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Subharmonic instabilities in Kerr microcombs
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We report experimental observation of subharmonic mode
excitation in primary Kerr optical frequency combs gener-
ated using crystalline whispering-gallery mode resonators.
We show that the subcombs can be controlled and span a
single or multiple free spectral ranges around the primary
comb modes. In the spatial domain, the resulting multiscale
combs correspond to an amplitude modulation of intracav-
ity roll patterns. We perform a theoretical analysis based
on eigenvalue decomposition that evidences the mechanism
leading to the excitation of these combs. © 2023 Optica Pub-
lishing Group

https://doi.org/10.1364/OL.476647

Optical frequency combs have played a role of great impor-
tance in the field of metrology and spectroscopy in recent years.
Initially, the generation of these combs was typically based on
mode-locked lasers, but a novel alternative way to generate using
optical resonators was proposed a few years ago [1]. These
optical cavities feature whispering-gallery modes (WGMs) with
high quality (Q) factors and small mode volumes, so that stim-
ulated four-wave mixing can occur at a relatively low threshold
pump power. Under optimal conditions, a resonant single fre-
quency continuous wave pump laser can trigger the generation of
an equidistant frequency comb in the spectral domain, which is
generally referred to as a Kerr optical frequency comb. Potential
applications for these combs include coherent optical commu-
nications [2,3], spectroscopy [4], or low phase noise microwave
generation [5].

Kerr optical frequency combs can be of various types, depend-
ing on the nature of the underlying intracavity dissipative pattern,
which can be extended (Turing rolls) or localized (bright, dark,
or breather solitons). The extended patterns are also known
as optical parametric oscillations or cnoidal waves, and they
correspond to a set of equidistant rolls (or pulses) distributed
along the azimuthal direction of the resonator. Turing rolls are

excited via modulation instability and in the Fourier domain, the
corresponding spectra are known as primary combs.

It is important to note that these combs are excited harmoni-
cally, i.e., the comb lines appear as multiples of the main offset
frequency from the pumped mode, which is itself an integer
multiple of the free spectral range (FSR). Spectra of Kerr opti-
cal frequency combs have been extensively studied at both the
experimental and theoretical levels, and are quite well under-
stood today [4,6–12]. However, the excitation of subharmonic
combs can be observed via parametric seeding [13] or dual
pumping [14]. However, it is counter-intuitive to assume that a
Kerr-nonlinear resonator pumped with a single resonant laser
can output subharmonic comb lines (or subcombs), which are
made of modes with a reduced azimuthal order that is a rational
proportion of the main offset line (the ratio being of the kind
p/q with p and q being positive integers).

In this Letter, we report on experimental subharmonic comb
generation emerging as a bifurcation from primary combs
originating from a crystalline whispering-gallery mode disk
resonator, without using parametric seeding or a multi-pump
source. We show that the frequency spacing of the subcomb can
be tuned to up to 7 FSR, and the comb beat signal confirms their
equidistance. An eigenvalue analysis is developed to explain the
origin of this phenomenology.

The experimental setup is sketched in Fig. 1(a). A magne-
sium fluoride (MgF2) disk resonator with a Q-factor above one
billion at 1550 nm and a diameter slightly less than 12 mm is
used for the generation of the Kerr optical frequency combs.
It is fabricated using the mechanical polishing method on the
surface of its spherical rim [15]. To efficiently excite opti-
cal WGMs, a low-loss single-mode tapered fiber coupler is
made using the heat-and-pull method with a butane flame [16].
The fiber-cavity coupling setup picture is given in the inset of
Fig. 1(a). A tunable single frequency external cavity diode laser
is used as the pump laser. A fiber polarization controller can
then optimize the polarization matching condition between the
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Fig. 1. Schematic of the experimental setup. PC, fiber polariza-
tion controller; EDFA, erbium-doped fiber amplifier; VOA, variable
fiber optical attenuator; FC3dB, 1 × 2 50:50 fiber coupler; PD,
photodetector.

laser and the cavity modes. Since the cavity dispersion plays
an important role in the Kerr comb generation, it is neces-
sary to excite various WGMs with either small or large mode
volumes for exploring the rich Kerr comb dynamics in a sin-
gle resonator. To reach the parametric oscillation threshold in
such a centimeter-scale cavity, we use an erbium-doped fiber
amplifier (EDFA) to get sufficient continuous pump power up
to 200 mW. The output port of the taper is connected to a
variable fiber attenuator and then sent to a 1 × 2 fiber cou-
pler. This setup permits to monitor simultaneously the spectrum
of the comb using a high resolution spectrum analyzer (Apex
2440B with resolution down to 5 MHz) and the transmitted light
power in the photodetector (PD). A fast photodiode is also used
for monitoring the beatnote in the RF domain (not illustrated
here).

The laser wavelength is tuned step by step via temperature
variation. To study the stable comb spectra, we stabilize the laser
wavelength to the optical resonances using self-thermal locking
[17]. In the MgF2 WGM resonator, both the thermo-refractive
and thermal expansion coefficients are positive. Correspond-
ingly, the heat generated by an absorption portion of the
intracavity pump shifts the resonance frequency in the same
direction (redshift) for these two effects. Therefore, the pump
laser with constant frequency and sufficient pump power can
continuously excite the optical mode without causing a self-
pulsing effect that is usually observed in crystals with opposite
signs of the two thermal coefficients [18].

Here, we focus on the excitation of primary combs with sub-
comb lines. Figure 2 shows the optical spectra of five combs
obtained by exciting different transverse optical modes in the
cavity. We measure the single FSR value of 5.9 GHz by mon-
itoring the beatnote frequency of a single FSR comb in a fast
photodetector. The primary comb spacings for these five combs
are found to be 50 FSR, 38 FSR, 42 FSR, 84 FSR, and 45
FSR, respectively. This spacing difference results from the cav-
ity dispersion variation among different families of WGMs [19].
However, the dispersion profile for each of these mode families
has not been characterized experimentally, so that the exact value
of group-velocity dispersion in each case remains unknown.
Interestingly, we observe the subcomb lines with different fre-
quency spacings around the primary comb as we detune the
laser from the resonance frequency of the pumped mode. The
experimental combs are displayed in Fig. 2. One can clearly
see in the inset of Fig. 2(b) that the subcomb lines have a sin-
gle FSR spacing, while the spacings are 2 FSR and 3 FSR in
Figs. 2(c) and 2(d), respectively. In this experiment, subcomb
lines in the primary comb regime with the frequency spacing
up to 7 FSR are observed as well [Fig. 2(e)]. Figure 3 shows
the corresponding beatnote spectra in the RF domain by using

Fig. 2. Five experimental Kerr comb spectra (from top to bottom):
pure primary comb, primary combs with 1-FSR, 2-FSR, 3-FSR, and
7-FSR-spaced subcomb lines. The primary comb spacing number
m is 50, 38, 42, 84, and 45, respectively. Note that the single FSR
is 5.9 GHz and that the resonant modes for the pump laser are
different. Insets display a zoom of the spectra of the highlighted
zones.

a fast photodiode and a electrical spectrum analyzer. One can
see that we can recover single-FSR (5.9 GHz) and double-FSR
(11.8 GHz) beatnotes.

The origin of these subharmonic excitations can be investi-
gated theoretically via an eigenvalue analysis [20–22]. We start
with the coupled mode equations that govern the dynamics of
Kerr optical frequency combs up to second-order dispersion,
following

Ėl = −κ El + i
[︃
σ −

1
2
ζ2l2

]︃
El

+ ivgγ
∑︂
m,n,p

δ(m − n + p − l) EmE
∗

nEp

+ δ(l)
√︁

2κe/TR

√︁
PL ,

(1)

where the complex-valued modal field envelopes El are nor-
malized such that their modulus square is the modal power (in
Watts), while l stands for the reduced azimuthal eigennumber
(with l = 0 representing the pumped mode, with the sidemodes
expanding as l = ±1,±2, . . .). The parameters of the equation
are the round trip period TR, half-linewidth of the resonator κ,
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Fig. 3. Experimental radio frequency spectra obtained after pho-
todetection of the subcombs. (a) Spectrum of the single-FSR
beatnote (5.9 GHz) for the comb of Fig. 2(b). (b) Spectrum of
the double-FSR beatnote (11.8 GHz) for the comb of Fig. 2(c).

half-linewidth for the through port κe, the detuning σ between
the laser and the pumped angular frequencies, the group-velocity
dispersion ζ2 (in units of rad/s), the group velocity vg, the non-
linear parameter γ (in units of W−1m−1), and the power of the
laser PL (in units of Watts).

In our computational procedure, for Turing patterns of order
L, we only keep N modes in each side and it contains M
excited modes separately. We proceed with a numerical simula-
tion of the full model based on the split-step Fourier algorithm,
and once a stationary solution E = (E−N , . . . , EN) is found, the
perturbation can be written with the stationary solution as

δE = (δE−N , . . . , δEN). Then, we linearize Eq. (1) about the
stationary solution as[︃

δĖ

δĖ∗

]︃
= J

[︃
δE
δE∗

]︃
(2)

with

J =
[︃

R S
S∗ R∗

]︃
. (3)

The complex-valued Jacobian matrix J is explicitly defined
as

Rlp =

[︃
−κ + i(σ −

ζ2
2

l2)
]︃
δ(p − l)

+ 2ivgγ
∑︂
m,n

δ(m − n + p − l) EmE
∗

n ,
(4)

Slp = ivgγ
∑︂
m,n

δ(m + n − p − l) EmEn . (5)

This Jacobian is block diagonal with L/2 + 1 boxes if L is
even, and (L + 1)/2 boxes if L is odd. For convenience, we
rewrite it to make the qth block Jq correspond to the perturbation:

δE (q) =
(︁
δE−ML−q, . . . , δEML−q, δE−ML+q, . . . , δEML+q

)︁
, (6)

which is sometimes referred to as a “Bloch mode” [23]. The
block Jacobian Jq can be explicitly written as

Jq =

[︃
Rq Sq

S∗
q R∗

q

]︃
, (7)

Fig. 4. (a),(d),(g),(j),(m) Five types of Kerr comb spectra snapshots of the output fields, in correspondence with the experimental spectra
of Fig. 2, with the same subcomb structures. Quality factor of the through port is set to Qe = Q/4, and the nonlinear parameter is set to
γ = 1.0 W−1km−1. From top to bottom, the detuning for each case is 2κ, 2.3κ, 1.8κ, 1.83κ, and 0.55κ, respectively, and the second-order
dispersion ζ2 is set to −0.0037, −0.0073, −0.0060, −0.0015, and −0.0055 in units of κ/vgω

2
R
. Pump power is set to 75, 90, 100, 100, and 75

mW. (b),(e),(h),(k),(n) Eigenvalues of the solution in a complex plane. (c),(f),(i),(l),(o) Real part of the eigenvalues plotted as a function of
the wavenumber q of the Bloch modes. The solution is unstable when the real part of one of them becomes positive, and the eigenvalue with
the largest positive real part corresponds to the order of the subcomb.
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where

Rq =

[︃
Uq 0
0 Vq

]︃
and Sq =

[︃
0 Wq

W∗
q 0

]︃
(8)

are block matrices of order (4M + 2) for q ≠ 0 and q ≠ L/2, with
complex-valued elements

U
(q)
lp = RlL−q,pL−q, (9)

V
(q)

lp = RlL+q,pL+q, (10)

W
(q)
lp = SlL+q,pL−q = SlL−q,pL+q . (11)

For q = 0 or q = L/2, we find that Uq and Vq are identical, so
that Rq and Sq are matrices of order (2M + 1) or (2M + 2), with
Rq = Uq and Sq =Wq. The stability of the stationary solution
can be determined by calculating the real parts of the eigenval-
ues. If the real part of any of the eigenvalues is positive, the
solution is unstable. The results of this eigenvalue analysis are
presented in the left column of Fig. 4, and they confirm that the
subcombs originate from the most unstable Bloch mode, i.e.,
the one with the largest positive real part. In fact, the modu-
lated patterns arising from this instability are typically unstable
and can be observed as transients. When a pattern becomes
unstable, it gets modulated by the growth of small-wavenumber
perturbations. If the solution is decomposed as the modulus
and phase, the small-wavenumber modulations correspond to
variations of the phase with a long spatial scale. The dynamics
of the modulus is relaxational, i.e., it has negative eigenval-
ues and can be adiabatically eliminated, while the dynamics of
the phase is diffusive with significantly slower dynamics. As
a consequence, the transients persist for a long time before the
small-wavenumber modulations are smoothed out. However, the
modulation can also be eventually stabilized by other intracavity
nonlinear effects.

In conclusion, we have investigated the generation of sub-
harmonic comb lines when ultrahigh-Q WGM resonators are
excited by a resonant continuous wave laser. We have shown that
subcombs with various FSR spacings can be excited experimen-
tally. These combs correspond to amplitude-modulated Turing
rolls inside the optical cavity. We have also performed a theo-
retical analysis that enabled us to unveil that the origin of these
additional comb lines is a subharmonic bifurcation leading to
the excitation of a Bloch mode. Further research will be devoted
to the interaction of this instability with other nonlinearities in
the optical resonator [24].
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