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Solitons in birefringent optical fibers and polarization mode dispersion 

Curtis R. Menyuk 
Computer Science and Electrical Engineering Department, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD, 21250, USA  

A B S T R A C T

The early work on solitons in optical fibers was all done using single-mode fibers, and these fibers remain important for many applications. The modes in single-mode 
fibers are for all practical purposes weakly confined plane waves and have two polarizations. The basic equation that describes light evolution in these fibers is the 
coupled nonlinear Schrödinger equation. The soliton robustness hypothesis and its origins, which were the original motivation for studying these equations, is first 
described. Limits on robustness due to birefringent walkoff and the impact of random birefringence variations in stabilizing solitons is then described. Questions and 
controversies that arose shortly after the publication of these equations are addressed. These include their relationship to the Maker and Terhune coefficients, the 
requirements for the validity of the nonlinear Schrödinger equation and the impact of polarization mode dispersion, and the conditions under which the birefringence 
can be considered linear. It is a consequence of the fluctuation-dissipation theorem that the birefringence must be linear in any homogeneous, low-loss optical 
medium with a local dielectric response. Any ellipticity is associated with non-locality, as would occur for example in a twisted optical fiber. This important result, 
which is not well-known in the optics community, is reviewed.   

1. Introduction

In this year when we celebrate the 50-th anniversary of the optical
fiber soliton [1,2], it is appropriate to look retrospectively at the original 
work on solitons in birefringent optical fibers [3–5]. I will focus on work 
that was carried out—first by myself and then by others—starting in the 
mid-1980s and stretching into the early 2000s. It could be argued that 
work on optical solitons stretches even farther back than the work by 
Hasegawa and Tappert [1,2] and the first experimental observation by 
Mollenauer et al. [6] of solitons in optical fibers. In 1964, Chiao et al. [7] 
used the nonlinear Schrödinger equation (NLSE) to describe the prop
agation of optical beams in a medium with a Kerr nonlinearity. This 
work presented the first observation of what are today called spatial 
solitons, as opposed to the temporal solitons that exist in optical fibers. 
Additionally, a theoretical study of these spatial solitons by Kelley [8] 
was later cited by Zakharov and Shabat [9] in their own seminal work in 
which they demonstrated that the inverse scattering method that had 
earlier been applied by Gardner et al. [10] to the Korteweg-de Vries 
equation could also be applied to the NLSE. Nonetheless, the recognition 
by Hasegawa and Tappert that the NLSE applied to optical fibers [1,2], 
along with their experimental observation by Mollenauer et al. [6], was 
the real trigger that led to an outpouring of work on optical solitons that 
ensued in the decades following and has never ceased. 

The 1970s and 1980s were an exciting time in the nonlinear physics 
community and in the plasma physics community in which Akira 
Hasegawa and I were both working at the time. On the one hand, it was 
discovered that the inverse scattering method could be applied to a large 

group of equations [11], referred to as integrable, and that this trans
formation corresponds to an action-angle transformation since all of 
these systems are Hamiltonian. On the other hand, computers that were 
sufficiently powerful to simulate the evolution in non-integrable systems 
became available. While it had been known since Poincaré’s work at the 
end of the 19-th century that the evolution in non-integrable systems is 
inherently chaotic [12], work in the 1950s and 1960s had led to the 
Kolgomorov-Arnold-Moser (KAM) theory that implied that regular tra
jectories (referred to as KAM trajectories) would exist in non-integrable 
systems and could impede or even block the chaotic motion [13]. These 
concepts had important applications to ionospheric physics and plasma 
containment devices, and the computer made possible dramatic visu
alizations of the chaotic motion, as well as the regular trajectories and 
their impact on the overall system evolution [14]. The KAM theorem 
and the impact of the regular trajectories was described in simple terms 
in a highly influential paper by Chirikov [15] that I first read as a 
graduate student. My own PhD dissertation was on the subject of 
Langmuir waves propagating obliquely to a magnetic field and the 
impact of the KAM trajectories in impeding the flow of electrons [16]. 

In 1981, I began to work as a post-doctoral research associate at the 
University of Maryland Baltimore County. My post-doctoral mentors, 
Hsing-Hen Chen and Yee-Chun Lee, who were interested in studying 
soliton integrability, first introduced me to solitons. In 1983, I heard a 
talk at a Physics colloquium by Hans Wilhelmsson in which the work by 
Hasegawa and colleagues and the work by Mollenauer and colleagues, 
as well as their potential applications to optical communications, was 
briefly described. I was instantly hooked! I started reading everything 
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that I could on the subject of optical fibers and the experiments that Linn 
Mollenauer, Roger Stolen, and their colleagues at Bell Labs had carried 
out. I was particularly influenced by papers by Stolen and colleagues 
[17,18] in which they demonstrated that nonlinear polarization rotation 
occurs in optical fibers because the cross-polarized Kerr effect in optical 
fibers is 2/3 as strong as the self-polarized effect. I hypothesized that 
something like KAM trajectories would exist for physically-realistic 
Hamiltonian systems that are close enough in some sense to the NLSE, 
and that solitons should continue to exist in these systems, i.e., solitons 
would be robust in the presence of Hamiltonian deformations. My plan 
was to test this idea for practically important optical fiber systems. I 
wrote down all the Hamiltonian deformations that I could think of and 
then discussed the list with Roger Stolen. With his help, I narrowed the 
list to include higher-order dispersion and birefringence as the first two 
items. Higher-order dispersion eventually became the subject of 
Ping-kong Alexander Wai’s PhD dissertation [19]. H. H. Chen, his PhD 
advisor, had asked me to suggest a dissertation problem to Alex. The 
work on birefringence is the subject of this paper. 

In the remainder of this paper, I will begin by reviewing the early 
work on birefringence and continue with a review of work on randomly 
varying birefringence and polarization mode dispersion (PMD). I will 
close by describing a little-known result that any homogeneous medium 
with a local dielectric permittivity can only be linearly birefringent. Any 
ellipticity requires non-locality. Single-mode optical fibers in which the 
core-cladding index of refraction is less than 1% only support the HE11 
mode, which is to all intents and purposes a weakly confined plane wave 
and, like a plane wave, it has two polarizations. Thus, it is to be expected 
that the birefringence of single-mode optical fibers will be linear in the 
absence of twisting or other effects that induce non-locality. 

2. Solitons in birefringent optical fibers

The starting point for my studies of solitons in birefringent optical
fibers was to combine the known dispersion in birefringent optical fibers 
[20] with the nonlinear response of the fibers, which had earlier been
published by Stolen and colleagues [17,18] to yield
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(1)  

where u and v are the complex envelopes of the two polarizations, z and t 
are distance along the fiber and retarded time, and δ parameterizes the 
birefringence walkoff. All quantities are normalized, and when writing 
Eq. (1), I was careful to use the same normalizations that Mollenauer and 
colleagues were using in order to make the closest possible contact 
with their prior results. When I wrote down this equation, it was 
immediately apparent to me that something was missing. 
Circular symmetry of the transverse fiber profile implies that in the limit 
δ → 0, the equation becomes invariant under a transformation 
u′ = u cos θ + v sin θ, v′ = −  u sin θ + v cos θ, where θ is an arbitrary 
angle. I called Roger Stolen for help, who suggested that I expand the 
vector Kerr nonlinearity, which is proportional to (E ⋅E)E, where E is the 
vector electric field. Expanding the vector electric field yielded the 
missing term, and Eq. (1) becomes Eq. (2) [3], 
where ∓ Rδz is the phase slip between the two polarizations due to the 
birefringence. For the 5-ps pulses that Mollenauer et al. [6] studied in 

their original work and a fiber birefringence Δn/n between 10− 7 and 
10− 6, which was typical [20], the parameter Rδ was on the order of 
104–105, while the parameter δ was on the order of 0.3–3.0. I concluded 
that the final terms, shown in red, were rapidly varying and could be 
dropped in numerical studies. This term does become important when 
pulses are short and can lead to an instability that was first observed by 
Trillo et al. [21]; however, this instability was not relevant for the limit 
that I was trying to model. In subsequent numerical work [4,5], I found 
that solitons were indeed robust if δ is not too large. If the birefringent 
walkoff length is smaller than the nonlinear scale length, then the two 
polarizations self-trap and a single elliptically-polarized soliton is 
created. In the opposite limit, the two polarizations split apart and two 
pulses walk off from one another. I note parenthetically that the 
(unsymmetrized) Hamiltonian H for Eq. (1) can be written 
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where [u, u*] and [v, v*] are coordinate and momentum pairs. 
I submitted the second of the two numerical papers [5] to a special 

issue that Roger Stolen edited. The reviewers complained that the paper 
was not sufficiently different from the earlier paper [4] to merit publi
cation. I pointed out that the paper contained details of the numerical 
algorithms that I used, which I claimed would be useful to others. Roger 
agreed and, after I added additional information that he suggested, he 
accepted the paper for publication. In fact, I received requests for a 
decade following publication for more details on the algorithms and for 
the original FORTRAN code that I wrote. However, the difficulty in 
publishing innovative and useful algorithms persists in the field of optics 
and photonics. 

When I described my results to Linn Mollenauer, I noted that the 5-ps 
pulses that he had used were in the low-δ limit and perhaps the bire
fringent walkoff would not matter since both polarizations would be 
trapped. Linn explained to me that he was currently doing work with 
100-ps pulses so that this effect did potentially matter. He thought for a
while and then suggested that perhaps the randomly varying birefrin
gence that had already been studied by Poole and Wagner [22] would 
stabilize the solitons. Using a version of my numerical code and imple
menting a randomly varying birefringence by randomly shifting the 
signs of δ in Eq. (1), he and his co-authors demonstrated the validity of 
this suggestion [23]. Linn publicized these equations at Bell Labs and 
invited me to give a talk in which I described my robustness hypothesis, 
which I only published years later at the urging of Ray Hawkins [24]. 

Mohammed Islam was at my talk and suggested that the transition 
between the trapped and untrapped polarization states could be used to 
make an optical switch. He first focused on demonstrating the validity of 
Eq. (1) [25], after which we collaborated on a study of soliton dragging 
and trapping gates [26]. It became important to understand the impact 
of the Raman effect on these gates. That led to collaborative work with 
Jim Gordon in which we modified Eq. (1) to include the Raman effect. I 
had difficulty publishing this work at first due to overlap with earlier 
work by Hellwarth [27]. Jim advised me on how to rewrite our work to 
distinguish it from the work by Hellwarth, and it was published [28]. 

While it was gratifying that the validity of Eq. (1) was experimentally 
established [25[ and that randomly varying birefringence could explain 
the observed soliton stability [23], it was apparent by 1991 that a better 
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model was needed that unified a physics-based model of the randomly 
varying birefringence with the Kerr effect. Aside from the lack of 
physicality, I was intrigued by the success of the NLSE in modeling op
tical fiber transmission. Indeed, until the development of 
polarization-division multiplexed systems in the 2000s forced the use of 
Eq. (1) and its improvements, the NLSE was consistently used. I was 
convinced that it should be possible to derive the NLSE as a limit of the 
coupled NLSE with randomly birefringence and thereby determine the 
limits of its validity. I had joined the University of Maryland Baltimore 
County (UMBC) in Fall 1986 as the first-ever professor of Electrical 
Engineering in a newly-created College of Engineering (later the College 
of Engineering and Information Technology). Shortly after 1990, Alex 
Wai joined me at UMBC as a research professor, and we began to tackle 
this problem. Based on the earlier work of Foschini and Poole [29], we 
derived an analytical expression for the walkoff length and verified that 
as long as the walkoff length is long compared to the nonlinear scale 
length, solitons will still be robust [30]. As a practical matter, the lengths 
over which the randomly varying birefringence remains correlated is 
very small—typically on the order of meters—when compared to the 
nonlinear scale length in long-distance telecommunications systems, 
which is typically on the order of hundreds of kilometers. Modeling the 
random variations on the length scale of the random variations is 
computationally inefficient. Working with Dieter Marcuse, who joined 
Alex and I at UMBC (working remotedly) after retiring from Bell Labs 
and using two different, physically realistic models of the randomly 
varying birefringence, we investigated this issue. We demonstrated that 
artificially increasing the birefringence by a factor (Δz/zcorr)

1/2, where 
Δz is the step size and zcorr is the birefringence correlation length, it is 
possible to take computational steps that are long compared to zcorr and 
the birefringent beat length, although Δz must remain short compared to 
the dispersive and nonlinear scale lengths [31]. 

The impact of the coupled NLSE, Eq. (1) has been large. Aside from 
direct references to Refs. [3–5], these equations appeared in the first 
edition of Nonlinear Fiber Optics [32] by Govind Agrawal, where they 
have been referenced many times more. The references have become so 
common that I now often see these equations with no citation at all. 
Beyond their application to solitons, they are the base equations that 
govern all nonlinear Kerr interactions in single-mode fibers, and have 

been extended to include higher-order dispersion, the Raman and Bril
louin effects, Rayleigh scattering and noise. They play an important role 
in fiber lasers that are modelocked using nonlinear polarization rotation 
or for that matter any fiber laser that does not use 
polarization-preserving fibers [33]. 

The field of nonlinear fiber optics has progressed far beyond far 
beyond single solitons and single-mode fibers. Even before my own work 
was published, Hasegawa [34] and Crosignani and Di Porto [35] had 
proposed the use of a multi-component NLSE to describe light propa
gation in multi-mode fibers, although I was not aware of this work until 
after [3] was published. At the time, inter-modal dispersion was too 
large to produce solitons. However, that is no longer the case, and it has 
recently become possible to create modelocked pulses in which many 
transverse modes as well as the usual longitudinal modes are locked 
together [36,37]. Orbital angular modes in structured fibers with large 
index differences play an important role in modern nonlinear fiber 

optics [38]. Complex soliton structures, including molecules [39], 
crystals [40], and supra-molecules [41] have all been studied in fiber 
lasers. My own contribution to these exciting developments in nonlinear 
fiber optics has been slight. For the past 15 years, most of my effort has 
gone into frequency combs, first in lasers and more recently in micro
resonators. Solitons are important in these applications, and somewhat 
like Russell chasing a soliton along a canal in Scotland [42], I have spent 
my career chasing solitons into new domains and applications. 

3. Controversies, questions, and answers

The coupled NLSE was not without controversy when it was first
published. The first time that I presented these equations at a scientific 
meeting, I was asked what happened to the Maker and Terhune A and B 
coefficients [43]. At the time, I didn’t even know what they were! A 
more serious question was how polarization mode dispersion (PMD) 
would affect these equations. A related question that I had was: Given 
that the coupled NLSE is a more fundamental equation than the NLSE in 
single-mode optical fibers, why is the NLSE as successful as it is, and 
what are the limitations? A final question that I was asked on several 
occasions is: Why did I assume that the birefringence is linear so that the 
cross-phase-modulation term in Eq. (1) has a factor 2/3 in front? Before 
answering these questions, we first recall that the fundamental mode in 
a step-index fiber is the HE11 mode, which is the only mode that exists 
when the index difference becomes small enough for the fiber to be 
single-mode. In this limit, the electric field is effectively a weakly 
confined plane wave [44,45]. So, it is unsurprising that it has two po
larizations. We can thus study the nonlinear propagation of light in 
single-mode fibers using the plane-wave approximation once we 
appropriately average over the transmission mode amplitude to obtain 
the effective index and determine the strength of the nonlinearity. This 
observation can be made rigorous [45,46]. 

Question 1: What happened to the Maker and Terhune coefficients? 
To answer this question, we must first examine more closely the 

nonlinear response of the optical fiber, which we will do in the plane 
wave approximation. We then find that the polarization density of the 
medium P is given by [45,46].  

where E is the electric field, the susceptibility XL is a second-order 
tensor, since the optical fiber is birefringent, and χNL is a scalar. We 
make three basic assumptions in writing Eq. (1) in addition to the plane 
wave approximation. The first is that the change in the index of 
refraction due to both the birefringence and nonlinearity is small 
compared to one. We can parameterize this smallness by comparing the 
length scales for the birefringence and the nonlinearity to the optical 
wavelength. The length scale for the birefringence, given by the beat 
length between the two polarizations, is on the order of a meter, while 
the length scale for the nonlinearity, given by the length over which the 
nonlinearity rotates the phase by 2π, can be many kilometers. By com
parison, the wavelength of light is about a micrometer. One consequence 
is that the effect of birefringence on the nonlinear response is negligible. 
Second, we are assuming that the carrier frequency ω0 is large compared 
to the bandwidth of the signal so that the slowly-varying envelope 
approximation applies and the lowest-order in-band nonlinear 

P(z, t) =
∫ t

− ∞
dt1 XL(t − t1)⋅E(z, t1)

+

∫ t

− ∞
dt1

∫ t

− ∞
dt2

∫ t

− ∞
dt3 χNL(t − t1, t − t2, t − t3)[E(z, t1)⋅E(z, t2)]E(z, t3),

(4)   
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contributions are cubic. Third, we are assuming that the response of the 
polarization density to the electric field is local in space and homoge
neous in time. We may then write [45,46]. 

E(z, t) = E+(z, t)exp(ik0z −  iω0t) + E−  (z, t)exp(−  ik0z + iω0t), 
P(z, t) = P+(z, t)exp(ik0z −  iω0t) + P−  (z, t)exp(−  ik0z + iω0t),

(5)  

where E− = E+*, P− = P+* and all four quantities are slowly varying. We 
have k0 = k(ω0) is the wavenumber at the central frequency. Keeping 
only the in-band components, we have 

P+(z, t) =

∫ t

− ∞
dt1 XL(t − t1)⋅E+(t1)exp[iω0(t − t1)]

+

∫ t

∞
dt1

∫ t

− ∞
dt2

∫ t

− ∞
dt3 χNL(t − t1, t − t2, t − t3)

{2[E+(z, t − t1)⋅E− (z, t − t2)]E+(z, t − t3)

+[E+(z, t − t1)⋅E+(z, t − t2)]E− (z, t − t3) }

exp[iω0(t − t1 + t2 − t4)].

(6)  

Writing P+ = P+
L + P+

NL, which correspond to the linear and nonlinear 
contributions to P+ and taking advantage of the slowly varying envelope 
approximation, we find that the nonlinear response becomes 

P+
NL(z, t) = 2χ̃NL(ω0, − ω0,ω0)[E+(z, t)⋅E− (z, t)]E+(z, t)

+χ̃NL(ω0,ω0, − ω0)[E+(z, t)⋅E+(z, t)]E− (z, t),
(7)  

where ̃χNL is the three-dimensional Fourier transform of χNL. We see that 
the nonlinear response has two components that are distinct when the 
response time of the medium is long compared to the period of the op
tical field, albeit short compared to the time scale on which the field 
amplitudes change, which is necessary for the slowly-varying envelope 
approximation to be valid. That is the limit in which Maker et al. [43] 
worked, and the two components of the nonlinear susceptibility are 
proportional to the A and B coefficients. However, the response time of 
the Kerr effect in optical fibers is short compared to the period of the 
optical field, and in this limit, we have ̃χNL(ω0, − ω0,ω0) = χ̃NL(ω0,ω0, −

ω0) = χ̃NL(0,0,0), and the two Maker and Terhune coefficients collapse 
into one. 

Question 2: When is the NLSE valid? 
The validity of the NLSE, which was used almost universally to 

model single-mode optical fibers in the first two decades after the work 
of Hasegawa and Tappert [1,2] and Mollenauer et al. [6] continually 
intrigued me, as I reported in the prior section. Mollenauer et al. [23] 
showed that the NLSE continues to hold when the slow and fast axes of 
the fiber are randomly interchanged. I wanted to show that this 
conclusion continues to hold for more physically realistic models and to 
find its limits of validity. Working with Alex Wai and Dieter Marcuse, I 
tackled this question, and we resolved it [30,31,45]. The first step is to 
re-write Eq. (2) in vector form and to slightly extend it to yield [45]. 

i
∂U
∂z

− ig(z)U + [cos θ(z)σ3 + sin θ(z)σ1]

[

Δβ(z)U + iΔβ′(z)
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−
1
2
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1
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⃒
⃒
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1
3
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(8)  

where 

U =

[
u(z, t)
v(z, t)

]

, U† = [u∗(z, t) v∗(z, t)], (9)  

the σj are the standard Pauli matrices, 

σ1 =

[
0 1
1 0

]

, σ2 =

[
0 − i
i 0

]

, σ3 =

[
1 0
0 − 1

]

, (10)  

Δβ and Δβ′ are the difference in the wavenumber and its frequency 
derivative evaluated at the central frequency ω0, θ(z) is the orientation 
angle of the birefringence, β″ and β‴ are the second- and third-order 

contributions to chromatic dispersion, g(z) is the position-dependent 
gain or loss, and γ is the Kerr coefficient. Next, we transform Eq. (7) in 
a way that would diagonalize its evolution were it not for the z-variation 
of θ(z). We may do that by letting V = R− 1U, where R = cos(θ /2)I+
isin(θ /2)σ2. We then obtain 

i
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∂z

− igV + σ3

[

ΔβV + iΔβ′∂V
∂t

]

+
1
2
θzσ2V

−
1
2
β″∂
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1
6
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|V|
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1
3
(V†σ2V)σ2V

]

= 0,
(11)  

where θz = dθ/dz. In this step, we have effectively frozen the rapid 
motion of the state of birefringence on the equator of the Poincaré 
sphere. However, the term (θz/2)σ2V leads to off-diagonal coupling, 
whose random variation leads to the polarization state of the light 
uniformly filling the Poincaré sphere. It is worth noting that the linear 
portion of Eq. (2) with the off-diagonal coupling between the two 
components of the state of polarization is consistent with Poole and 
Wagner’s phenomenological model [22], and we can identify their 
coupling coefficient with θz/2 in a physically realistic model. 

The next step is a bit trickier. The goal is to freeze the motion of the 
carrier frequency on the Poincaré sphere. That will allow us to obtain the 
residual spreading of the polarization state as a function of frequency 
and distance. To accomplish this next transformation, we let W =

T− 1(z)V, where T satisfies the equation 

i
∂T
∂z

+ [Δβσ3 + (θz / 2)σ2]T = 0 (12)  

with the initial condition T(z = 0) = I. After making this trans
formation, we obtain 

i
∂W
∂z

− igW −
1
2
β″∂

2W
∂t2 −

1
6

iβ′′′∂
3W
∂t3 +

8
9

γ|W|
2W

= − iΔβ′σ3
∂W
∂t

+
1
3

γ
[

(W†σ2W)σ2W −
1
3
|W|

2W
]

= 0,
(13)  

where σj = T− 1σjT. 
The beauty of this expression is that all the effects of the rapidly 

varying birefringence have been isolated on the right-hand side of this 
equation. We see immediately that there is no coupling between the 
components of W when the right-hand side of Eq. (13) is negligible. The 
first term on the right-hand side corresponds to the usual polarization 
mode dispersion (PMD) [45]. The second term on the right-hand side is a 
nonlinear PMD. Marcuse et al. [31] showed that this term is negligible 
unless the pulse duration is a small fraction of a picosecond for typical 
pulse powers at the time. 

The conditions for the NLSE to hold are now clear. The initial pulse 
must be in a single polarization state, and the effects of PMD must be 
negligible so that the polarization state remains the same at every point 
in the signal as the signal propagates, although this polarization state 
will typically be rapidly and randomly changing. I will add parentheti
cally that answering this question allowed my colleagues and I to start 
exploring the interaction of nonlinearity and PMD before this interac
tion became a topic of great interest in the telecommunications indus
try—pointing in my view to the importance of curiousity-driven 
research. 

Question 3: Is the birefringence really linear? 
My response to this question for many years was, “Of course it is; 

Roger Stolen showed it.” More precisely, Roger Stolen and his colleagues 
at Bell Labs demonstrated that the cross-coupling term has 2/3 the 
strength of the self-coupling term [17,18], and that is only possible if the 
birefringence is linear. Moreover, it seems physically reasonable since 
elliptical or circular birefringence is associated with helicity in the op
tical medium, and none is present unless the optical fiber is twisted, as 
can happen intentionally or when the fiber is wound on a bobbin [47]. I 
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quickly became aware that twisting a fiber would induce an effective 
ellipticity [45,46,48]. That effect is apparent in Eq. (11), where if θz is 
constant, then a constant off-diagonal coupling is induced between the 
components of V. This polarization coupling leads to an elliptical bire
fringence relative to the rotating axes and changes the nonlinear 
coupling. The ratio changes from 3:2 to 1:2 in the case of circular 
birefringence and at a special angle of ellipticity of about 35◦, the ratio 
becomes 1:1, and the Manakov equation is obtained [46,48]. However, 
this ellipticity is with respect to the rotating axes and applies when the 
nonlinear scale length is long compared to the beat length, as is the case 
in telecommunications applications, but not when nonlinear polariza
tion rotation is used as a discriminator, as is the case in many passively 
modelocked fiber lasers [33]. 

A further complexity is that modern telecommunication fibers are 
spun as they are drawn to reduce the PMD. In the late 1990s and early 
2000s, my research group at UMBC collaborated with the research group 
of Andrea Galtarossa at the Università di Padova to model PMD. 
Andrea’s group had pioneered polarization optical time-domain reflec
tometry (P-OTDR) techniques that could be used to study the evolution 
of the birefringence along the fibers [49]. While P-OTDR is insensitive to 
the circular component of the birefringence, the results are consistent 
with models that assume that this component is negligible for straight 
untwisted optical fibers. 

I was then surprised to discover in summer 2009 when perusing 
Electrodynamics of Continuous Media by Landau and Lifshitz [50] that the 
assumption that the birefringence is linear has a rigorous basis. The 
birefringence is necessarily linear in any homogenous medium in which 
the permittivity is local [50], as is assumed in Eq. (15) below. Equation 
(15) and equivalently Eq. (20) below is the starting point for modeling a
wide variety of optical resonators and waveguides, not just optical fi
bers. This result, which is a consequence of the fluctuation-dissipation
theorem, implies that elliptical or circular birefringence can only
occur due to non-locality, as can happen when the molecules in the
medium are helical and large, leading to optical activity, or when the
medium is subject to a helical stress, as when an optical fiber is twisted.
Landau and Lifshitz report this result as a special case of a more general
result that they obtain in their volume Statistical Physics [51] and where
in the middle of their demonstration, they refer to their volume
Non-Relativistic Quantum Mechanics for a crucial step [52]. The relevance
to single-mode optical fibers is evident since, as stated earlier, the modes
in these fibers can be treated as weakly confined plane waves [45,46].
This result was new to me, and I immediately did a deep dive into the
textbooks on my shelf, and discovered that they either did not contain
this result or mis-stated it.

Given the importance of this result and the difficulty of tracing it 
through three volumes of Landau and Lifshitz’s Course of Theoretical 
Physics, a demonstration of this result that is specialized to electro
magnetic media is appropriate. In 2010, I had the opportunity to present 
this result in a tutorial talk at the IEEE Photonics Society Summer 
Topicals Meeting [53]. However, I have never until now published the 
details. 

The result that we will use is [50]. 

ϵ̃ij(ω,H) = ϵ̃ji(ω, − H), (14)  

where we write the electric displacement D as 

D(r, t) =
∫ t

− ∞
ϵ(t − t’)⋅E(r, t’) dt’, (15)  

with permittivity ϵ. We use tildes to represent the Fourier (frequency) 
transforms of all quantities, so that 

ϵ∼(ω) =
∫ ∞

− ∞
ϵ(t)exp( − iωt) dt. (16)  

Equation (14) is a consequence of the fluctuation-dissipation theorem 

and holds regardless of the loss. However, Eq. (15) has a number of 
assumptions that are worth enumerating explicitly. 

The most general form of the electric displacement is 

D(r, t) =
∫ ∞

− ∞
dt’

∫

V
d3r’ ϵ(r, r’, t, t’)⋅E(r’, t’), (17)  

where we integrate over the volume V of the medium. If we assume 
homogeneity in time and space, then Eq. (17) becomes 

D(r, t) =
∫ ∞

− ∞
dt’

∫

V
d3r’ ϵ(r − r’, t − t’)⋅E(r’, t’). (18)  

Time invariance is almost always a reasonable assumption for times that 
are short compared to the environmental fluctuations. Homogeneity is 
also a reasonable assumption for lengths of optical fiber that are subject 
to the same environment, such as straight lengths of optical fibers or 
fibers that are wound on a bobbin with a fixed radius. If we now assume 
locality then Eq. (18) collapses to 

D(r, t) =
∫ ∞

− ∞
dt’ϵ(r, t − t’)⋅E(r, t’). (19)  

The locality assumption is separate from homogeneity and would apply 
for example to a straight fiber, but not, as previously noted, to a twisted 
fiber. Finally, if we assume causality, we obtain Eq. (15). Causality, of 
course, must always hold in any physical system. Equation (15) becomes 
in the frequency domain 

D
∼

(r,ω) = ϵ∼(ω)⋅E
∼

(r,ω). (20) 

We now specialize to a system in which the loss is low and consider a 
signal at a single frequency ω so that 

E(r, t) =
1
2
E0exp(iωt) + c.c., D(r, t) =

1
2

D0exp(iωt) + c.c. (21)  

The time rate of change of the energy is given by [50]. 

dQ
dt

= E(r, t)⋅
dD(r, t)

dt
, (22)  

which when averaged over one period becomes 

dQ
dt

=
iω
4
[
E∗

0⋅ϵ∼(ω)⋅E0 − E0⋅ϵ∼
∗

(ω)⋅E∗
0

]
=

iω
4

E∗
0⋅[ϵ∼(ω) − ϵ∼

†

(ω)]⋅E∗
0, (23)  

where Q = (ω /2π)
∫ 2π/ω

0 dt′ Q(t). If the loss is negligible then ϵ∼(ω) must 
be Hermitian. Using Eq. (14) when no magnetic field is present, we 
conclude that ϵ∼(ω) is a real symmetric tensor and so the birefringence 
must be linear. 

Equation (14) is a consequence of the fluctuation-dissipation theo
rem, which in the classical limit may be written 

〈Ej(t)Ek(t+ τ)〉 = kBT
V

∫ ∞

τ
ϵ − 1

jk dτ′, (24)  

where kB is Boltzmann’s constant, T is the temperature, and V is the 
volume being considered. In Appendix A, we include a derivation of this 
result, which specializes a derivation of Lenk [54] to electrodynamics. 
The power spectral density then becomes (Wiener-Khintchine theorem) 

Φjk(ω) =
∫ ∞

− ∞
〈Ej(t)Ek(t+ τ)〉exp(− iωτ) dτ = i

kBT
ωV

[
ϵ̃ − 1

jk (ω) − ϵ̃ − 1
kj (ω)

]
.

(25)  

An exact quantum-mechanical derivation yields [52]. 

Φjk(ω) =
iℏ
2V

coth
(

ℏω
2kBT

)[
ϵ̃ − 1

jk (ω) − ϵ̃ − 1
kj (ω)

]
. (26)  

At optical frequencies and room temperatures, the quantum-mechanical 
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form should be used. Microscopic time reversibility implies that the 
autocorrelation function in Eq. (24) must be the same in both directions 
of time as long as the sign of the magnetic field is reversed, so that Φjk(ω, 

H) = Φkj(ω, − H). It then follows that I
[
ϵ̃ − 1

jk (ω,H)
]
= I

[
ϵ̃ − 1

kj (ω, − H)
]
. 

From the Kramers-Kronig relations, which are themselves a consequence 

of causality, we find R
[
ϵ̃ − 1

jk (ω,H)
]
= R

[
ϵ̃ − 1

kj (ω, − H)
]
. It then follows

ϵ̃ − 1
jk (ω,H) = ϵ̃ − 1

kj (ω, − H) and finally ϵ̃jk(ω,H) = ϵ̃kj(ω, − H). 

4. Conclusions

The 1980s were an extraordinarily fruitful time in nonlinear optics
with the advent low-loss optical fibers and laser sources that could 
operate at 1.5 μm. These two developments made possible the first 
observation of optical fiber solitons by Linn Mollenauer, Roger Stolen, 
and Jim Gordon at the Holmdel laboratory of AT&T Bell Laboratories, 
based on the earlier predictions of Akira Hasegawa and Fred Tappert. It 
was also an extraordinarily fruitful period in nonlinear dynamics. 
Powerful computers became available that made it possible to observe 
the interplay between regularity and chaos that exists in dynamical 
systems and that had previously only been accessible through difficult 
analytical calculations. The convergence of these two strands of thought 
led me to propose that solitons would function like KAM trajectories that 
remain regular in the presence of chaos and that therefore solitons 
would remain robust in the presence of Hamiltonian deformations of the 
NLSE. Applying this hypothesis to birefringent optical fibers, I proposed 
that solitons would remain robust in the presence of optical fiber bire
fringence. This hypothesis was correct with the important caveat that 
the birefringent walkoff length must be smaller than the nonlinear scale 
length. Since that condition was not satisfied (and still is not) in the 
regimes of interest for optical fiber communications, it was necessary to 
invoke the random variation of the birefringence in optical fibers to 
explain the observed stability of solitons in optical fibers where the 
nonlinear scale length exceeded the beat length by several orders of 
magnitude and solitons can propagate stably over many times the 
nonlinear scale length. The ramifications of these discoveries occupied 
much of my time and the time of a research group that I established at 
UMBC in the 1980s and continue to direct. 

The basic equations that govern pulse propagation in birefringent 
single-mode optical fibers with nonlinearity and dispersion are now 
well-established as the fundamental equations that govern propagation 
in single-mode fibers. From the time that they were first written down in 
1987 to the present time, they have attracted controversy and questions. 
In this article, I have addressed three of them: (1) Why don’t the two 
Maker and Terhune coefficients appear independently? (2) Why is the 
NLSE so successful, given that the coupled NLSE is more fundamental, 
and what are the limits beyond which the NLSE no longer applies? (3) Is 
the birefringence really linear as was assumed in the original coupled 
NLSE? The answer to (1) is that the instantaneous response of the Kerr 
nonlinearity leads the two coefficients to collapse into one. The answer 
to (2) is that the signal that is injected into the optical fiber must be in a 
single polarization state, and PMD must be negligible over the propa
gation length. That was the case for most optical fiber experiments up to 
about 1995. In modern telecommunication systems in which polariza
tion division multiplexing is commonly used, the coupled NLSE and its 
improvements must be used if the Kerr nonlinearity cannot be ignored. 
The answer to (3) is more nuanced. The assumption of linear birefrin
gence was clearly valid for the original experiments of Stolen and col
leagues and remains valid for straight lengths of fiber that are used as 
discriminators in fiber lasers that are passively modelocked using 

nonlinear polarization rotation. At the same time, twisting a single- 
mode optical fiber will induce ellipticity in the birefringence of a 
single-mode optical fiber. In cases where the beat length is smaller than 
the nonlinear scale length, this effect will lead to a change in the co
efficients of the coupled NLSE. If the birefringence is rapidly and 
randomly varying, even when locally linear, the nonlinear coefficients 
for both self- and cross-phase modulation become equal. 

In any optical system or, for that matter, any electrodynamic system 
to which Eq. (15) applies, and assuming that the damping rate is small 
compared to the frequency as is always the case in practical optical 
systems, the birefringence must be linear. Equation (15) is a common 
starting point for analyzing both optical resonators and optical wave
guides. The basic idea is that the damping of the optical modes that 
occurs due to material loss must be compensated by thermodynamic 
fluctuations. That leads to a correlation response that must be an even 
function of time with a reversal of the magnetic field if it is present, due 
to microscopic reversibility. From that the symmetry of the imaginary 
part of the permittivity tensor follows, and the Kramers-Kronig relations 
then imply that the real part of the permittivity tensor is also symmetric. 
Assuming that the permittivity tensor is to good approximation Her
mitian, the permittivity tensor must be symmetric and real, and so the 
birefringence must be linear. We have described the mathematical 
theory in some detail because this important result is not as well known 
in the optics community as it should be. 
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Appendix 

In this appendix, we derive Eq. (14) in the classical limit, following the approach of Lenk [54] and specializing to electrodynamic systems. While 
the classical limit does not apply at optical frequencies, the fully quantum description of Callen and Welton [52,55] obscures somewhat the role of 
microscopic reversibility. 

In this discussion, we assume that the electrodynamic field and the material are in thermal equilibrium so that the intrinsic dissipation in the 
medium, determined by the imaginary part of the permittivity, must be compensated by fluctuations to ensure that there is a fluctuating energy of kBT 
per mode. The basic notion is that the relaxation that a medium experiences after the sudden removal of a force makes it possible to probe the 
magnitude of the fluctuations that are needed to compensate for the dissipation. 

We will focus here on the linear (as opposed to nonlinear) polarization density 

P(z, t) =
∫ t

− ∞
dt′ X(t − t′)⋅E(z, t′), (A1)  

which is the linear part of Eq. (4) and where X is the linear polarizability tensor, so that in the frequency domain ̃ϵ(ω) = ϵ0

[
I + X̃(ω)

]
. Hereafter, we 

drop the z-dependence of P since we are considering a homogeneous volume V. We focus on P, rather than D, since the discussion with this choice is 
somewhat simpler and is also closer to the quantum-mechanical derivation. We may now write 

〈Pj(t)Pk(t+ τ)〉 = 〈Pj(t)Ξjk(τ)〉, (A2)  

where Ξjk(τ) = 〈Pk(t + τ)|Pj(t)〉 and where the brackets 〈⋅〉 denote an ensemble average over the equilibrium distribution. Due to ergodicity, this 
ensemble average is equivalent to a long time average when the system is in equilibrium. Eq. (A2) states that the joint ensemble average of Pk(t + τ) 
and Pj(t) is equivalent to the ensemble average of Pk(t + τ), given a particular Pj(t) and then averaged over all values of Pj(t). We now define the 
covariance 

Φjk(τ) = 〈Pj(t)Pk(t+ τ)〉 = 〈Pj(t)Ξjk(τ)〉 (A3)  

and the corresponding power spectral density 

S(ω) =
∫ ∞

− ∞
Φjk(τ)exp(− iωτ) dτ, (A4)  

and we explicitly express the covariance Φjk(τ) in terms of the probability density function for Pj as 

Φjk(τ) =
∫

w0(Pj)PjΞjk(τ) d3P, (A5)  

where the integrand is over all three components of P and w0 is the Boltzmann distribution in the absence of an imposed electric field. 
In order to relate Φjk(τ) to the susceptibility, we consider a specific electric field perturbation that has the form 

Ej(t) =
{

Ej0,when ​ t < 0,
0,when ​ t > 0. (A6)  

The electric field polarizes the medium, which decreases the energy in the medium by an amount − ϵ0VPj(t)Ej(t). When t < 0, the equilibrium 
probability density function for Pj is given by 

w(Pj) = w0(Pj)
exp(ϵ0VPjEj0

/
kBT)

〈exp(ϵ0VPjEj0
/

kBT)〉
. (A7)  

When t > 0, the relaxation process for Pk(t) is governed by Ξjk(t) so that the mean value of Pk(t) is given by 

〈Pk(t)〉 =
∫

w(Pj)Ξjk(t) d3P =
〈exp(ϵ0VPjEj0

/
kBT)Ξjk(t)〉

〈exp(ϵ0VPjEj0
/

kBT)〉
. (A8)  

We may also write 

〈Pk(t)〉 =
∫ ∞

0
Xkj(τ)Ej(t − τ) dτ, (A9)  

which becomes in our case 

〈Pk(t)〉 = Ej0

∫ ∞

t
Xkj(τ) dτ. (A10)  

Assuming that |ϵ0VPj(t)Ej(t)|≪ kBT, we may expand the exponential functions in Eq. (A8), keeping only first-order contributions in Ej0. We then find 
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〈Pk(t)〉 =
ϵ0VEj0

kBT
〈Pj(0)Pk(t)〉 =

ϵ0VEj0

kBT
Φjk(t). (A11) 

We conclude 

Φjk(t) =
kBT
V

∫ ∞

t
Xjk(τ) dτ. (A12)  

Alternative forms of Eq. (A12) are 

〈Dj(t)Dk(t + τ)〉 =
kBT
V

∫ ∞

t
ϵjk(τ) dτ,

〈Ej(t)Ek(t + τ)〉 =
kBT
V

∫ ∞

t
ϵ− 1

jk (τ) dτ.
(A13)  

The second of these two alternative forms is just Eq. (24). Noting that Φjk(− t) = Φjk(t), we obtain 

Sjk(ω) = i
kBT
ωV

[
X̃jk(ω) − X̃

∗

jk(ω)
]
. (A14)  

Equation (A14) is the classical form of the fluctuation-dissipation theorem. 
We now invoke microscopic time-reversibility, changing the sign of the magnetic field if a magnetic field is present, so that 

Φjk(τ,H) = 〈Pj(t)Pk(t + τ),H〉 = 〈Pj(t)Pk(t − τ), − H〉 = 〈Pj(t + τ)Pk(t), − H〉
= Φkj(τ, − H).

(A15)  

It then follows that I[X̃kj(ω,H)] = I[X̃kj(ω, − H)]. From the Kramers-Kronig relations, we now infer R[X̃kj(ω,H)] = R[X̃kj(ω, − H)]. Putting these these 
two pieces together, we finally conclude 

ϵ̃kj(ω,H) = ϵ̃jk(ω, − H). (A16)  
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