfs2 and corresponds to an integrated timing jitter of
σint � 175 as. For Systems A and B, the minimum timing jitter
per round trip is σΔt � 23 as and 19 as, respectively, both at
βRT � −30 kfs2. For System C, although σΔt < 25 as when
−40 kfs2 < βRT < 0, the timing jitter increases very rapidly
as βRT increases from zero, reaching 415 as when
βRT � 100 kfs2. By comparison, for Systems A and B, the tim-
ing jitter is much less sensitive to the round-trip dispersion,
especially for System B for which σΔt < 50 as over the entire
dispersion range. Similar trends hold for the phase jitter, with
the minimum phase jitter per round trip being 0.184 mrad for
System B at βRT � −50 kfs2. However, for System C, the phase
jitter function has a complicated structure with several local
optima that are not due to statistical fluctuations. Motivated
by the analysis of timing jitter in a stretched-pulse laser by
Namiki and Haus [25], we suggest that the complexity of this
structure is due to different phase-shift mechanisms dominat-
ing in different dispersion regimes.

Finally, we examine the optical linewidth as a function of the
dispersion at three representative frequencies. For these results,
we used Eq. (20) to calculate the linewidths in terms of the
numerically computed values of the phase and timing variance.
First, by Eq. (20), the linewidth at the central frequency is pro-
portional to the phase variance per round trip and has a mini-
mum value of 0.54 Hz with System B at βRT � −50 kfs2. (The
phase jitter—which is the square root of the phase variance—is
shown in the middle of the bottom row of Fig. 4.) Next, in the
right column of Fig. 4, we plot the linewidth as a function of
the round-trip dispersion, βRT, for the comb lines at the
frequencies for which the power is 50% (top) and 10% (bot-
tom) of the maximum spectral power for System A when
βRT � 0. At 50% power, the minimum linewidths are
3.4 Hz for System A at −40 kfs2, 1.9 Hz for System B at
−30 kfs2, and 1.5 Hz for System C at −10 kfs2. At 10% power,
they are 6.1 Hz for System A at −30 kfs2, 3.75 Hz for System B
at −30 kfs2, and 2.1 Hz for System C at −10 kfs2. Just as for the
phase and timing jitter, we find that the linewidth is smallest
(or close to smallest) for System B, whereas for System C, it
increases rapidly as the dispersion increases from zero.

7. DISCUSSION

There are experimental studies of timing jitter in Yb-fiber lasers
that show trends similar to our results, and which have been

explained using the Namiki–Haus theory for timing jitter in
a stretched-pulse fiber laser [25]. However, we are not aware
of any prior studies—theoretical or experimental—on the phase
jitter in nonsolitonic, passively modulated fiber lasers. While
there have been experimental studies of the comb linewidths
in nonsolitonic lasers [13,14,36], we know of no prior theoretical
or computational studies valid for periodically stationary pulses
with large changes each round trip. Significantly, our optical line-
width results are consistent with prior experimental ceo-line-
width results of Nugent-Glandorf et al. [14] and of Wise [36].

The timing jitter for System C, which has the wider optical
filter, shares some qualitative properties with theoretical results
obtained by Namiki and Haus [25] for stretched-pulse lasers. In
such lasers, a periodically stationary, chirped Gaussian pulse cir-
culates in a loop consisting of two segments of nonlinear fiber,
with opposite signs of dispersion. As a result, the pulse is peri-
odically stretched and recompressed each round trip. This
mechanism for pulse breathing is very different from that in
a similariton laser, where the pulse width first increases expo-
nentially due to the strong nonlinearity in the fiber amplifier
and is then instantaneously decreased by the narrowband op-
tical filter. Despite the different pulse shaping mechanisms, we
will show that there are strong similarities in the behavior of the
timing jitter in stretched-pulse lasers and in similariton lasers,
especially those with wider optical filters. Two of the main re-
sults of Namiki and Haus are a formula for the pulse chirp in
terms of the system parameters and a formula for the timing
jitter as a function of the system parameters and the pulse chirp.
They show that the chirp is close to zero for negative dispersion,
is small and negative at zero dispersion, and decreases as the
dispersion increases above zero. In the negative dispersion re-
gime, this behavior is similar to the results we obtained in Fig. 2
(right) for the chirp at the entrance to the fiber amplifier,
although the trends are quite different in the positive dispersion
regime. They also study the dependence of the timing jitter on
the round-trip dispersion and obtain a hockey-stick-shaped
curve that is similar to the timing jitter we obtained for
System C in Fig. 4. Their theory shows that there are two main
sources of timing shifts: those due to the dispersion-induced
conversion of frequency-to-time shifts, and those due to the
optical filtering of a chirped pulse. Moreover, they show that
a larger pulse width leads to a larger timing jitter, and that
if the chirp is nonzero at zero dispersion, then the minimum
timing jitter occurs at small negative dispersion rather than at
zero dispersion. These results are all consistent with the results
in Fig. 4, especially for System C. Moreover, different terms in
their formula for the timing jitter can dominate in different
dispersion regimes. Therefore, depending on the system param-
eters, there is the potential for large changes in the slope of the
timing jitter curves as the dispersion increases from negative to
positive dispersion. Indeed, this phenomenon can be observed
in the timing jitter plots for System C in Fig. 4. We suggest that
a further development of the Namiki–Haus stretched-pulse
theory, or a related theory specific to similariton lasers, could
also provide qualitative explanations for the frequency and
phase jitter plots shown in Fig. 4.

Our results are also consistent with several experimental
studies of timing jitter. Song et al. [21] measured timing jitter
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spectra for a Yb-fiber laser operating in the soliton, stretched-
pulse, and similariton regimes. This system did not include a
narrowband optical filter. As the round-trip dispersion in-
creased from −4 to 0 to �3 kfs2, the integrated timing jitter
first decreased slightly from 230 as (16 as per round trip) to
175 as (12 as per round trip) and then increased dramatically
to 1,100 as (74 as per round trip). In a second paper, Song et al.
[22] measured timing jitter spectra of a stretched-pulse Yb-fiber
laser for several values of the round-trip dispersion. They found
that the timing jitter was smallest at zero dispersion, only
slightly larger at small negative dispersion, but was significantly
larger at small positive dispersion. For an Er-fiber laser, Kim
et al. [37] obtained a minimum integrated timing jitter of
70 as (corresponding to 5 as per round trip) when the round-
trip dispersion was −2 kfs2. They also showed that the timing
jitter predicted by the Namiki–Haus model for their system was
3–6 times smaller than the measured value.

Two approaches have been explored to reduce the timing
jitter in a fiber laser. By inserting a 7 nm optical filter into
a loop with a round-trip dispersion of �8 kfs2, Qin et al.
[23] reduced the integrated timing jitter by a factor of 12 to
57 as. They also showed that with an optical filter, the timing
jitter is less dependent on the dispersion than without it. These
results are consistent with the smaller timing jitter and timing
jitter slope we observe in the positive dispersion regime for
System A, which has a narrower optical filter than System
C. More recently, by shortening the length of the nongain fiber
and using a round-trip dispersion between −2 and 0 kfs2, Kim
et al. [24], obtained a record-low integrated timing jitter for a
Yb-fiber laser of 14.3 as, which is comparable to the perfor-
mance of the lowest timing jitter Ti:sapphire solid-state lasers.

The simulation results that we obtained for the optical comb
linewidth as a function of the round-trip dispersion are also
consistent with experimental measurements of the ceo line-
widths in free-running mode-locked fiber lasers. In experi-
ments, the ceo frequency, fceo, is measured using the
frequency-doubling self-referencing technique of Jones et al.
[38], in which fceo � 2νn − ν2n, where νn and ν2n are oc-
tave-separated frequencies in the comb. Consequently, the
ceo linewidth is related to the widths of optical comb lines near
the red and blue ends of the pulse spectrum.

For a Yb-fiber laser without a narrowband filter, Nugent-
Glandorf et al. [14] studied the dependence of the linewidth
of the ceo frequency as a function of the dispersion from βRT �
−6 kfs2 to �11 kfs2. They found that the ceo linewidth was
minimized at zero dispersion, and, as in Fig. 4, that it increases
more rapidly as the dispersion increases from zero than when it
decreases. In experiments performed using a similariton laser,
Wise [36] found that the ceo linewidth decreases at higher
pulse energy. This result is consistent with the lower optical
linewidths we observe for System B than for System A. In ad-
dition, he found that without an optical filter, the ceo linewidth
is smallest at zero dispersion, and that it increases more rapidly
when the dispersion increases from zero than when it decreases.
This trend is the same as that found by Nugent-Glandorf et al.
[14] and that we observed for optical linewidths with System C
(see Fig. 4). However, with an optical filter, Wise found that the
ceo linewidth is larger near zero dispersion than without the

filter, and increases less rapidly as the magnitude of the
dispersion increases, consistent with the results of Qin et al.
[23] discussed above. Taken together, these trends are similar
to those we show in Fig. 4 for Systems C and A.

8. CONCLUSION

For a Yb-fiber laser operating in or near the similariton regime,
we used Monte Carlo simulations together with a formula for
the optical comb linewidths to compute the jitter in the energy,
frequency, timing, and phase of the pulse, and the widths of the
lines in the frequency comb, as functions of the round-trip
dispersion. Our results provide a more systematic investigation
of the parameter space of Yb-laser systems and a more complete
description of the noise performance than has so far been ob-
tained in experiments. Over a wide range of dispersion values,
the dechirped pulse width, timing jitter, phase jitter, and comb
linewidths are smaller at higher average pulse energy. However,
over a narrow range of negative dispersion values near zero, the
timing jitter and comb linewidths are smaller with a wider op-
tical filter. On the other hand, with the wider optical filter, the
pulse width increases significantly, and the noise performance
deteriorates rapidly as the dispersion increases above zero.
Together with a theoretical study of the timing jitter in a
stretched-pulse laser by Namiki and Haus [25], our results pro-
vide a partial explanation for the trends in the ceo linewidths
that were experimentally measured by Nugent-Glandorf et al.
[14]. Nevertheless, our work highlights the need for both ana-
lytical and computational perturbation theories that can predict
and more fully explain the dependence of jitter and comb line-
widths on the system parameters, and that are valid for systems
in which there are large changes in the pulse parameters each
round trip. An outline for such a general computational theory
of the stability and noise performance of fiber lasers is given in
recent papers of Menyuk and Wang [6] and Shen et al. [39].
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