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Abstract: The Brillouin instability (BI) caused by stimulated Brillouin scattering (SBS) can
limit the output power of high-energy laser amplifiers. Pseudo-random bitstream (PRBS) phase
modulation is an effective modulation technique to suppress BI. In this paper, we study the
impact of the PRBS order and modulation frequency on the BI threshold for different Brillouin
linewidths. PRBS phase modulation with a higher order will break the power into a larger number
of frequency tones with a lower maximum power in each tone, leading to a higher BI threshold
and a smaller tone spacing. However, the BI threshold may saturate when the tone spacing
in the power spectra approaches the Brillouin linewidth. For a given Brillouin linewidth, our
results allow us to determine the order of PRBS beyond which there is no further improvement in
the threshold. When a specific threshold power is desired, the minimum PRBS order required
decreases as the Brillouin linewidth increases. When the PRBS order is too large, the BI threshold
deteriorates, and this deterioration occurs at smaller PRBS orders as the Brillouin linewidth
increases. We investigate the dependence of the optimal PRBS order on the averaging time and
fiber length, and we did not find a significant dependence. We also derive a simple equation that
relates the BI threshold for different PRBS orders. Hence, the increase in BI threshold using an
arbitrary order PRBS phase modulation may be predicted using the BI threshold from a lower
PRBS order, which is computationally less time-consuming to compute.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

High-energy fiber amplifiers are becoming widely used in high-energy laser systems due to
their high output powers and beam quality [1–3]. Nonlinear effects due to the high pump power
often limit the output power. Typical nonlinear effects encountered with fiber amplifiers are the
Brillouin instability (BI) [4–7] and the transverse mode instability (TMI) [2,7–11]. BI dominates
in fiber amplifiers with a small core diameter since the incident light intensity increases as the
core size decreases. Although using a larger core size will reduce the impact of BI, it may
increase the number of modes in the core and lead to TMI [7,12,13].

Techniques for BI suppression that have been proposed include reducing the overlap between
optical and acoustic modes [14], laser gain competition [15], and phase modulation [16–20].
The latter has been successfully used to suppress BI without changing the fiber design [16–24].
When laser light passes through an optical fiber, each component in the laser spectrum will have
a Brillouin gain linewidth associated with it, which is typically redshifted by an amount ranging
from 11 GHz to 32 GHz [25–27]. Phase modulation of the input light source works by broadening
the laser linewidth so that it is larger than the Brillouin gain linewidth, lowering the peak Brillouin
gain, and equalizing the gain across the entire spectrum. Proposed phase modulation techniques
include white noise [19,21], sinusoidal [19], chirped seed [24], piecewise parabolic phase
[28], and pseudo-random bitstream (PRBS) [19–23]. Among these techniques, PRBS phase
modulation has been proved in both experiments and simulations to be an effective technique
to suppress BI [19–23]. In this paper, we computationally study PRBS phase modulation with
different orders. We calculate the relationship between the threshold and Brillouin linewidth
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as the PRBS order increases. With a larger PRBS order, the total power is spread across more
tones with a lower maximum power in each tone, which decreases the peak Brillouin gain and
reflectivity for a given linewidth. As the order increases, the decrease in reflectivity at a fixed
modulation frequency will eventually saturate when the frequency tone spacing approaches the
Brillouin linewidth. We define reflectivity as the ratio of average reflected Stokes power at the
input side of the fiber to the input power. Further increasing the PRBS order will not further
decrease the reflectivity since the total power within the Brillouin linewidth is almost the same.
We also study enhancement with different fiber lengths and averaging time. We later derive
a simple equation that relates the BI threshold for different PRBS orders, which can be used
as a computationally time-efficient method to predict the threshold increase with an increased
order. New lithium niobate electronics have an increased phase modulation bandwidth [29], and
we anticipate that our analysis will be useful in the selection of PRBS parameters that produce
optimal performance.

In many cases, the finite bandwidth of the electronics generating the PRBS signal and the
limitations of the electro-optic modulators impose penalties on the fidelity of the phase modulation
[30]. Some prior studies have demonstrated the impact of non-ideal PRBS modulation through
the use of a low pass filter [31]. In those cases, our study yields an ideal limit that gives guidelines
for the optimal PRBS order and modulation frequency.

2. PRBS modulation scheme and SBS model

An all-fiber Yb-doped fiber amplifier is commonly used for the experimental investigation of
laser power scaling via PRBS phase-modulated signals. A seed laser operating at 1064 nm is
often used [20,22,23]. A PRBS generator and a lithium niobate (LiNbO3) electro-optic phase
modulator driven by a radio-frequency (RF) source are placed between the seed laser and the
fiber amplifier to broaden the linewidth of the seed laser. The electro-optic phase modulator is
driven at the appropriate voltage to generate the ‘0’ and ‘π’ binary phase shifts.

PRBS phase modulation consists of a maximum length pseudo-random bit sequence of length
2N − 1, where N is the PRBS order [19–23,32–34]. Maximum length sequences are commonly
created using linear feedback shift registers (LFSRs) [32], where the order of the sequence equals
the number of registers in the LFSR. Maximum length sequences are unique in the sense that
they reproduce every possible sequence that can be represented by the registers in the LFSR used
to create it. The duration of each bit in the time domain is equal to the inverse of the modulation
frequency. Figure 1 shows an example of the phase for PRBS order 3 and PRBS order 5 using
solid blue and dashed red lines with modulation frequencies of 1.0 and 4.4 GHz, respectively.
These modulation frequencies were chosen so that the period of the entire bit sequence for both
PRBS orders is the same. The PRBS orders 3 and 5 have 23 − 1 and 25 − 1 bits, respectively, in
their sequences.

We now study the spectra associated with PRBS phase. Figures 2(a) and 2(b) show an
illustration of the spectral content on a logarithmic scale for PRBS phase modulation with orders
3 and 5, respectively. The modulation frequency is selected such that both spectra have the
same frequency tone spacing ∆f , which is given by, ∆f = f /(2N − 1), where f is the modulation
frequency and ∆f is the inverse of the period for the entire bit sequence in time domain. If one
uses the same CW signal before phase modulation, the ratio of magnitudes of the peak power in
the spectra in Figs. 2(a) and 2(b) will be 3.7:1. Since the majority of the power is distributed
among different tones, the maximum power among all frequency tones, Pmax, will be much lower
than the total power, P.

We then study the BI for different PRBS orders. We use the coupled partial differential
equations to model BI [4,19,35],
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Fig. 1. Phase for PRBS 3 and PRBS 5 as a function of time.

Fig. 2. Illustration of the spectra (a) for a PRBS signal of order 3 with a modulation
frequency of 1.0 GHz and (b) for a PRBS order signal of 5 with a modulation frequency of
4.4 GHz. At the modulation frequencies of 1.0 and 4.4 GHz, the frequency tone spacing for
the PRBS 3 and PRBS 5 signals are the same. The solid blue curves mark the characteristic
sinc2 envelope of the PRBS phase modulation, and vertical black lines mark the tones within
the PRBS spectra.
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where EL is the forward propagating laser electric field, ES is the backward propagating Stokes
electric field, ρ is the acoustic density, κ is the optical coupling parameter, Λ is the acoustic
coupling parameter, and ∆νB is the Brillouin linewidth. The quantity fn is the acoustic noise
source where ⟨fn(z, t)f ∗n (z′, t′)⟩ = Q(z − z′)δ(t − t′) and Q is the phonon strength parameter [4].
Parameters for the simulation are given in Table 1. We use a relaxation algorithm to solve
Eq. (1) for the BI. We first propagate the field EL, and we then propagate the Stokes field ES
in the backward direction. The forward laser electric field is specified at the input side as
EL(z = 0) = 2P/(ncϵ0A)1/2, where P is the input power, n is the core refractive index, and A
is the effective modal area. The backward Stokes electric field is specified at the output side
as ES(z = L) = 0. We first run the simulation for 40 transient fiber times, tf = Ln/c, and we
then average the reflected Stokes power at the beginning of the fiber for 40 more transient fiber
times. Averaging the Stokes power using times greater than 40 transient fiber times does not
significantly change results [4,24]. We discretize the fiber in the longitudinal direction using
1000 points. We verified that increasing the relaxation time, averaging time, and longitudinal
discretization does not change our results. This sort of relaxation algorithm is commonly used
for two-point boundary value problems [36].

Table 1. Simulation parameters

Fiber length L 9 m Electrostrictive constant γ 1.95

Wavelength λ 1064 nm Core refractive index n 1.45

Silica density ρ0 2201 kg/m3 Effective modal area Aeff 78.5 µm2

Sound velocity ν 5900 m/s Temperature T 300 K

3. Phonon lifetime and Brillouin linewidth

We first study how the reflectivity at the front of the fiber changes as a function of the Brillouin
linewidth, which is related to the phonon lifetime, τ, by ∆νB = 1/(2πτ). Figure 3 shows
reflectivity as a function of the Brillouin bandwidth or phonon lifetime with different PRBS
orders. The phonon lifetime is a property of the glass material and depends on wavelength. As
an example, to illustrate the reflectivity, we set the modulation frequency equal to 5 GHz in this
section. Different modulation frequencies will also lead to the same conclusion.

We set the power equal to 16 W, which is the threshold power when the PRBS order is 3, the
modulation frequency is 5 GHz, and the Brillouin linewidth is 57 MHz. This linewidth is in the
typical range of linewidths for silica fibers [19,25–28]. We define the threshold power as the input
power at which the averaged reflectivity reaches 1%. When the Brillouin bandwidth increases,
the phonon lifetime and peak Brillouin gain both decrease, so that the gain is spread across more
frequency components. Hence, a wider Brillouin bandwidth leads to a lower reflectivity. When
the Brillouin bandwidth is between 10 to 100 MHz, results from Fig. 3 show that increasing the
PRBS order while keeping the Brillouin linewidth the same will decrease the reflectivity. With a
larger PRBS order, the total power is spread across more tones with a lower Pmax, which decreases
the peak Brillouin gain for a given linewidth. This decrease in reflectivity will eventually saturate
when the frequency tone spacing, ∆f , becomes smaller than the Brillouin linewidth. Beyond
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Fig. 3. Reflectivity as a function of the Brillouin linewidth or phonon lifetime for different
PRBS orders.

a transition region as ∆νB increases, increasing the PRBS order will not further decrease the
reflectivity.

Table 2 shows the tone spacing, ∆f , for different PRBS orders with a modulation frequency of
5 GHz. When ∆f becomes roughly equal to ∆νB, saturation occurs. The reason is that further
increasing the PRBS order does not lower the power within one Brillouin linewidth and thus
does not decrease the Brillouin gain. The values in Table 2 correspond to the transition regions
in Fig. 3. Comparing the values of ∆f in Table 2 with Fig. 3, we see that the reflectivity when
∆νB = ∆f is close to the endpoint of the transition region as ∆νB increases.

Table 2. Tone spacing for different PRBS orders
with a modulation frequency of 5 GHz

PRBS Order 3 4 5 7 9

∆f (MHz) 714.3 333.3 161.3 39.4 9.8

Next, we study how the BI threshold changes as a function of the Brillouin linewidth for
different PRBS orders. Figure 4 shows the BI threshold, PTH, as a function of the Brillouin
linewidth, ∆νB or τ, using PRBS phase modulation with different orders. For every ∆νB, there is
a PRBS order beyond which increasing the order leads to no further increase in PTH.

The previous analysis shows that both the Brillouin linewidth and PRBS order contribute to
the BI threshold. In Fig. 5, we show a contour plot of PTH as a function of ∆νB and the PRBS
order. From Fig. 5, it is possible to find the minimum PRBS order for a specific power and a
specific Brillouin linewidth. The black curve superimposed on Fig. 5 shows the transition point
when the tone spacing ∆f equals the Brillouin linewidth ∆νB. The region under the black curve
corresponds to Brillouin linewidths that are less than ∆f , and the region above the black curve
corresponds to Brillouin linewidths greater than ∆f . As the Brillouin linewidth increases, the
minimum PRBS that can yield a given power threshold decreases. Conversely, the BI threshold
begins to deteriorate at smaller PRBS orders as the Brillouin linewidth increases.
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Fig. 4. BI threshold power, PTH, as a function of the Brillouin linewidth or phonon lifetime.

Fig. 5. BI threshold, PTH, as a function of the PRBS order and Brillouin linewidth.
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4. Enhancement as a function of PRBS order and modulation frequency

Different experiments use different PRBS orders and tone spacings. Hence, we consider multiple
PRBS orders and tone spacings. We now study the impact of the PRBS order and modulation
frequency on the BI threshold. We set the Brillouin linewidth to 57 MHz which is in the typical
range for silica fibers [19,25–28]. Figure 6(a) shows the tone spacing, ∆f , as a function of PRBS
order and modulation frequency using ∆f = f /(2N − 1). The solid black curve in Fig. 6(a) marks
the frequency as a function of PRBS order when the tone spacing equals a Brillouin linewidth of
57 MHz in our simulation. Figure 6(b) shows the enhancement of the BI threshold relative to
the unmodulated threshold as a function of PRBS order and modulation frequency. The solid
black curve in Fig. 6(b) again illustrates the condition when the tone spacing ∆f is 57 MHz. In
Fig. 6(b), when operating above the solid black curve, the tone spacing ∆f is larger than the
Brillouin linewidth. Further increasing the modulation frequency and tone spacing with a fixed
PRBS order will not significantly increase the BI threshold. On the right side of the black curve
in Fig. 6(b), the tone spacing ∆f is smaller than the Brillouin linewidth, and further increasing the
PRBS order while keeping the modulation frequency constant will not significantly decrease the
amount of power within the Brillouin linewidth to effectively increase the BI threshold. Hence,
when ∆f approaches the Brillouin linewidth, as indicated by the black curve in Fig. 6(b), simply
increasing the modulation frequency or the PRBS order alone does not lower the Brillouin gain
and will not significantly increase the enhancement. Of course, a higher enhancement can be
achieved by increasing both the modulation frequency and PRBS order, as shown in Fig. 6(b).

Fig. 6. (a) Tone spacing ∆f and (b) enhancement as a function of modulation frequency
and PRBS order.

Furthermore, Fig. 6(b) shows that using too large a PRBS order will lead to the deterioration
of the enhancement rather than an improvement with a fixed modulation frequency. For example,
at a modulation frequency of 3 GHz, the optimal PRBS order is 8. In addition, at a larger
modulation frequency of 5 GHz, the optimal PRBS order is 9. As the modulation frequency
increases, the optimal PRBS order also increases.

5. Enhancement as averaging time changes

Most prior studies of the power threshold for BI have defined the power threshold as the power at
which the reflectivity reaches 1%. One issue that may arise from this definition is that averaging the
Stokes power over large time scales reduces the impact of a large transient peak power. However,
the Stokes wave exhibits strong fluctuations with the peak power being many times higher than
its average power [22,37,38] which can lead to device damage. Hence, we consider a new BI
power threshold, where we use a moving average over the nanosecond scale, defined as when
the maximum averaged reflectivity over a finite time span of τ, PTH(τ) = max[

∫ t+τ
t ρS(T)dT/τ]
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reaches 1%, with τ representing the averaging time. This definition of power threshold that
depends on the averaging time avoids the appearance in the PRBS of an unmodulated sequence
that is comparable to the transient time in the fiber amplifier. We still define the enhancement as
the ratio of PTH(τ) to the power threshold of the unmodulated input signal. To be consistent with
the previous sections, the power threshold of unmodulated input signal is still averaged over 40
transient times, so that we can directly compare the data to the previous sections. Figure 7(a)
shows the enhancement as a function of PRBS order for different averaging times, τ, and for a
9-m fiber. The modulation frequency is 5 GHz. The solid blue curve in Fig. 7(a) is a slice from
the enhancement contour in Fig. 6(b), where the reflectivity is averaged over 40 transient fiber
times, which is 1.74 µs. The blue curve has a maximum at a PRBS order of 9. In this case, the
unmodulated phase sequence has a time span of (28 − 1) / 5 GHz = 51 ns, which corresponds to
transient fiber time of tf = 43 ns. The enhancement decreases as the PRBS order increases to
values greater than 9, and illustrates the impact of the larger transient peak power with a longer
PRBS sequence. As the averaging time τ decreases, which is more sensitive to any transient
reflected peak pulses due to BI, the enhancement decreases. As the averaging time, τ, further
decreases, the difference in enhancement becomes small, which is because the Stokes light does
not rapidly change on the sub-nanosecond time scale [37]. The time step used in simulation is 50
ps.

Fig. 7. Enhancement as a function of PRBS order for different averaging times and with
fiber lengths of (a) 9 m, (b) 12 m, and (c) 15 m.

Next, we study the enhancement as we change the fiber length to 12 m and 15 m, as shown in
Figs. 7(b) and 7(c), respectively. The enhancement becomes slightly larger because of the lower
power threshold for the unmodulated case in a longer fiber. The actual power thresholds for the
12-m- and 15-m-long fibers are lower than the power thresholds for the 9-m-long fiber. This
result is consistent with results from [19]. Figure 7 also shows that the enhancement saturates as
the averaging time becomes either small or large.

Next, we study how the enhancement changes as the average time changes. In Fig. 8, we
simulate 10 different realizations for each averaging time and plot the average enhancement for
fiber lengths of 9, 12, and 15 m. Increasing the fiber length will shift the enhancement to larger
values, which is consistent with Fig. 7. The modulation frequency used is 5 GHz, and the PRBS
order used is 8. Figure 8 shows the saturation in the enhancement that occurs when the averaging
time becomes small or large.
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Fig. 8. Enhancement as a function of averaging times and for different fiber lengths.

6. Prediction of enhancement with different PRBS orders

In this section, we will derive a simple equation for the threshold power with different PRBS
orders. With a fixed tone spacing ∆f , the BI threshold is primarily determined by the largest
power among all the different frequency tones, given the approximation that the power is almost
evenly distributed near the center frequency according to Fig. 2. Hence, the largest power among
all frequency tones is the same at the BI threshold with the same tone spacing ∆f , but at different
PRBS orders. According to Fig. 2, the laser power is mainly distributed among 2p − 1 and 2q − 1
different tones for PRBS orders of p and q, respectively. The enhancements Ep and Eq, for
different orders p and q, will have a ratio R = (2p − 1)/(2q − 1) as long as the tone spacing, ∆f , is
the same for those two cases. Hence, we obtain the following equation,

Ep(fp) − 1
Eq(fq) − 1

= R, (2)

where Ep,q and fp,q are the enhancements and frequencies for PRBS orders p and q, respectively,
with fp,q = ∆f [2p,q − 1]. The numerator and denominator on the left-hand side of Eq. (2) are
shifted by one because the base enhancement for all PRBS orders is one when the modulation
frequency is zero. Using Eq. (2), we can predict the enhancement of order p from the enhancement
of another order q by using

Ep(f ) = R[Eq(fp/R) − 1] + 1. (3)
Equation (3) shows that the enhancement in the BI threshold may be predicted using the results

from PRBS phase modulation with another order. Figure 9 shows the enhancement in the BI
threshold as a function of modulation frequency for different PRBS orders. Black circles indicate
experimental results from [22]. The solid curves are the enhancement using time dependent
simulations according to Eq. (1). Dashed curves represent the enhancement using PRBS orders
5, 7, and 9, using Eq. (3) according to the solid blue curve for PRBS order 3. The dashed
curves using Eq. (3) predict the trends of the corresponding solid curves from time-dependent
simulations. For the solid red and dashed red curves when modulation frequency is more than 2
GHz, the value of ∆f surpasses the Brillouin linewidth, and the enhancement saturates. A small
discrepancy does exist between the analytical and simulation results due to the difference in the
magnitude envelopes of the frequency tones in different PRBS orders, as indicated in Fig. 2.
Simulations at a high PRBS order require more computation time. Equation (3) makes it possible
to quickly predict the enhancement at a higher PRBS order from simulations at a lower PRBS
order using a lower modulation frequency.
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Fig. 9. Enhancement of the Brillouin instability threshold as a function of modulation
frequency for different PRBS orders. Solid curves represent time dependent simulation results
based on Eq. (1), and dashed curves represent the corresponding predicted enhancement
based on Eq. (3). Black circles indicate experimental results from [22].

7. Conclusions

We theoretically studied the BI threshold in a passive fiber in which the input signal is modulated
using a pseudo-random bitstream (PRBS). Suppression of the Brillouin instability may be done
by phase modulation that broadens the laser linewidth so that it is greater than the Brillouin
bandwidth. We determined the dependence of the threshold as the Brillouin linewidth and the
PRBS order varies at a fixed modulation frequency. PRBS phase modulation with a higher order
will separate the modulation power into a larger number of frequency tones with a lower power,
leading to a higher enhancement of the Brillouin threshold relative to the unmodulated threshold.
However, the enhancement will reach saturation when the tone spacing becomes equal to the
Brillouin bandwidth. Our work finds the minimum PRBS order for a specific power and Brillouin
linewidth. When a specific threshold power is desired, the minimum PRBS order required
decreases as the Brillouin linewidth increases. Our analysis has elucidated the relationship
between the optimal PRBS order, power threshold, and Brillouin linewidth, which is important to
understand the fundamental limit when designing high-power lasers. We also investigated the
dependence of the optimal PRBS order on the averaging time and fiber length, and we did not
find a significant dependence. Finally, we showed that it is possible to predict the enhancement
achieved from a higher order PRBS pattern using a lower order PRBS pattern, which provides a
computationally time-efficient method to calculate the enhancement.
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