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ABSTRACT

The mechanical analog of optical frequency combs, phononic frequency combs, has recently been demonstrated in mechanical resonators
and has been attributed to coupling between multiple phonon modes. This paper investigates the influence of the mode structure on comb
generation using a model of two nonlinearly coupled phonon modes. The model predicts that there is only one region within the amplitude-
frequency space where combs exist, and this region is a subset of the Arnold tongue that describes a 2:1 autoparametric resonance between
the two modes. In addition, the location and shape of the comb region are analytically defined by the resonance frequencies, quality factors,
mode coupling strength, and detuning of the driving force frequency from the mechanical resonances, providing clear conditions for comb
generation. These results enable comb structure engineering for applications in areas as broad as sensing, communications, quantum infor-
mation science, materials science, and molecular science.

https://doi.org/10.1063/5.0025314

Optical frequency combs have received considerable interest due
to the stable broadband comb structure that can be generated, which
has been a powerful tool in many applications, including optical
clocks, spectroscopy, and microwave frequency synthesis.1,2 Like opti-
cal resonators, mechanical resonators have also been shown to be
capable of generating equally spaced vibrational frequencies due to
mechanical mixing and mode coupling.3–14 Early demonstrations3–6

revealed that by electrically driving coupled mechanical resonators or
multiple modes in a single resonator using multiple drive frequencies
simultaneously, a comb-like structure can be generated in the
frequency domain. More recently, it was shown that a phononic
frequency comb with a well-defined frequency structure can be gener-
ated with a single mechanical resonator that is driven with a single
frequency.7 In this case, length extensional and flexural vibration
modes are coupled through mechanical nonlinearities, providing a
mechanism for mode coupling that generates phononic frequency
combs when the amplitudes of the coupled modes saturate. Additional
experimental observations of phononic frequency combs with a single
drive frequency have since been reported that support the results in
Ref. 7, including comb generation in a nanomechanical beam resona-
tor,8 a coupled translational-rotational resonator,11 and a membrane
resonator.12 The parametric mode coupling seen in Refs. 7–16 pro-
vides a path for engineering the comb structure and will likely find

applications in sensing, communications, and quantum information
science, similar to optical frequency combs. In addition, this phenome-
non of phononic combs could be exploited in material and molecular
sciences, for instance, in the investigation of nonlinear phononics.17,18

Despite the growing number of experimental observations of
phononic frequency combs in mechanical resonators, it is still largely
unclear how the resonance frequencies and quality factors of the inter-
acting modes influence the generation and properties of the comb.
The Fermi–Pasta–Ulam framework has previously been used to prove
that a comb can be generated with a single drive frequency for a
mechanical coupled-mode system.19 This analysis presented time-
domain results that show that the comb can be phase coherent and
that generation can be achieved through a wide range of nonlinearities
and the number of coupled modes. More recently, a nonlinear friction
mechanism has been shown analytically to be capable of generating a
comb using just a single vibrational mode in a nanomechanical
resonator.20 In this paper, we analyze the effect of the resonance
frequencies and quality factors of the coupled modes on the
amplitude-frequency behavior of the comb. We apply the slowly
varying envelope approximation to two coupled mechanical modes
with a 2:1 autoparametric resonance and derive analytical existence
conditions for phononic frequency combs. Using the derived exis-
tence conditions, the position and shape of the comb region relative
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to resonance are also presented. This analysis provides guidelines for
tailoring phononic frequency combs in mechanical resonators.

The generation of phononic frequency combs in the mechanical
resonator described in Refs. 7, 9, 10, and 13 and shown schematically
in Fig. 1 involves two steps. First, mode 1, which is a length extensional
vibration mode, excites mode 2, which is a flexural vibration mode,
when increasing the drive amplitude F above a certain threshold, i.e.,
above the red lines in Fig. 2. Second, mode 2 feeds back into mode 1
until the amplitudes of both modes oscillate and there is a continuous
exchange of energy between the two modes. This is similar to a phe-
nomenon found in optical parametric oscillators (OPO) where the
idler is generated from the pump by increasing the pump power over
a threshold.21,22 When further increasing F, modes 1 and 2 experience
a temporal oscillation, similar to the slow time scale in Kerr combs.
This corresponds to a Hopf bifurcation of two eigenmodes that are
symmetric to the real axis. These eigenmodes transition from station-
ary to time-varying amplitude for specific drive, or pump, conditions,
resulting in phononic frequency combs. This behavior is described by
two coupled phonon modes with quadratic coupling nonlinearities
and a 2:1 autoparametric resonance. The coupling is a result of a non-
linear strain relationship between the length-extensional and flexural
modes,23 and the equations of motion can be written as

€x1 þ 2c1 _x1 þ x2
1x1 þ a22x

2
2 ¼ Fcos xDtð Þ; (1)

€x2 þ 2c2 _x2 þ x2
2x2 þ a12x1x2 ¼ 0: (2)

Here, x1 and x2 are the resonance frequencies, where x1 � 2x2, c1,
and c2 are the damping rates, and a22x22 and a12x1x2 are the nonlinear
coupling terms. This system is driven by Fcos xDtð Þ, where F is the
drive amplitude and xD is the drive frequency. The coefficients a12
and a22 are part of the Fermi–Pasta–Ulam framework. Note: consider-
ing our experimental results,7 we assume the energy functional of the
form x1x22 that is necessary and sufficient to generate phononic combs.
However, in real experimental systems, the terms x31, x

3
2, and x2x21

need to be added to accurately address the quantitative details.
Specifically, the Duffing, or third-order, nonlinearity was not included
in Eqs. (1) and (2) since experimental results showed the existence of
phononic frequency combs before the Duffing nonlinearity had an
effect on the frequency response.7 Furthermore, this analysis is focused

on existence conditions rather than accurate prediction of the comb
amplitude. Solutions for xj are assumed to be xj ¼ ujeixDt

�
þu�j e�ixDtÞ=2 for j¼ 1, 2, where uj are slowly varying envelopes.24,25

After substituting these solutions into Eqs. (1) and (2), the equations
of motion can then be written in terms of the complex amplitudes, uj,

€u1þ 2c1þ2ixD½ � _u1þ x2
1�x2

D

� �
þ2ic1xD

� �
u1þa22

u22
2
¼ F; (3)

€u2 þ 2c2 þ ixD½ � _u2 þ x2
2 �

x2
D

4

� �
þ ic2xD

� 	
u2 þ

a12
2

u1u
�
2 ¼ 0:

(4)

The generation of phononic frequency combs is indicated by the peri-
odic modulation of the complex amplitudes uj, where the modulation
is slow compared to the carrier frequencies, resulting in pulsing
between the two modes. In order to study these slow dynamics, the
appropriate assumptions for the slowly varying envelope approxima-
tion are applied to Eqs. (3) and (4) (see the supplementary material for
details on all derivations), providing two first-order differential equa-
tions that describe the normalized amplitudes of the two modes, w1
and w2, when driven by a single frequency near the resonance of
mode 1 (i.e.,xD � x1),

@w1

@s
¼ �if � 1þ iD1ð Þw1 þ iw2

2; (5)

@w2

@s
¼ � c21 þ iD2ð Þw2 þ 2iw1w

�
2: (6)

Here, s ¼ c1t, f ¼ a12
8c21x

2
D
F, c21 ¼ c2

c1
, D1 ¼ xD�x1

c1
, D2 ¼ xD�2x2

2c1
,

w1 ¼ a12
4c1xD

u1, and w2 ¼
ffiffiffiffiffiffiffiffiffi
a12a22
p

4c2xD
u2. To understand the conditions for

comb generation within these slow dynamics, the stationary points
have been investigated. Assuming steady-state conditions (i.e.,
@w1
@s ¼

@w2
@s ¼ 0), Eqs. (5) and (6) have two sets of stationary points:

ðw1L;w2LÞ and ðw1P;w2PÞ. The first set is w1L ¼ �f = �jþ D1ð Þ,
w2L ¼ 0. These stationary points are stable when f is small and provide
the same expected amplitudes as the case where Eqs. (1) and (2) are
linear (i.e., a12 ¼ a22 ¼ 0). The second set of stationary points, w1P
and w2P , are defined by the following quadratic relationship:

FIG. 1. Micromechanical resonator and phononic frequency comb concept. (a) Micromechanical resonator design used in Ref. 7 to generate phononic frequency combs. A
length-extensional mode couples to a flexural mode through a nonlinear strain relationship. (b) Visual description of the mode coupling concept that results in phononic fre-
quency combs, showing two modes where the resonance frequency of one mode is near double that of the other mode.

Applied Physics Letters ARTICLE scitation.org/journal/apl

Appl. Phys. Lett. 117, 183503 (2020); doi: 10.1063/5.0025314 117, 183503-2

https://www.scitation.org/doi/suppl/10.1063/5.0025314
https://scitation.org/journal/apl


w2Pj j4 þ c21 � D1D2ð Þ w2Pj j2 þ 1
4

1þ D2
1

� �
c221 þ D2

2

� �
� f 2 ¼ 0

(7)

and w1Pj j2 ¼ c221 þ D2
2

� �
=4. When w1P and w2P are stable stationary

points, there is a 2:1 autoparametric resonance, or internal resonance,
in which energy flows from mode 1 to mode 2, resulting in vibration
of both modes with constant steady-state amplitude. Interestingly, w1P
is not a function of f because the amplitude is saturated and an
increase in f will only increase w2P . The stability of the slow dynamics,
Eqs. (5) and (6), at w1P and w2P requires the discriminant of Eq. (7) be
positive, f � 1

2 c21D1 þ D2j j, which is shown in parameter space (f vs
D1Þ in Fig. 2 (black line). This condition sets the boundary for auto-
parametric resonance, often referred to as an Arnold tongue, where
w1L and w2L are stable stationary points below the line and w1P and
w2P may be stable above the line. The transition from w1L and w2L to
w1P and w2P is a Hopf bifurcation.

In the case of autoparametric resonance, the oscillatory ampli-
tudes w1 and w2 are at steady state (i.e., the amplitudes remain con-
stant over time). However, in the case of phononic frequency combs,
we have previously shown that the amplitudes, w1 and w2, are modu-
lated as a function of time such that periodic pulses are generated in
the time domain, thereby resulting in frequency combs around the
two modes.7 Therefore, Eqs. (5) and (6) are linearized about these sta-
tionary points such that small amplitude perturbations are defined as
dw1 and dw2 and w1 � w1P þ dw1 and w2 � w2P þ dw2.
Substituting into Eqs. (5) and (6) and applying steady-state conditions,
@w1
@s ¼

@w2
@s ¼ 0, the linearized dynamics can be written as follows:

@dw1

@s
¼ � 1þ iD1ð Þdw1 þ 2iw2Pdw2; (8)

@dw2

@s
¼ � c21 þ iD2ð Þdw2 þ 2iw1Pdw�2 þ 2iw�2Pdw1: (9)

In order to study the stability of the linearized dynamics, it is assumed
that dw1 ¼ b1ekc1t , dw�1 ¼ b2ekc1t , dw2 ¼ b3ekc1t , and dw�2 ¼ b4ekc1t ,
and modulations dw1 and dw2 can only grow in strength if k is both

real and positive. After applying the Routh–Hurwitz criterion26 to ana-
lyze the stability of the linearized dynamics, Eqs. (8) and (9), we obtain
the following condition:

w2Pj j2 � �
c21 1þ D2

1

� �
1þ D2

1 þ 4c21 1þ c21ð Þ
� �

4 1þ c21ð Þ2 1þ D2
1 þ 2c21 þ 2D1D2

� � : (10)

This condition dictates the minimum value of w2Pj j2 that is
required for non-zero values of dw1 and dw2. Only such non-zero
amplitude modulations can ensure the generation of side-bands in
the frequency domain, which in turn yields the frequency comb
spectra. Hence, the energy exchange between modes 1 and 2 should
be significant enough to enhance the value of w2Pj j in order to gen-
erate frequency combs. Similar to the autoparametric resonance,
the transition from stable amplitudes to amplitude modulation is
also a Hopf bifurcation.

Since w2Pj j2 is always positive (i.e., w2Pj j is real), we obtain a
boundary condition for the existence of phononic frequency combs as
2D1D2 � � 1þ D2

1 þ 2c21
� �

. This boundary forms the subset of the
region of autoparametric resonance, f � 1

2 c21D1 þ D2j j, as shown in
Fig. 2, where the red line represents the threshold for instability of the
linearized dynamics. While this analysis cannot prove that comb gen-
eration is the only dynamic behavior found within this instability
bound, the frequency dependence of phononic frequency combs in
experimental results7 matches with the analytical evidence that the
existence zone of phononic combs is bounded in drive frequency.
Figure 2 shows that the phononic combs exist in the red-detuned and
blue-detuned sides of driven mode 1 for x2 <

x1
2 andx2 >

x1
2 , respec-

tively, for the presented model.
In order to verify that this bounded region describes the condi-

tions for phononic frequency combs, we conducted numerical simula-
tions of Eqs. (5) and (6) within this region. Figure 3 shows typical
simulation results for mode amplitudes. The time domain responses
[Figs. 3(a) and 3(b)] exhibit periodic oscillations and the correspond-
ing fast Fourier transforms (FFT) [Figs. 3(c) and 3(d)] clearly demon-
strate the existence of frequency combs.

FIG. 2. Regions for parametric resonance (above the black line) and phononic frequency combs (above the red line) as a function of drive amplitude and frequency and the rel-
ative values of x1 and x2. That is, the drive conditions above the black line lead to parametric modal coupling and the drive conditions above the red line lead to phononic fre-
quency combs. The existence bounds for both red-detuned resonances (a) and blue-detuned resonances (b) are shown, where the detuning is for x2 relative to x1. System
parameters: (a) x1

2p ¼ 3:86 MHz; Q1 ¼ 1000, x2
2p ¼ 1:9 MHz, and Q2 ¼ 10; (b) x1

2p ¼ 3:86 MHz; Q1 ¼ 1000, x2
2p ¼ 1:96 MHz, and Q2 ¼ 10.
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Having established a description of the region in which combs
can exist, we now investigate how the resonance frequencies and qual-
ity factors of modes 1 and 2 affect the location and shape of this region
relative to the boundary describing the Hopf bifurcation to autopara-
metric resonance. To this end, the existence condition, Eq. (10), is
considered. From the resulting boundary line, the parameter
xc ¼ 1

2 xD;min þ xD;maxð Þ is defined as the center frequency of the
comb region (Fig. 2) (see the supplementary material for definitions of
xD;max and xD;min). It has been derived in the supplementary material
such that xc ¼ 1

4 3x1 þ 2x2ð Þ, with x2 � x1
2 . For any value of x2, the

threshold for autoparametric resonance is always minimum when xD

equals x1. We now want to understand the minimum detuning from
x1 that is required to excite phononic frequency combs. We know
that phononic combs only exist in a specific frequency band.
Depending on whether x2 >

x1
2 or x2 <

x1
2 , x1 will be closer to either

the left or right edge of phononic comb boundary. The difference
between x1 and the edge of the existence boundary for combs corre-
sponds to the minimum detuning that is required for generating fre-
quency combs, which is d ¼ xD;edge � x1j j ¼ x1ffiffiffiffiffiffiffiffiffiffi

2Q1Q2
p . By increasing

the quality factors, Q1 and Q2, d is reduced, which in turn reduces the
drive amplitude threshold for generating phononic combs. In other
words, higher gain in the phononic combs can be obtained for smaller
d. This analysis also shows that phononic combs can be generated
only if the quality factor Q2 is set above a critical value of

Q2;c ¼ 2
Q1

1� 2x2
x1

� ��2
, as shown in Fig. 4(a). The system parameters

used in Fig. 4 were selected based on the experimental results in Ref. 7
so that the connection between the quality factors can be more easily
understood. The frequency range R corresponding to the existence
band of phononic combs is found to increase with Q2 as

R ¼ x2 � x1
2



 

� ffiffi
2
p

x1ffiffiffiffiffiffiffiffi
Q1Q2
p
� �

, which then asymptotes at x2 � x1
2



 

 for
large values of Q2. Similar to Q2, there also exists a critical value for

x2 � x1
2



 

, which is g ¼ 2x1

ffiffiffiffiffiffiffiffi
2

Q1Q2

q
. For x2 � x1

2



 

 > g, the frequency

range R scales linearly with x2 � x1
2



 

, as shown in Fig. 4(b). The above
conditions can be used to design mechanical resonators that have a
sufficient quality factor and placement of resonance frequencies to sys-
tematically generate phononic frequency combs.

Equation (10) shows that there is only one boundary zone for
phononic frequency combs in a two-mode system, which either lies on
the red-detuned or blue-detuned side of mode 1 (i.e., either xD < x1

or xD > x1Þ. There is an interesting discrepancy between this model
and the experimental results shown in Ref. 7. These results show that
there are two boundary zones for phononic frequency combs and
these zones lie on both sides of the resonance frequency (i.e., xD < x1

and xD > x1Þ. The mode shapes for these two regions have been
measured, as shown in Ref. 7, revealing that the mode coupling on
either side of resonance is with two different modes. Referring to these
as modes 2 and 3, the boundary zone that corresponds to xD < x1

can be explained by coupling between modes 1 and 2 and the zone
corresponding to xD > x1 is due to coupling between modes 1 and 3.
Hence, independently coupling a driven mode 1 to two different pho-
non modes leads to two bands of phononic frequency combs.
Equation (10) can be directly employed to capture this more complex
behavior, where the existence boundary for phononic combs resulting
from the interactions of mode 1 and mode 2 is 2D1D2 � � 1þ D2

1

�
þ2c21Þ and between modes 1 and 3 is 2D1D3 � � 1þ D2

1 þ 2c31
� �

.
In summary, this paper derives the existence conditions for pho-

nonic frequency comb generation with two coupled phonon modes in
terms of drive frequency and amplitude. Using the boundary

FIG. 3. Numerical simulation results for the mode amplitudes, Eqs. (5) and (6), within the phononic frequency comb boundary. Simulation parameters: D1 ¼ 5; j ¼ �9; D2
¼ D1

2 þ j; c21 ¼ 1; f ¼ 20. (a) and (b) Time domain responses. (c) and (d) Corresponding fast Fourier transforms (FFT) showing the existence of phononic frequency combs.
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conditions, we investigated the influence of modal properties, includ-
ing the quality factors and resonance frequencies of interacting modes
on the conditions for comb generation. These include critical modal
frequency separation, critical quality factors, and critical detuning that
are required to produce a phononic frequency comb. For a system of
two coupled phonon modes, the analysis revealed that there is only
one existence zone for phononic combs. However, by correlating these
analytical results with published experimental results, distinct exis-
tence boundaries of phononic frequency combs can be generated by
independently coupling a driven mode with several other phonon
modes. The results of this work will accelerate the development of
mechanical devices with enhanced phononic comb properties for their
applications in physical sciences.

See the supplementary material for the derivations of existence
conditions of phononic frequency combs.

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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