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Abstract

Title of Dissertation: Theoretical Study of Passively Modelocked
Lasers with Fast Saturable Absorbers

Chien-Jen Gh’eﬁ, Doctor of Philosophy, 1993

Dissertation directed by: Professor Curtis R. Menyuk
Department of Electrical Engineering

In this thesis, modelocked lasers with fast saturable absorbers are stildied
theoretically and numerically. We start from a laser equation which is closely
related to the Ginzburg-Landau equation and is valid when the change of the
laser pulse in a round trip is srall. To determine whether a laser self-starts,
we find the CW solution of the laser equation and then carry out a stability
analysis around this solution. When the CW state is unstable, experimental
work suggests that the laser will typically self-start from noise; in contrast, when
the CW state is stable, experiments suggest that the laser typically tendg toward
a CW state. A dispersion relation that determines the growth rate of plane wave
perturbations is derived and the laser can self-start if the growth rate is positive.
We find the region in parameter space in which a modelocked laser can self-start.

To determine the stability of pulsed mode operation, we find the pulse so-

lution of the laser equation and then linearize this equation around the pulse



solution. Both continuum modes and discrete modes of the linearized equation
are studied and the conditions for a laser to operate stably are given. In particu-
lar, we find that gain saturation stabilizes the most unstable discrete eigenmode
and is required for stable laser operation.

We apply these analyses to figure eight lasers and fiber ring lasers. The pa-
rameters used in the laser equation are first determined from physical parameters
and then analysis is carried out. Numerical simulations that calculate wave evo-
lution in laser cavities in a modular fashion are also carried out. The results {rom

the analyses based on the laser equation and the simulations are then compared.
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Chépter 1

Introduction

Since the invention of the laser in 1960, optical science and technology have
grown rapidly in importance. Laser applications cover a broad range, from
compact disks to nuclear fusion. Lasers provide coherent, high intensify, and
possibly short duration optical beams for numerous purposes. In spite of being
considered a mature technology, lasers are still an interesting research topic, as
new laser systems and applications are constantly emerging.

While many complicated physical processes can occur in lasers, their basic
operation is simple. Any laser must contain amplification and feedback, which
work together as a resonator. In its simplest form, the laser could be a gain
medium inside a pair of mirrors or a Fabry-Perot cavity [1], [2]. The gain medium
amplifies the optical power while the mirrors provide feedback. There exist
many laser cavity configurations, most of which can be classified conceptually as
cavities in which light passes through one laser element after another in a cyclical
fashion. We will call this type of cavity a cyclical cavity, and all the lasers which

we will study in this thesis are of this type. A Fabry-Perot cavity is a cyclical

cavity if the waves traveling in opposite directions have little interaction; by



contrast, a Fabry-Perot cavity is not a cyclical cavity if the coupling of waves
traveling in opposite directions is strong.

In this thesis, we will theoretically and computationally study passively
modelocked lasers. While lasers contain both longitudinal and transverse modes
[1]-[3], our study will focus on the longitudinal modes. These longitudinal modes
are determined by the cavity configuration and have a frequency spacing of
Af = 1/Tr, where Tp is the round trip time of the ca.vity. In a Fabry-Perot
cavity, the frequency separation is ¢/2L, where L is the optical length of the
cavity and c is the speed of light. Since a gain medium typically provides gain
over a wide frequency range, many longitudinal modes typically exist.

The output electrical field of a laser is a sum of the field contribution from all
the modes surrounding the central frequency fo. The n-th mode from the central
frequency, fy, can be written as E, exp[27(fo + nAf)t + ¢4, where E, is the
amplitude of this mode and ¢, is the phase. The total field can be represented
as [3}-(5] |

E(t) = 3 B explen(fo + nAf)E+ én). (1.1)

When the phase ¢, of each mode is random, the output E(t) will fluctuate.
In a CW 1asér, from which a monochromatic output is desired, a frequency
limiting element, such as a birefringent plate, is used to exclude unwanted modes.
However, in many applications in spectroscopy and telecommunications, a pulsed
output is desirable, in which case a large bandwidth is needed. However, the
modes must be properly related. A large amount of work has been done in
generating short pulses [1]. In Section 1.1, we will briefly discuss some commonly

used techhiques.



1.1 Pulse generation techniques

Q-switching is one way to generate short and intense pulses [1], [6]. In the first
. stage of Q-switching, the gain medium is pumped while the laser feedback is
blocked by lowering the “quality factor” of the cavity. There is no output energy
at this point, but energy is stored in the gain medium in the form of a large
population inversion. One then abruptly turns on the feedback, so that the
laser dumps the stored energy, quickly depleting the inverted atomic population
and producing a burst of high-intensity light. Methods of changing the quality
factor include mechanically rotating mirrors, electro-optic devices, and saturable
absorbers. The pulse widths of Q-switched pulses of a Nd:YAG laser are in
nanoseconds.

Another category of pulse generation technique is modelocking {3]-[5]. Mode-
locked lasers are lasers that maintain a constant amplitude and phase re{ation :
among longitudinal modes. From Eq. (1.1), we find that when E, and ¢, re-
main fixed, the output is regular and periodic. In particular, when the set
{E, exp($x)} are the Fourier coefficients of a pulse, the laser will generate pulsed
output. To modelock a laser, one must introduce a mechanism which forces the
amplitudes and phases of the most significant modes to couple and, as a conse-
" quence, to maintain a constant relationship.

There are several ways to modelock a laser. A simple idea is to introduce
an element that can change the gain or loss and can be synchronized with the
pulse round trip time. For instance, one may introduce an acoustic optical
modulator which operates at the repetition rate of the laser, or one may pump
the gain medium at the same rate to modify the gain [1], {7]. In this case, the

amplitude of each mode is modulated and E, becomes E,(1 + mcos2rA ft),




where m is the modulation constant. A pulse train may form to minimize the
loss from the modulator or maximize the gain from the amplifier. This sort of
modelocking is called AM modelocking. Modulating the phase ¢y, such that
it becomes @, + mcos2xAft, is another wﬁy to align the modes {1}, [7]. This
type of modelocking is called FM modelocking. Both AM and FM modelocking
are referred to as active modelocking because they use external modulators.
Since the modulation in loss or gain is usually siow, active modelocking cannot
generate sub-picosecond pulses. To genera,té very short pulses, one must use

passive modelocking which is described in the next section.

1.2 FElements of passive modelocking

The final modelocking approach which we will discuss is passive modelocking,
which is realized by using saturable absorbers [1], [2]. The function of a sa,tt;rabie
absorber is to pass a larger fraction of the optical power during the higher in-
ténsity portion of a light pulse. The absorber can be made from organic dyes,
gases, solid state devices, or an interferometric setup of several components. To
minimize the loss due to passing through saturable absorbers, pulses tend to
increase their amplitude and decrease their pulse width. Pulse widths on the
order of femtoseconds have been observed using passively modelocked lasers.

In the frequency domain, the existence of nonlinearity is essential for a mode-
locked laser since it provides coupling between longitudinal modes. Due to the
coupling of longitudinal modes, their relative amplitudes and phases lock. Sat-
arable absorbers are nonlinear elements. The spectral width is increased when

a pulse passes through a saturable absotber, which thereby generates more side-
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Figure 1.1: Schematic illustration of the balance between a fast saturable ab-

sorber and a frequency limiter.

bands.

An important element in a passively modelocked laser, in addition to sat-
urable absorption, is a frequency limiter [8]-[10]. A saturable absorber cuts off
the low intensity wings of a pulse and tends to reduce its time duration. The
process cannot go on without limit. A frequency limiter becomes increasingly
significant as the pulse width decreases and the spectral Widf.h increases. A fre-
quency limiter usually has a bell shaped transmission curve around its central
frequency in the frequency domain. It works in the frequency domain to reduce
spectral width like the saturable absorber works in the time domain to reduce
pulse width. When a balance is reached, a pulse train is generated. In Fig. 1.1,

we illustrate schematically this balancing effect.




It is common that the frequency limiter does not consist of a single, identifi-
able laser element. Instead, many components and effects in the cavity combine
to produce the frequency limiter. The‘gain medium itself has a finite spectral
width, which sets the ultimate limit on the frequency content that a pulse gen-
erated by using that gain medium can have. ‘Other elements which may further
limnit the frequency include birefringent plates, dichroic couplers, and even mir-
rors.

There are other effects which appear in a passively modelocked laser cavity.
For example, some optical components are dispersive and some are nonlinear.
Dispersion implies that different frequency components of a pulse travel at dif-
ferent speeds. Dispersion can exist in the gain medium, in a prism, or in a length
‘of optical fiber. A particularly important nonlinearity is the Kerr nonlinearity.
The Kerr nonlinearity implies that higher intensity portions of a pulse travel
more slowly than the low intensity portions since the induced refractive indices
are higher when the intensity is higher. A short pulse generally has high peak
intensity and the nonlinearity may be significant in many components. Both dis-
persion and nonlinearity impact the quality of the pulses which are ultimately

produced because they combine to generate chirp.

1.3 Research topics

Much of the work in this thesis is concerned with determining the stability of the
laser’s CW and /or pulsed mode operation. When we speak of an operating mode
as stable, we mean that when it is perturbed by a small amount, the perturbation

will always decay or at least not grow. By contrast, when an unstable operating



mode is perturbed, at least some perturbations will grow. Even if an operating
mode is stable with respect to small perturbations, it may be unstable with
respect to large ones. Thus, it is useful to operate a modelocked laser in the
middle of a large sea of stability so that it is hard to destabilize the laser with
large perturbations. We will map out these seas of stability. Conversely, when
self-starting a laser from noise, experiments indicate that one must destabilize
CW mode operation, and it is occasionally useful to artificially introduce large
fuctuations in the laser to induce modelocking when the CW state is stable.

Stability of the CW state has been studied for various laser equations which
are obtained by assuming that the change of a laser pulse in one round trip
is small. The effect of saturable absorption [11], [12] and gain saturation [13]
on self-starting has been reported. However, the effect of a frequency limiter,
dispersion, and the Kerr nonlinearity have not yet been examined. We will
examine self-starting of passively modelocked lasers based on a laser equation
that includes all of these phenomené,.

The stability of pulsed mode operation has been studied to date using two
almost diametrically opposite approaches. In the first approach, which is ana-
lytical, one, again, uses the idealization in which the pulse evolution during a
single pass through the laser is assumed to be small to obtain a simple equation,
closely related to the Ginzburg-Landau equation, which describes the evolution.
One then determines the equilibria of this equation and their stability. Deter-
mining the stability is a crucial step since only stable equilibria can occur in
nature; yet, it is a step that is hard to carry out analytically, and work to date
(8], [14] has relied on approximate methods which require considerable a prior:

physical insight into the form that the most unstable perturbations will have.



In the second approach, which is computational, one simulates the entire evolu-
tion of light within the laser, starting from noise (15]-[17]. Numerical simulation
provides details of the wave evolution from initial noise to either stable pulses or
chaotic waveforms; however, unlike analytical studies, numerical simulations do
not provide a global view of the laser behavior over a wide parameter regime. We
have carried out both analytical and computational studies of the pulse mode
stability problem. Without using approximations in contrast to previous stud-
ies, we solve the eigenvalue problem which determines the growth rate of the

perturbations and, hence, the stability of pulsed mode operation.

1.4 Summary of contents

We will consider all of the effects mentioned in Section 1.2 in the study of pas-
sively modelocked lasers. Derivation of the laser equation is introduced in éha:p-
ter 2. The pulse change during one round trip in the laser cavity is assumed to
be small and the laser equation is written as a partial differential equation, in
which the number of round trips is the propagation variable. We also discuss the
modeling of elements often seen in a passively modelocked laser and how they
fit into our formalism.

In Chapter 3, we study the stability of both the CW and modelocked states.
A laser may have a steady modelocked state which cannot be observed when the
laser is powered on because the CW state is stable, and the laser tends toward
that state. We agsume, consistently with experimental results, that the laser will
only self-start if the CW state is unstable and the modelocked state is stable. We

therefore evaluate the stability of both states by linearizing the laser equation




around the CW or pulsed solution and obtaining an eigenvalue problem, which
is studied both analytically and numerically. The numerical methods that we
use to study the eigenvalue problem and to calculate the pulse evolution are
described.

As examples, we study the figure eight laser in Chapter 4 and the fiber ring
laser in Chapter 5. Both lasers are primarily made from fibers and erbium-doped
fiber amplifiers are used as gain media. In the figure eight laser, the fast saturable
absorber is implemented using an amplifying nonlinear loop mirror, while in the
fiber ring laser, the saturable absorption is due to nonlinear polarization rotation.
Using the parameters of all elements in the cavity, we derive the parameters used
in the laser equation and carry out the analysis outlined in Chapter 3.

We also use the beam propagation method to simulate both lasers in a mod-
ular fashion. By iterating the wave profile as it passes through each element in
the cavity during one round trip after another, we follow the light evolution in
the cyclical cavity. For both lasers, within some parameter ranges, modelocked
pulses are observed to self-start from initial noise. Finally, conclusions and future

research topics are discussed in Chapter 6.



Chapter 2

The laser equation and modeling of

laser elements

A laser system is modular in nature, i.e., it is composed of elements which have
different physical effects on the electromagnetic field propagating in them. For
instance, the optical energy increases as light passes through the gain section of
the lgser, but decreases as it passes through an output coupler. A component
can affect the optical fields in more than one way. For example, an optical fiber
is dispersive as well as nonlinear.

We write down the effect of each element, which is represented by a specific
operator, and derive the laser equation in Section 2.1. In doing so, we assume
that the pulse shape does not change significantly when it passes through any
element in the cavity——an assumption which is valid for many modelocked lasers.
These operators are therefore additive and the ordering during one round trip is
not important.

Various physical effects commonly observed in a passively modelocked laser,
such as saturable gain, loss, frequency limiting, dispersion, saturable absorption,

and Kerr nonlinearity are discussed. In Section 2.2, we outline the mathematical
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model used to describe these effects in detail. The saturable gain and saturable
absorption need a more detailed description, which are given in Section 2.3. A

¢

summary is then given in Section 2.4.

2.1 The laser equation

We use an operator to mathematically model each physical effect. The output
optical wave profile after the effect acts is related to the input wave profile before

the effect acts by the transformation
Usut(t) = TU(t), (2.1)

where ¢ is time, 7 is an operator corresponding to a particular physical effect,
U(t) is the electriéa} field vector, and Uy, and Uy, refer resi)ectiveiy to the values
of U before and after the effect. In most cases, T is é, constant operator, a
differential-integral operator, or an operator described by an evolution equation.

A convenient and natural representation of the operator T is the exponential
form, i.e., exp(O) = T, where O is an operator. Hence, Eq. (2.1) can be written

as
OU(z,t)
0z

where 2 is the number of round trips, meaning that U(z = 0) = Uin and U (z=

= OU(z,1), (2.2)

1) = Uous- Formally, we write Uyt = exp(©Q)Ui, and the equivalence of exp(0) =
T is evident. The wave profile U(z, t) is normalized such that |U (2,t)|? represents
optical power.

Since the change in pulse shape in a laser cavity is modular in nature, one
way to study the dynamics of a cyclical laser, in which light passes one laser

element after the other, is to iterate the optical wave over successive actions of

11



the elements. The wave shape after one round trip is then related to the input

wave shape through
U(z = 1,t) = Tp - - T1U(z = 0,¢) = exp(Oy) - - cexp(O)U(z =0,1), (2.3)

where n elements are assumed to exist in the laser cavity. Light passes through
each element, acquiring a change in its pulse shape, until an equilibrium is
reached. Alternatively, an equilibrium may not exist, and the pulse shape con-
tinues to change in a chaotic way forever.

Since the operators Oy, -, 0, do not commute in general, i.e., 0;0; #
©;0;, the operator, exp(Oy) - -exp(Oy) # exp(O,, + -+ - + O1). However, when
the laser system is close to its equilibrium, the change in the pulse shape as light
passes through each element is small, and hence the operators nearly commute.
Generally, when Oy, -+, O, are small compared to unity, the sequence of oper-
ators in Eq. (2.3) can be approximated by treating them as if they commuted,
1€,

exp(©,) - - - exp(O1) ~ exp(On + -+ - + O1). (2.4)
The evolution of the pulse shape over round trip can then be written as

aU(z,t)
0z

= (On+ - + O1)U(z,1), (2.5)

which determines the laser equation when Oy,-:-,0, are known for a given
laser.
This approximation is made clearer by considering the Baker-Hausdorff for-

mula {18},

- 1 1
exp(O;) exp(O;) = exp (01 + 02+ 5[0, O + 35 [0; — O, [0z, O1)} + - ) :

12
(2:6)

12




where X, V)= XY - Y& is the commutator. It is possible to generalize this
formula to include more than two operators by applying Eq. (2.6) many times.
The asymmetry of the ordering of the elements is taken care of by the commuta-
tors in the second and higher order terms. Therefore, when the approximation
is applied, we ignore the order of elements in the cavity. To increase the accu-
racy of the approximation in Eq. (2.4), one can in principle include higher order
commutator terms, although we do not use this approach in this thesis.

In the subsequent sections, we will describe in- detail the modeling of the

physical effects that are often seen in a laser cavity.

2.2 Elements inside _laser cavities

The operator representations for constant gain, constant loss, constant phase
shift, frequency limiting, dispersion, and Kerr nonlinearity are introduced. We

follow the formalism described in Section 2.1.

2.2.1 Constant gain, loss, and phase shift

We study a constant gain element as the first example. A power gain of Go

means |Uou|? = GolUin|* and can be modeled by

U _ In(Ga),,

=% (2.7)

The original power relation between Ui, and U,y is obtained, by integrating Eq.
(2.7) and assigning U(z = 0) = Uin and U(z = 1) = Usus. For a 30 dB gain, Go
has a value of 1000. The operator 7 = +/1000 and O = In{1000)/2 = 3.45 are

constant operators. A constant loss (Go < 1) has a similar representation. The
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effect of a uniform phase shift, 8, is modeled by

au
-—6-; o 29U (28)

By integrating this equation from z = 0 to z = 1, we recover the input/output

relation, Uout = exp(10)Uin.

2.2.2 Frequency limiter

Most components used in a laser cavity are frequency dependent. For example,
a mirror or a dichroic beam splitter has different reflection or transmission coeffi-
cients at different wavelengths. Also, the gain media have different amplification
factors at different wavelengths. Thére are other frequency dependent effects,
such as chromatic dispersion, which will be discussed latter. We shall first fo-
cus on frequency limiting, which affects the transmission of light at different
wavelengths.

A frequency limiter is modeled as an optical bandpass filter, which has a
Loren{:zian shaped filter function in the frequency domain and has a bandwidth

wo. The output wave shape is related to the input beam in the frequency domain

by
Lt
14 (w/wo)?

where U (w) is the Fourier transform of U (), defined as [, U(t) exp(iwt)dt. By

Fous() = Tin(), (2.9)

using a Taylor expansion, the filter function can be approximated as 1—(w Jwo)?+
..., which yields Upu(w) =~ [1 - (w/wo)?)Uin(w), when the limiter bandwidth is
large compared to the pulse bandwidth.

Evaluating the bandwidth of the frequency limiter at the 3 dB power loss
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points, we obtain the bandwidth, Aw, as

Aw = 2V V2 — 1wy ~ 1287wy, (2.10) -

When bandwidth, 6}, is given (generally in nm), we deduce the following formula

for wo,

2re

wo =T8T

(2.11)

where )¢ is the free space wavelength.

In the time domain, using the Fourier transform relations, d/dt « —iw, we

find

Uoelt) = (1 + %3‘%) Uin(t). (2.12)

In order to fit Eq. (2.12) into the formalism discussed in Section 2.1, we ap-
proximate the operator by exp(Bd*/dt*), where B =1 Jw?, assuming that the
effect of frequency limiting is small. Finally, the effect of the frequency limiter
is expressed as

ou d*

. 2.2.3 Dispersion

Another frequency dependent phenomenon usually seen is chromatic disper-
sioﬁ. It is best described by the dispersion relation k(w), which determines
the wavenumber as a function of frequency. A well known result is that the
group velocity v, of a narrow band pulse can be calculated from v, = ow [0k
evaluated at the center frequency, Weent- Since the first derivative of the dis-
persion relation only affects the pulse propagation velocity, the pulse shape is

altered by second or higher order terms. The second derivative of the dispersion

15



relation, which is related to the group velocity dispersion, is the principal source
of pulse spreading.

The dispersion inside a laser cavity is generally due to the combined effect
of several Iéser elements. For instance, both a segment of a optical fiber and
the gain medium would typically contribute to the dispersion. Dispersion in a

material is modeled by the equation [18]

aUu K&

DI s ]

e — 2.
AR T (2.14)
where = is the propagation distance, ranging from 0 to Lyat, the material length,

and k" = 8%k/0w?® evaluated at w = Weent. Setting = = zLmat, We introduce 2

into Eq. (2.14) and obtain

92
U _ . KD

= =5 U- (2.15)

Therefore, the operator that describes the dispersion is,

L OF
O = zD-gi-z-, (2.16)
where D = = Liack” /2, which is the total dispersion which occurs over a length

Lumat. With such a definition of dispersion, D > 0 corresponds to anomalous
dispersion, and D < 0 corresponds to normal dispersion. Integrating Eq. (2.15)

from 0 to 1 to obtain the relation between input and output fields, we find

Upue(t) = ?;7; /:: Uin(w) exp(—iDw?*) exp(—iwt)dw, (2.17)

where C’m(w) is the Fourier transform of Ui(t), the input pulse, and Usu(t) is
the output pulse.
In practice, dispersion is measured and denoted as Dy, which is in delay time

per unit material length per unit wave length [19]. The parameter Dy, is related
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to k" through _
D=2 (1) I (2.18)

=als) "%
We have D = LpatDmAd/{47c) when D is expressed in terms of Dp,.

The effect of dispersion is to broaden the temporal size of the optical pulse
and generate a chirp in its frequency content. In a medium with anomalous
dispersion, the higher frequency portion of 2 pulse travels faster, and the rising
part of the pulse amplitude contributes to the higher frequency components.
The broadening effect is more significant for shorter pulses which have larger

spectra.

2.2.4 Kerr nonlinearity

When the optical intensity in a material is large, the polarizability of the material
may change in response, leading to a nonlinear refractive index change. As a
consequence, the index of refraction for the peak and the wings of a pulse will
differ. The most important nonlinearity in lasers is the Kerr nonlinearity. The
Kerr nonlinearity affects the phase of an optical beam through the intensity
dependent refractive index n. The dependence of n on the optical intensity [ is
n = ng + ngl. In optical fibers, ng = 1.45 is the low intensity refractive index
and n, is the Kerr coefficient having a value of 3.2 x 107%° m?W~!. In general,
over the material length, the Kerr effect on .wave propagation is described by

(18]
oU . 2xng

]

0= AoAer

where A.g is the effective area of the nonlinear medium. Since U is normalized

\Ui*U, (2.19)

to represent power, |U|?/Aeg represents optical intensity. In an optical fiber,
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effective area is around 2 to 4 x the core area of the fiber, depending on the
intensity profile over the cross section.
Again, using E = zLma and writing down the propagation equation in z, we

may identify the operator

O = iK|U? = ;Zrnalomat 1712 (2.20)
AOAeﬁ'

where K is defined as (27n3Lmat)/(XoAerr), which is the total Kerr nonlinearity
in the material. |

It is possible to integrate Eq. (2.19) directly. Since only the phase changes
when the input wave profile propagates in accordance with Eq. (2.19), we find

IU(2)| = |Ui| at any z value, so that
Vst = exp(i K \Uin)Uin. (2.21)

The overall operator T = exp(Q) = exp(iK |Uin|?) represents a non-uniform
phase shift over the pulse. The spectral content of a pulse is affected by the
nonlinear phase. Since w = —8K|Uix|*/0t, from the definition of the Fourier
transform, the frequency of the rising part, or the incoming part, of the pulse is

downshifted.

2.3 Saturable gain and saturable absorption

Since a saturable a,mpliﬁei" and a saturable absorber themselves are dynamical
systems, they play an important role in the dynamics of passively modelocked
lasers. Generally, both the saturable gain and the saturable absorber can be
treated with the same type of rate equation which depends upon the population

differences in the molecular levels of their material. In this thesis, we will assume
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that the saturable amplifiers have a large relaxation time, while the saturable
absorbers have a srnall relaxation time. While that is not the case for all lasers,
it is the case for the figure eight lasers and the fiber ring lasers which we will

ultimately be modeling.

2.3.1 Saturable gain

A saturable amplifier produces less gain as the input power, integrated over the
relaxation time, increases. The detailed dependence of the gain on the input
power varies for different gain media and should be determined by experiments.

A rate equation which is valid in two-level media may be used to describe a
small segment of the saturable amplifier (1], [8]. The gain is described by a first

order differential equation in ¢ [8], [12]-[20],

dg _ g—g0 WEHP “
&= To | ToPa (2.22)

where T is the relaxation time and Puay is the saturation power. The product
ToP.y is denoted as Foa and is related to the beam cross section, A, in the

medium and the optical cross section, o, of the medium through the equation

1], [20]
1 1 o
Esat - TOP sat a ﬁwﬂAsec.

When U(t) = 0, for example between optical pulses, the gain will reach a steady

(2.23)

value in which dg/dt = 0. The value of go is related to the small signal gain
and is dependent upon the pumping power applied to the gain medium. For a
continuous wave input U = U,, where U, is a constant, the gain medium again

reaches a steady state. The steady state gain, g,, can be expressed as [21]

Jo
o 2.24
9s 1 + Pav/Psat.’ ( )
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Input pulse train

"
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Small relaxation time

Large relaxation time

‘ Very large relaxation time

- {

Figure 2.1: Gain characteristics for a pulse train input, (a) small relaxation time,

(b) large relaxation time, and (c) very large relaxation time.

where P, = |U.|? is the average power.

It is interesting to compare two extremes of the relaxation time Tp when-
U consists of a series of optical i)ulses.. When Tb is much smaller than the
fluctuation time of the input, g reaches its steady state relatively fast, and the

gain can catch up to the variation in the input and has an expression given by

g -
9 = T P (225

The variation in gain is shown in Fig. 2.1(a) for a pulse train input. On the
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other hand, when T, is large so that 1/Tp < |Upeakl?/ToPeat, Where [Upeak!? is
the peak power of U(t), the first term in Eq. (2.22) is negligible and g(t) may be

found by direct integration of the remaining term {13],
g(t) = gsexp (w f:oo I—g%dt') . ‘ (2.26)
After the pulse passes, the gain increases slowly to its steady state value, where
it remains until the arrival of next pulse as shown in Fig. 2.1(b). The change in
the gain is slow when the gain variation is compared to the previous case in Fig.
2.1(a). Furthermore, when Tp is very large compared with the pulse width 7 so
that 7{Upeak|®/ToPear < 1, the integration in Eq. (2.26) is small and the gain is
virtually a constant g, as shown in Fig. 2.1(c).. The value of g, is determined by
the average power of the pulse train as in Eq. (2.24); however, the average power
P, is the ratio of the energy in one pulse and the round trip time. In practice,
for gain media such as Ti:sapphire whose relaxation time is in microsecondvs and
erbium doped fibers whose relaxation time is in milliseconds, the gain formula,
Eq. (2.24), is adequate for a pulse width of picoseconds.
The overall gain is found by summing the effect of each small section over
the entire medium. To do so, we perform an integration fromz=0toz=1o0n

the following operational equation,

ov
""5; = gsU. (227)

The length of the medium is taken into account in Eq. (2.27); however, we keep
" the same notation g,.

In the large Tp limit and with a pulse train input in mind, the average power
that determines g, is Pay = Er/Tr, where Ep = TR |[/|2dt is the optical energy

in one round trip and Tr is the round trip time of the laser cavity. Multiplying
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6 From Eq. (2.29)
s |\~
% 4 From Eq. (2.31)
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0 0.5 1

Average input power (Pav,in)

Figure 2.2: Gain as a function of input power (solid line) is calculated from Eq.

(2.29) with go = 1 and P = 0.2. Approximate gain (dashed line) is calculated
from Eq. (2.31).

both sides of Eq. (2.27) by U*, the complex conjugate of U and carrying out

some algebraic manipulation, we obtain f1]

aPav 290
= Fyy. 2.28
0z 1+ Py / Psat ( )
The input and output power are found to satisfy the relation,
P, av,ou P, av,i .
Py out €XP (“-P:i—t) = Pay,in€Xp (“}-,il + 29‘0) . - (2.29)

We plot the power gain, G = Fav,out [ Payin, versus Payn in Fig. 2.2 by solving Eq.

(2.29) numerically. The overall gain decreases and approaches unity as the input
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power increases. On the low input power side, both Puyin and Py out are small
compared with Pa; and G =~ exp(2go), which is the small signal power gain. On
the high input power end, the gain decays to unity at a rate of 1/Pyym, which
can be justified by the following argument. When G = Payou [ Payjin = 1 and
both Payin and Payou are much larger than P, the effect of the factor exp(2go0)
becomes less important. From Eq. (2.29), it then follows that

Pavi
Grl+2g0+ -Fm(z - G). (2.30)
nat

The right hand side is from expansion of the exponential function to first order.

The over all gain is found easily to be

- Pav,oﬁt ~ 299
G_ -Pav,in ~1+ 1 +Pav,in/P!mt'

(2.3’1)

Two key parameters, go and P..;, are measurable from experiments. In a
segment of erbium-doped fiber, the value of go ranges from around 2 to 4, cor-
responding to a small signal gain of 17 dB to 35 dB. The saturation power is 1
to 3 mW. Using Eq. (2.29) to fit a set of experimental data from Dr. I. Duling
of the Naval Research Laboratory, we find go = 3.94 and Fuay = 2.77 mW [22].

The relaxation time for the erbium dopant is 10 msec.

2.3.2 Saturable absorption

The last element in a passively modelocked laser which we will consider is the
saturable absorber. A saturable absorber has an intensity dependent transmis-
sion coefficient. It sharpens a pulse by letting a larger fraction of the energy
pass through in the high intensity peak than in the low intensity wings. As a
consequence, a saturable absorber can shorten the pulse duration. This effect

is remarkable, considering that most of the elements inside a laser cavity tend
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Figure 2.3: (a) Loss characteristics for a pulse train input. (b) Transmission

coefficient versus input power.

‘to broaden the pulse in the time domain. In 2 physical saturable absorber such
as a dye jet, the population difference of the saturable absorber is modeled by
the same type of equation as Eq. (2.22) except that now the gain becomes a
loss. Saturable absorbers can be classified as slow or fast, dépending upon their
response times.

We are only interested in saturable absorbers with short relaxation times,
which by definition have a very short response time with respect to the pulse

duration. Replacing gain with loss and referring to Fig. 2.1(a), the loss of a fast
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saturable absorber with -a pulse train input is shown in Fig.. 2.3(a). In addition
to a background loss, the pulse generates a differential loss which depends on
the local intensity. The transmission coefficient of a saturable absorber has an
expression similar to the reciprocal of Eq. (2.25) and is plotted in Fig. 2.3(b).
"The relation between the input and output wave profiles of a fast saturable

absorber can now be written as [8]
Usst = (To + T1[Unl®) Uiny (2.32)

where T is the background loss at low intensity, and T’y is the coefficient con-
trolling the steepness of a saturable absorber. This effect is decomposed into
two consecutive operators, a multiplication of Un by [1+(I'1/ I'0)|Uia|?] and then
another multiplication by I'g. The latter has been described before. The former
multiplication becomes

alu

B 2
= =TIU['U, (2.33)

where T is an amount to be determined from Eq. (2.32) and can be inferred from
known physical parameters. Since phase is not involved in Eq. (2.33) and the
equation is time independent, we can solve for U,y at z = 1 exactly. The result
is expressed as

IUinP

1/2
i’"l”m) ~ (1 +TUal*) Uin. (2.34)

o = UG =1 =

We conclude that T' = I'y /T.

Note that a fast saturable absorber is not necessarily a single physical item.
Tt could be an assembly in which part of its transmission curve demonstrates
fast saturable absorption as shown in Fig. 2.3(b). That is the case for the figure

eight laser and fiber ring laser, as we shall describe later in this thesis.
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Figure 2.4: Schematic diagram of a laser cavity.

2.4 Summary

In Fig. 2.4, a possible realization of a cyclical, passively modelocked laser is shown
schema.tically; Optical power will pass through each element, acquiring a change
in pulse shape. This evolution will continue until an equilibrium is reached,
or, alternatively, an equilibrium may never be reached, and the evolution will
continue forever.

Combining all the effects described in Section 2.2 and Section 2.3, the corre-
sponding laser equation is derived. In this equation, we will include in a single
equation all the elements discussed in previous two sections, namely the loss in
Eq. (2.7), the phase shift in Eq. (2.8), the frequency limiter in Eq. (2.13), the
dispersion in Eq. (2.15), the Kerr nonlinearity in Eq. (2.20), the saturable gain
in Eq. (2.27), and the fast saturable absorber in Eq. (2.33). The laser equation
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is written as [14]-[24]

ou . o 02 , 3
BT g,ml+29+(B+zD)~§-t-2-+(F+zK)[UI U. (2.35)

In this approximation, a single physical element may contribute to two or more of
the effects on the pulse shape. The magnitude of the parameters in Eq. (2.35) is
determined by summation of the contributions by all the physical elements inside
the cavity. For example, the magnitude of dispersion is the sum of dispersion in
fibers, mirrors, gain media, and any other dispersive elements.

We will discuss both self-starting and stability of pa,ssiveiy modelocked lasers

based on this laser equation in the next chapter.
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Chapter'3
Dynamics of passive modelocking

The dynamics of a passively modelocked laser, in particular, its ability to seli-
start from noise and the stability of its pulsed operation mode, are studied in
this chapter. We shall consider passively modelocked lasers with cyclical cav-
ities, as shown schematically in Fig. 2.4. The laser equation Eq. (2.35) is the
starting point of the discussion. In order for passively modelocked operation to
self-start from noise, we assume that CW operation should be unstable while
passively modelocked operation must be stable. When both are stable, the laser
can be modelocked, but we assume tha,t‘it will not self-start from noise. Experi-
mental data supports this hypothesis [13]. When both the CW and modelocked
states are unstable, the laser can never reach an equilibrium. Thus, the stability
properties of the laser determine its dynamical evolution and ultimate operating
mode. In Section 3.1, we discuss the stability of CW operation and self-starting.
In Section 3.2, we discuss the stability of passively modelocked operation. In
Section 3.3, we present the numerical techniques that we used to solve the eigen-
value problems which appear in Section 3.2. The beam propagation technique

that is used to simulate the lasers is also introduced.
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3.1 Self-starting of passively modelocked
lasers.

Self-starting of passively modelocked lasers with fast saturable absorption is
examined in this section. In order for passive modelocking to reliably self-start
from noise, the CW state of the laser should be unstable [12], [13}, [25]. We will
perform a stability analysis of the CW solution of the laser equation, Eq. (2.35),

and determine the laser parameters which are required for self-starting.

3.1.1 The CW solution to the laser equation

Substituting
U = U,exp(tP.z), (3.1)

where both U, and P, are time independent real constants, into Eq. (2.35) and
using Eq. (2.24) for the gain, the CW solution is determined by equating the real

and imaginary parts. The parameters U; and F, are determined by the equations

go — 1T
1572/ Pe U] P [-TUZ, (3.2)

P, = 0+ KU (3.3)

The average power P, = U? is determined from Eq. (3.2), as shown graphically
in Fig. 3.1. In general, Eq. (3.2) has two possible solutions for Py. The solution
with the larger P,, value is unstable. When P,, is at this value and there is a
small increase in U,, then the net gain after a round trip is larger than zero and
the power wiil increase indefinitely. Conversely, if there is a small decrease in U,
the net gain is less than zero and the power decreases until the other solution is

reached.
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Figure 3.1: Graphic determination of the continuous wave working point.

3.1.2 Gain perturbation and the laser equation

We now study the stability of the remaining CW solution. The wave profile
is written as U = (U, + @) exp(iP.z), where @ is a small perturbation of the
amplitude. Correspondingly, the gain deviates from g, due to changes in the
CW state. We denote g = g, +6g. We perturb Eq. (2.22) to obtain a differential
equation for g, which may be rewritten |

débg b9 UZ
- Ty TP b9

gsUc

- w4 u). 4
B (4 4) (34)

Integrating the first order ordinary differential equation, Eq. (3.4), the perturbed

gain, ég, is found. The full solution is

| I\ € [t - £t
8g = 8goexp (m-j-,—) - ;,,—/O(u + ") exp («-— T ) dat', (3.5)

where go = 6g(t = 0), € = goUc/[(1+ U2/ Piat)* Poat}, and T = To/(1+ U2/ Paat)

is the effective relaxation time of the gain medium for the CW solution. Since ¢
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is a real function of time, so is 6g, which depends only on real part of . When
the perturbation is turned off, we find from Eq. (3.4) that the gain returns to a
steady value with a time constant T.. The effective relaxation time 7, is smaller
than Tp, since the gain medium is partially depleted by the CW power. Since

the first term in Eq. (3.5) decays exponentially, we may keep only the second

term and change the lower limit to —oo for analytic convenience, which leads to

t M
8g = -—;I-f— _/;m(ﬁ + &™) exp (—t Tt ) dt'. (3.6)

Substituting the perturbed U and g into Eq. (2.35) and keeping the first order

terms, we have

O % o pr2re o
P -~6ch+(B+zD)—é~£~é—+(F+zK)Uc(u+u ). (3.7)

We must consider as well the complex conjugate equation, which may be written

au o e s
50 = SgU. + (B — iD) 5 + (T — i KYU2(@t + @*). (3.8)

The evolution of a small perturbation on U, is described By Eqgs. (3.7) and (3.8).

3.1.3 The dispersion relation of the perturbation

By treating @* as a new variable, #, Eqs. (3.7) and (3.8) can be written as

ot . oy 0P . 3w o
- UcJ(u’v) +(B + iD)7s + (r+ zK)Uc(u + 7},
0z at?
‘ _ (3.9)
2 = U J(4,0) + (B ~ zD)-(?f—22 + (T —iK)U2(& + ©)
9z N7 o ot? ° ’
where J is an integral operator which may be written
J (&, 0) = & f (€ + )ex _t=t dt’ (3.10)
%,0) = 7 ) @& + 0)exp 7 . .
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To study the stability of U., we set & = Ay éxp'()\z—kz'wt) and ¥ = A exp(Az+iwt),

where w is real. The integral J(#,%) is given by

e [t ' t—t €

- Az + iwt — fe 2 4 : .

T /_m A exp(Az + iwt) exp ( T ) dt T rexp(Az + twit), (3.11)
where k£ = 1,2. Thus, we have transformed the evolution problem into an
eigenvalue problem with A as the eigenvalue. The resulting eigenvalue problem

is

A A
,X 1 - M 1
Aq Ay
M, M 11 A
= || - Y] e
M; M twl {1 Aq

where M; = —(B + iD)w? + (T +iK)U? and My = (I' + iK)UZ. To obtain
nontrivial solutions of A; and A, we must set the determinant of Al — M to

zero. It follows that

Uee
= 2 _ ¢ LLE
A = TU; —Bw TT il
Uﬁ 2 1/2
Zh {(rﬁ"j’iﬂ" - FUE) — D2w4 + ?-DKUE(-U:Z ) (313)

which is the dispersion relation. The real part of A at each w determines the
growth rate of the plane wave perturbation.

There are two solutions of A for each w, representing the two branches of
solutions. When w = 0, the two eigenvalues are 0 and 2I'U? — 2¢.U.. When
w — 00, both branches tend to the asymptotes, —Bw? +TUZ £ i( Dw? — KU?).
The graph of A on the complex plane is symmetric across the real axis, since
the substitution, A — A* and w — —w leaves Eq. (3.13) unchanged. The term

U.e./(1+iwT.), which is due to the gain saturation tends to stabilize the system;
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without it, the system will have eigenvalues where real part is positive when w
is close to zero. In the limit of no gain saturation, i.e., when T — 00, the gain

saturation term disappears and A = 2I'U? at zero frequency.

3.71 4 Self-starting conditions

The condition for the laser to self-start is that A must have a positive real part
for some range of w, corresponding to unstable CW operation. In Fig. 3.2, we
plot A(w) in the complex plane for two sets of parameters whose values are shown
in the figure caption. Time is measured. in picoseconds and power in watts. The
parameter set for Fig. 3.2(a) corresponds to a stable CW laser since RB{/\} <0
for all w. However, a laser with the parameter values used in Fig. 3.2(b) does
not have a stable CW solution for some values of w and could evolve into pulses.

While Eq. (3.13) appears complicated, one can extract from it several simple
rules which govern a laser’s ability to self-start. First, when T'U, > €, the
CW solution is unstable in the neighborhood of w = 0 and hence self-start is
possible. If T' increases, then U, must increase in accordance with Eq. (3.2)
and ¢, decreases from the definition following Eq. (3.5). Thﬁs, it becomes easier
for the laser to self-start. Experiments on additive-pulse modelocking [26] show
that less threshold power is needed for a laser to self-start as the fiber length
in the external cavity becomes larger, which corresponds to a larger T value in
agreement with our theory.

Second, the laser self-starts more easily as To increases. When Tp increases,
the term eU,/(1 + iwT.) in Eq. (3.13), which stabilizes CW operation, becomes
smaller. The effect is equivalent to reducing the gain saturation e.. This result

is in agreement with the observations mentioned in ref. [13], where the authors
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Figure 3.2: Eigenvalue A on the complex plane. The solid line corresponds to
the + branch of Eq. (3.13), while the dashed line corresponds to the — branch.
(a) Non-self-starting case. Parameter values are P, = 1 mW, B = 0.3 psecz,.
D = 0.845 psec?, I' = 0.001 W“l, K = 0.008 W-1, Ty = 1000 psec, go = 3 and
! = 0.05. These parameters correspond to a Dye laser with a weak saturable
absorber. (b) Self-starting case. Parameter values are P = 10 mW, B = 0.3
psec?, D = 0.045 psec?, ' = 0.1 W™, K = 0.008 Wt Ty = 10° psec, go = 3

and [ = 0.2. These parameters correspond to a figure eight laser.
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explain that lasers with smaller emission cross sections, o, self-start more easily.
From the relationship between TpPust and o in Eq. (2.23), smaller o, implies
larger Tp if P is fixed. We can see this effect in Fig. 3.2(b) which is typical
in shape for cases in which Tp is large. When w is small but w7, is large,
the eigenvalues from Eq. (3.13) are close to 0 and 2TU?. The — branch of
the solution passes 2TU? — 2¢.U, at w = 0, making arcs going upwards and
dov;'nwa,rds, reaching 2I'U? near the real axis, and then goes along one of the
asymptotes as w increases. SinceI'is positilve for fast saturable absorbers, a laser
with such a gain medium is likely to self-start. We note that the parameters in
Figs. 3.2(a) and 3.2(b) correspond respectively to Dye lasers and figure eight
fiber lasers. Because the gain in fiber ring lasers comes from erbium-doped
optical amplifiers, which has a long relaxation time relative to gain media such
as YAG, Ti:sapphire and Dye, the figure eight laser self-starts more easily, than
those lasers.

Third, the laser self-starts more easily as the bandwidth increases, t.e., as B
decreases. From Eq. (3.13), one finds that increasing B causes the eigenvalues
to move toward the left hand side of the complex plane. A smaller B leads to
slower movement of A toward the left, and it is therefore easier to have a positive
real part. Physically, it allows perturbations from a wider range of frequencies
to exist.

Fourth, when D becomes large and positive, corresponding to large anoma-
lous dispersion, one finds a behavior analogous to the modulational instability
in the nonlinear Schrodinger equation, and the laser will seif-start. Alsé, as K
increases, the laser will self-start more easily in the anomalous regime, since the

square root in Eq. (3.13) is real and increasing, so that it is easier to obtain
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positive values of Re(A).

The effect of go and [ on the laser’s ability to seli-start is rather complex.
We note that in general U? > Pa and wT. > 1, hence, Use./(1 + iwT,) =~
go/(iwTp). One finds from Eq. (3.2), for fixed go, that when ! decreases, U,
increases; however, Ue./(1 + iwT,) ™ go/(iwTp) is almost unchanged. From Eq.
(3.13), it follows that the A-values shift toward the right hand side and hence
the laser self-starts more easily. We also find that, if [ is fixed, an increase in
go induces only a linear increase in U.e./(1 + iwT:), while the increase in TU? is
faster than linear. Hence the traces will shift toward the right and we conclude,
once again, that the laser will self-start more easily.

In Fig. 3.3, we plot the self-starting region on the go-l plane, given that the
parameter values are Tp = 10° psec, Pt = 1 mW, B = 0.3 psec?, D = 0.045
psec?, T’ = 0.001 W1, and K = 0.008 W~'. These parameters are typical for
a fiber ring laser [27]. The axes are small signal power gain, exp(2go) and loss,
exp(2]) in decibels. As expected, a decrease in ! and an increase in g will make it
easier for the laser to self-start. In this case, decreasing loss by a given number of
dB is more effective than increasing small signal power gain by the same amount

in inducing the laser to self-stast.

3.2 Stability of passively modelocked lasers

The stability of passively modelocked lasers with fast saturable absorption when
they are operating in pulsed mode is examined in this section. In addition to the
CW solution discussed in Section 3.1, Eq. (2.35) has a pulse solution, which is

the wave profile when a laser operates in pulsed mode. The parameter relations
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Figure 3.3: Self-starting region on the go-! plane. The small signal power gain 18

exp(2go). The parameter values are To = 108 psec, Py = 1 mW, B = 0.3 psec?,
D = 0.045 psec?, T' = 0.001 W-!, and K = 0.008 W~1.

for this solution are first determined. We then study the stability of this solution
by linearizing the equations and determining the eigenmodes and eigenvalues.
1t is noted that without gain saturation the pulse solution is always unstable.
The effect of the gain saturation is to suppress the growth of a perturbation
which tends to sharpen the modelocked pulses, so that gain saturation plays an

important role in the stabilization of passively modelocked lasers.
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3.2.1 The pulse solution

In addition to the CW mode of operation, the lasers of interest to us, which can
be modeled'by the laser equation Eq. (2.35), have a pulséd mode of operation
in which the pulsé shape has a hyperbolic secant amplitude profile with chirp
given by

U, = Upexp(ihz) = Asech'(t/7) exp(it2), (3.14)
where A is the amplitude, 7 is the pulse width, 3 is the chirp constant, and 1 is
the wavenumber. The parameters A, 7, 8, and 1 are determined by substitut-
ing Eq. (3.14) into the laser equation, Eq. (2.35), [14], [28]-[30]. Two ﬁomplex

equations must be satisfied. They are

g =1 i(0 =) — (8 =28 - )T HE =0, (3.15)

(T + iK)A?r? + (8% — 3if — 2)(B +iD) = 0. €3.16)

The quantities g,, B, I' and K are, in general, all functions of A and 7. For two
of the lasers of interest to us in this thesis, the fiber ring laser and the figure eight
laser with its amplifier in the external Sagnac loop, I' and K are constants. In
these two lager configurations, passive interferometric elements are used as fast
saturable absorbers, whose characteristics do not depend on gain and, therefore,
' and K do not depend on the pulse shape. Also, the bandwidth B can be
 treated as a constant since the bandwidth in neither ring lasers nor figure eight
lasers is limited by the gain bandwidth. In figure eight lasers, the bandwidth
is limited by a dispersive resonance [10]. In other lasers, I and K can depend
upon A and 7, as, for example, in the figure eight lasers when gain is located in
the loop mirror. In this case, the overall transmission curve of the loop mirror

depends on gain, and hence A and 7. In this chapter, B, T, and K are assumed
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to be constant while g, depends on A and 7.

We begin with Eq. (3.16), which allows us to determine the values of 3 and
A%7?. From Eq. (3.16), it follows that arg[(8? —3i8 —2)(B +iD)] = arg(T' +iK).
Since arg(f? — 3i8 — 2) ranges from —= to 7 as § changes from —oo to oo, 3
is uniquely determined. Next, we derive an equation from average power, based

~ on Eq. (3.15). The average power of the pulse is

P = o UPRdt 2A% :
ay - TR - TR b ]

(3.17)

where we are integrating over a single pulse and assuming that they are well
separated. After the constant A?r? is determined from Eq. (3.16), the pulse

width is given by
_2(A%T?)
- TRP av )

The steady-state gain may be written

(3.18)

5. = 0.(Pw) = 00 ([ [UPdt/Tr). (319)

which is determined from experimental data. Using Egs. (3.18) and (3.19), the
real part of Eq. (3.15) gives

go(Pav) = 1 - Ao

(3.20)

where ¢; = Re{(1 + 2i8 — B*)(B +iD)}. The average power, Pay, can then be
determined graphically as in Fig. 3.4. When we solve for all four parameters,
the ansatz is fully determined, as are the average power and gain. We refer to
this solution as working point of the laser.

In general, there are two solutions which we designate as Puy, and Pavy
from Fig. 3.4. The solution with larger power is more likely to be unstable

than the one with smaller power because when a small fluctuation in the pulse
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Figure 3.4: Graphic solution of the working points for pulsed mode operation.

energy increases the average power, i.e. P, > P,y ,, the value of the gain curve,
gs(Pay) is larger than that of the loss curve from Fig. 3.4. Hence there is a.
net increase in the overall gain and the average power will increase further.
Conversely, if the fluctuation in pulse energy leads to a decrease in the average
power, i.e. Py < Pav,;,,the value of the gain curve, g,(Pay) is smaller than that
of the loss curve. There is-a decrease in overall gain and the power will decrease
further. Hence, this operating point is unstable. A similar argument suggests
that Pay = Pay,s is more likeljf to be stable. The above argument, however, is
only heuristic. The actual effect of such a fluctuation is to cause a mismatch
when Eq. (3.14) is substituted into the laser equation, Eq. (2.35). The stability
of the fixed points is not obvious and has to be analyzed with more care. A

fuller discussion of this issue is given in Section 3.2.3.
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3.2.2 Perturbation Analysis

We now determine the stability of the pulse solution, Eq. (3.14). A perturbation

of this solutrion can be represented as
U = (U + ) exp(ivz), - (3.21)

where Up is defined in Eq. (3.14) and is 2-independent and @ is the perturbation.

Substitution of Eq. (3.21) into Eq. (2.35) leads to the linear equation

ot 2

. o P
B [gswl+z(0—-1[))+(B+zD)~é-£§ 7

+(I 4 iK) (2o + UZe") + 6gUo. (3.22)

The perturbation on gain, 6g,, is derived from Eq. (3.19) and has the following

form,

! oo
bg, = AL j (Upt™ + Ugti)dt, (3.23)
Th J-w

where ¢/ is the derivative of g, with respect to |U}? at the working point.
For easier handling of the linear evolution equation Eq. (3.22), we will intro-
duce some new definitions and scalings. Substituting of Egs. (3.15) and (3.16)

into Eq. (3.22) and using the transformed variables

b = B —2if—1, (3.24)
'bg = ﬁzmaz’ﬂ_— 2, . (3.25)
« = B/(2|D)), | (3.26)
s = tfr, (3.27)
¢ = 2|D|z/7, | (3.28)
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we find

Jt : ~ £ -
bu-gi = (a + %) {blu + —5»5 — by [QSechz(s)u + sech® % (s)i ]}

—e,secht (s ™ sech'™#(s')ii + sech!**# (&')a"ds', 3.29
P —00

where the + sign in the % symbol represents anomalous intracavity dispersion,

while the — sign represents normal dispersion, and

Alp3
= Pav)- 3.3
& QiDiT gs( ) ( 0)
Since g,(P) decreases as P increases, €, has a positive value. In particular, when

the steé,dy gain, g., is modeled by Eq. (2.24), the formula becomes

¢ _ A?r3g9
P Z[DlPsat,TR(l + 2A2T/PsatTR)2 )

(3.31)

Since the complex conjugate of & appears in Eq. (3.29), we must decompose
Eq. (3.29) into its real and imaginary parts or, equivalently, treat 4 and 4
as independent variables. We shall use the latter approach and define a new

independent variable ¢ = @*. The complete set of equations governing the

perturbed quantities 4 and ¥ is

i &*i 2( o\ 242iB¢
5 (a + 2) {blu + ba? by [ZSech (8)& 4 sech (s)v]

—epsech P (s) f [sech!™(s")& + sech'** (s")b]ds,

9% X 5% (3.32)
v — E_ ® A i T 2213
i (a$ 2) {blv 35 b; [sech (8)& + 2sech (s)v]}
——_epsechl"'m (s) / [sech?™"(s")& + sech**(s")0]ds",
This evolution equation is turned into an eigenvalue problem by setting
u(g, s u(s
© 12 exp(A) ) ; (3.33)
(£, ) v(s)
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so that Eq. (3.32) becomes

2 Os?
—eysech'T(s) / ” [sech!~#(s")u + sech'**(s")v]ds’,

~ 2
Au = (a + 1) {blu + ou _ by [2sech2(s)u + sech”z"ﬁ(s)v]}

(3.34)

2 0s?
—eysech! " (s) j - [sech! (s Yu + sech' ™ (s')v]ds’.

g * BZU * 2—-UG 2 ;
Av = (a F -—) biv+ z— — b [sech (8)u + 2sech (s)v]

First we consider the case in which there is no gain saturation, i.e., g, is 2
constant, in which case, Eq. (2.35) becomes the Ginzburg-Landau equation. The
linearized Ginzburg-Landau equation can be obtained by setting ¢, = 0 in Eq.

(3.34), which yields

Ay = t b 62“ 9 h2 h2+2:‘3
u_(a:{:—‘j) 1u+-5;-5--bz[se(_: “(s)u + sec (s)v] )

. (3.35)
Av = (a T i) {b;v L P b; [sech® ¥ (s)u + 2sech2(s)v]} : '

2 0s? .
An important observation is that Eq. (3.34) depends only on 3, a, and ep; while
Eq. (3.35) depends only on 3 and a.

The linear stability criterion is that if all the eigenvalues have a negative real
part, i.e., Re()) < 0, then pulsed mode operation is stable. On the other hand,
if there exists some A having positive real parts, a small perturbation which has
a component of the corresponding mode will grow exponentially.

The eigenvalue problem in Eq. (3.34) cannot be solved analytically in most
cases, but some special properties of the eigenvalues can still be extracted. Just
as in the case of Eq. (3.13), the distribution of eigenvalues on the complex
plane is symmetric with respect to the real axis. We find that if {A,(u,v)}

indicates an eigenvalue A and an eigenvector (u,v) which satisfies Eq. (3.34),

then {A*, (v*,u*)} also satisfies Eq. (3.34). When A is real-valued, it is apparent
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that (v*,u*) is a solution with the same eigenvalue, so that u and v can be chosen

to be complex conjugates.

3.2.3 Radiation modes

There are both radiation modes and discrete modes which satisfy the eigenvalue
problem, Eq. (3.34). The radiation modes, i.e., those modes that do not vanish
as ¢ approaches oo, correspond to a continuous set of eigenvalues. These
eigenvalues can be found by observing the behavior of the radiation modes as
s — +o00. Considering the radiation modes in u, we note that u « exp(iys) as
8 — =00, which implies

A= (a£i/2)(b — ), (3.36)

where y is any real number. The result is a half-line on the complex plane which
starts at A = (a£i/2)b = (v2/2|D|){g, —14i(0—1)) wheny = 0. Therefore, the
radiation modes are stable if g,—! < 0. Physically, the radiation modes represent
a perturbation on the wings of the pulses. When g, — | < 0, they experience a
loss rather than a gain and decay as they propagate, which is consistent with the
results previously reported in ref. [14]. Another half-line comes from the mode
which satisfles v o exp(iys) as s — d00. As explained earlier, the half-lines of
the radiation eigenvalues must be symmetric with respect to the real axis on the
complex plane. We will show a numerically generated plot of these eigenvalues
later in this thesis.

The radiation modes are stable if the constraint Re{(e £ i/2)b1} = B%a —
a + B < 0 is satisfied. Since the'contrib'ution from the integral terms is locally
confined, i.e., v and v are multiplied by-sech—functions, the integral operators

do not affect the eigenvalues and eigenfunctions at large |s] values. The stability
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of the radiation modes is independent of the gain saturation and is determined
entirely by 8 and a. Note that 8 and a are completely determined by B, D, T,
and K through Egs. (3.16) and (3.26). The stability regions in the ﬂ'a plane
for radiation modes in both the anomalous and normal dispersion regimes are
plotted in Figs. 3.5(a) and (b) respectively. In both cases, the stable regions are
.bounded'by the curves g, — 1 = 0.

Next we study how the stability of the radiation modes is affected by the

changes in parameters. From Eq. (3.16), we find

3 AT
(8 —2)a 5/3 =30
5 P (3.37)
+ ) - 360. = WTDT.
Eliminating A%r2/(2|D|), we obtain
o LE)(PE~2) — 36 (3.38)

282 —243B(T'/K)
Shown in Fig. 3.5 are the 8-a curves for different values of I /K when D changes
and other parameters are fixed. In both the anomalous and normal dispersion
regimes, we find that when I'/K is large, the curves are well within the stable
region. By contrast, when I'/K is sma_ll, e.g., I/K = 0.25, we find that at
least part of the curves is outside the stable region, and the system has unstable
radiation modes. When a laser has a small ['/K, i.e., it has a weak saturable
absorber, then all the radiation modes are stable if 8 is small in a cavity with
anomalous intracavity dispersion; by contrast, § must be large in a cavity with
normal dispersion. Since smaller 3 values correspond to pulses with smaller
chirp, the pulses generated with anomalous intracavity dispersion have better

quality at small I'/ K values.
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Figure 3.5: Stable regions exist between the solid curves marked by g, ~ { = 0.
The dashed curves are the traces of 8 and @ when D changes and other param-
eters are fixed. Different I'/K values are labeled for, (2) anomalous intracavity

dispersion, (b) normal intracavity dispersion.
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3.2.4 Discrete modes

In addition to the radiation modes, there are localized eigenfunctions that corre-
spond to the discrete modes. Two eigenfunctions, both with A = 0, can be found
using invariant transformations of the pulse solution. A more general pulse so-
lution is obtained by introducing an arbitrary time translation, {o, and phase

shift, o, to Up in Eq. (3.14), i.e.,

Uo(t, z;to, to) = Asech*P[(t — 1)/ 7] exp(vbo). - {(3.39)

Both 8Uq(t, z; o, %0) /0% and OUs(t, z; to, o)/ Oto evaluated at 2o = 0,9 = 0
satisfy Eq. (3.34) with A = 0. Explicitly, they may be written

Ueyen = 1 sech' TP(s), (3.40)

and

toda = (1 + i) tanh(s) sech™ ¥ (s). (3.41)

Since_both Ueven aNd Uoqq are orthogonal to the integral operators in Eq. (3.34),
both ueve,; and uoqq are also eigenfunctions to Eq. (3.35) with A = 0. By; the
same observation, we conclude that an odd eigenfunction of Eq. (3.35) is also an
eigenfunction of Eq. (3.34) with arbitrary €, values.

We will present more analytical results regarding the unstable discrete mode
in the rest of this section and Section 3.2.5. It is usually not possible to find
analytical expressions for the discrete eigenmodes, other than teven and ugdda.
We can, however, solve Eq. (3.35) by making series expansion. Using the series
expansion method to find eigenvalues of Eq. (3.35) over the S-a plane, we find
that there is a tradeoff between the stability of the discrete modes and the

radiation modes, so that if the radiation modes are stable, then one of the discrete
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modes is always unstable, and vice versa. By treating the integral operator in
Eq. (3.34) as a perturbation to Eq. (3.35), we are able to show that the gain
saturation shifts the most unstable eigenvalue and stabilizes the laser system.
We show that an €, > €, min i3 needed to stabilize a modelocked laser and give a
formula for €, min. In Section 3.2.5, we discuss the stability of modelocked lasers
which have c,;onstant B, D, T, and K, based on the €, min formula.

The most unstable eigenmode of Eq. (3.35) can be obtained by a series ex-
pansion, assuming that there is a real eigenvalue for given 8 and a values, an
assumption which is consistent with what we have found from a complete nu-
merical solution of Eq. (3.35). When A is real, we may choose v = u* without

~ loss of generality. The series expansion for even u is written as
u = sech'**?(3)[cp + ca tanh®(s) + - ]. (3.42)

An algorithm for calculating A and the coefficients co, ca, - -+ is given in App;andix
A. We obtain a recursion relation for the coefficients and use this relation to
calculate their values as well as the eigenvalue. We typically calculate on the
order of a hundred coefficients, which yiélds an eigenvalue and an eigenfﬁnction
which are accurate to more than four places. For example, with 8 = 0.4, a =
0.52, and using 101 terms, we obtain A = 0.1656 and the eigenfunction plotted in
Fig. 3.6. As a test of the accuracy of the solution, we substitute this eigenvalue
and eigenfunction into Eq. (3.35). The magnitude of the error, estimated as the
difference between the right and left sides of Eq. (3.35), is less than 3 x 16-°
uniformly over s axis.

We have calculated the eigenvalues §f Eq. (3.35) inside the stability region on
the B-a plane for both signs of D. Our findings can be summarized as follows: In

most cases, eigenvalues corresponding to bounded modes are real. There always
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Figure 3.6: The eigenfunction that corresponds to the unstable mode which is
also shown in Fig. 3.8(a). The eigenvalue is A = 0.1656. The amplitude is shown

as a solid line, and the phase is shown as a dashed line.

exists a discrete eigenvalue on the right hand side of the complex plane, which
means that a modelocked laser without gain saturation is always unstable. There
is a tradeoff between the stability of the radiation modes and the stability of the
bounded modes. We observe that as we choose parameters close to the g,—1 =0
boundary, the eigenvalue for the unstable bounded mode moves closer to zero.
Once we pass the g, — I = 0 boundary, i.e., we are inside the region in which the
" radiation modes are unstable, the unstable bounded mode becomes stable.

Treating the gain saturation as a perturbation, we can estimate the shift of

the eigenvalue due to gain saturation. To do so, we must solve the eigenvalue
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problem which is adjoint to Eq. (3.35),

. 2,,0 . ) .
Ay = (a F %) {b’{u“ + %::%— - Zb;sechz(.s)u“} - (a + %) by [sech”z‘ﬁ (s)v“} )

Av® = (a + —;—) [bw“ + 8;:: - Zbgsechz(s)v“] - (a F -;—) b, [sechzq"ﬁ (.s)u“] ,

(3.43)
where the superscript a denotes the adjoint. This adjoint eigenvalue problem is
similar to the original eigenvalue problem, Eq. (3.35), in its appearance. Again,
when ) is a real number, one can set v* = u** and solve for the eigenvalues and
eigenfunétions using the series expansion approach in Appendix A. The spec-
trum of Eq. (3.43) is symmetric with respect to the original eigénvalue problem
about. the real axis. Since the original spectrum is symmetric around the real
axis, both eigenvalue problems have an identical spectrum. From first order
perturbation theory, the first order shift, A}, in the eigenvalue can be written

. | .
Ao e {07, T ) 3.04)

((ue,v%), (w,))

where (-, ) is the inner product and  is the integral operator excluding the factor

of —¢, in Eq. (3.34). Since the shift in the eigenvalue is proportional to €,, there
exists a minimum gain saturation which is required to stabilize the modelocked
laser—an €, min such that the shift in A is large enough to move the eigenvalue
to the imaginary axis, or, AXA = —A. The perturbation method generally gives
a good estimate on €,min. For instance, using B = 0.4 and a = 0.5, we obtain
an €pmin = 0.0359 while the exact value of 0.0368 is obtain from an analytical
expression of €, min later in this sectidn. This method continues to work well
when the laser configuration is changed and parameters such as T and K are not
constant, as, for example, in the figure eight laser with gain in the loop mirror.

In this case, it is not possible to obtain an analytic expression.
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Next, we investigate the solution to the eigenvalue problems, Egs. (3.34) and
(3.35) given particular § and a relations. First, we will confirm the tradeoff
between radiation modes and discrete modes mentioned above by showing that
when g, — | = 0, the eigenvalue corresponding to the unstable mode is zero.
Two eigenfunctions for A = 0 have already been found in Eqs. (3.40) and (3.41)
for arbitrary 8 and a values. When g, — ! = 0, i.e., on the boundary at which

some radiation modes become unstable, shown in Fig. 3.5, a = £8/(1 - B?%) and

(a +i/2)by = Filb*/[2(1 — B*)]. Using the function
o m 1—(1+:8)s tanh(s)]sech®**(s), (3.45)

‘which is Eq. (B.8) discussed in Appendix B, we obtain the equation

2 9*uo | 2 2426 ), *
@i§>bwy%ﬁ?m%wﬂﬂﬂw—hm& (s)ul
L W 1+iB :
= iz—l—w:_w-ﬁ-;sech (3) (346)

The right hand side equals the eigenfunction teven multiplied by a real factor

+1b,|2/(1 — B?). We rewrite Eq. (3.46) as

1-82\
P (iw) Ug = Uevens (347)

where the operator on the left hand side of Eq. (3.46), denoted as P, is the
linearized Ginzburg-Landau operator in Eq. (3.35) at A = 0. Two other equa-
tions valid for zero eigenvalue solutions are Puieven = 0 and Pugaq = 0. We thus
conclude that when g, — ! = 0, the diagonalization of the subspace of the linear

operator in Eq. (3.35) at A = 0 will lead to

0180 Iy
000 z2 |> (3.48)
0 0 0 I3
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where 21,23, and x3 are the coordinates of the three functions, Ueyen, (1 —
B%)/|b1[*]uo, and 104, respectively. It is in Jordan canonical form and the mul-
tiplicity is 3. Hence, the previously unstable bound mode is now located at
A=0.

We have verified the following: When (3, a) is inside the stability regions for
the radiation modes shown in Fig. 3.5, there always exists an unstable bound
mode. As (8,a) approaches g, — | = 0, the unstable eigenvalue approaches zero
and becomes zero exactly when the boundary is reached. The laser is therefore
marginally stable at g, — ! = 0. Then, the unstable discrete mode becomes
stable, but unstable radiation modes appear if (8, a) moves outside the stability
region for the radiation modes. A mode locked laser system is therefore always
unstable or marginally stable without gain saturation.

With gain saturation, the same function uo in Eq. (3.45) can be used to
calculate €, min, Which is

,2
2|D|

epmin = —Re{(a £ 1/2)b1} = 5=( — 8,), | (3.49)

and based on this formula, accurate contour plots can be generated.
To demonstrate that Eq. (3.49) holds, we set €, = €,min, given by Eq. (3.49),

and we substitute u = v* = ug into the right hand side of Eq. (3.34), obtaining

. 2 .
(a + -;—) {bluo + %%0" — by [2sech2(s)uo + SeCh%z"G(S)u;]}

»--e,,sech”"'ﬁ (s) f > [sech* (5" )uo + sech*t* (s")ug)ds’

-

= —2tIm { (a + %) bl} sech™#(s). (3.50)

Again, the right hand side is proportional to Ueven: The proportionality factor is
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~9lm{(a + (i/2))b1} = 4afB F (8* — 1). We rewrite Eq. (3.50) as

1 |
© (iexaﬂ F (8~ 1)) o = Hovem @'51)

where we denote the operator on the left hand side of Eq. (3.50) by &, corre-

sponding to the operator in Eq. (3.34) with € = €pmin. Both teven = 0 and
Uoaq = 0 are in the null space of Q. The subspace corresponding to the operator
in Eq. (3.34) at A = 0 is 3-dimensional. A Jordan canonical form which is identi-
cal to Eq. (3.48) arises when we try to diagonalize this linear operator at A=0
The coordinate components z1, T2, and z3 now refer to Ueven, 1/[4aﬂ:F(ﬁ2m 1)]uo,
and u.qq Tespectively. Since the modelocked lasers always have an unstable eigen-
value for ¢, = 0, the unstable eigenvalue is shifted to the origin of the complex
plane when €, = €pmin. When ¢, increases further, the eigenvalue of the previ-
ously unstable mode shifts further to the left, and the laser is stable.

In Fig. 3.7, we plot the minimum ¢, value, €, min, needed to stabilize the sys-
tem by showing contours of fixed €, min on S-a plane. The anomalous intracavity
dispersion case is shown in Fig. 3.7(a), and the norma) intracavity dispersion
case is shown in Fig. 3.7(b). For example, with anomalous intracavity disper-
sion, and setting 3 = 0.5 and & = 1.6, we need ¢, larger than 0.7 to make the
modelocked laser stable. Higher values of €, than the minimum are always able

to stabilize the modelocked laser.

- 3.2.5 Bounds for ¢, and their implications

When T and K are constant, the case being considered in this chapter, we may
estimate the values of ¢, in Eq. {3.30). Two solutions of Puy are found from Fig.

3.4 and g/(Pav,) and g\(Puv,) are the derivatives at these two working points.
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Figure 3.7: Contour plots of the minimum ¢, value needed to stabilize the mode-

locked laser. (a) Anomalous intracavity dispersion. (b) Normal intracavity dis-
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persion. The solid lines indicate the stability boundary, g, — !
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These slopes are negative numbers and satisfy the following inequalities,

cszPav,s

g:(Pﬁ"ys) <- 2(1;;1_2)2 3 (352)
CITQPav,I

g:(P&V,I) > _2(AR2T2)2 A (3-53)

The right hand sides of the inequalities, Eqs. (3.52) and (3.53), are from the
derivative of the right hand side of Eq. (3.20). Frorﬁ definition of ¢, in Eq.
(3.30), these two inequalities give bounds on ¢,. Applying Eq. (3.17) for Py
and the definition of ¢; in Eq. (3.20), the right hand sides of the inequalities are

equal and the value is —Re{(a +i/2)b1} or €min! The inequalities become

Epvs > ep,min: (3-54)

€pt < €pmin- 3.55
Dy

The implication is that if two working points exist as shown in curve ia) in
Fig. 3.4, the one with the smaller average power is always stable, while the other
one with larger average power is always unstable. Similar results were reported
by Haus in a different setting [8]. If there are no intérseétions as shown in curve
(b) in Fig. 3.4, there are no stable working points for pulsed operation since Eq.
(3.55) applies. The conclusion is independent of the input power versus output
power gain characteristic as long as the relaxation time, To, of the gain medium
is large and the gain depends only on average power. When the assumptions
that ' and K are constant and g, is a function of average input power do not
hold, as, for example, in a figure eight laser with gain in the Sagnac mirror, a

more delicate gain model has to be used.
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3.3 Numerical approaches

We present the numerical approach that we used to solve the eigenvalue prob-
lems. We also describe the numerical method that we used to carry out laser
simulations. We use a finite difference method to solve the eigenvalue problem,
Egs. (3.34) and (3.35) in Section 3.3.1. By transforming the eigenvalue problem
into a matrix form, we are able to easily solve for the eigenvalues of both the ra-
diation and discrete modes. With today’s high speed computers and eigenvalue
solvers, this approach is efficient and accurate. We will compare this approach
to the available analytical results.

In Sgction 3.3.2, we discuss the beam propagation method which we use
to simulate the complete evolution equation, Eq. 2.3, using difference operators,
which describe the evolution through the physical media. If the operator involves
the solution of partial differential equations, as is the case in optical ﬁbers: then

we use the beam propagation method.

3.3.1 Eigenvalue problem

We may use a finite difference method to solve the eigenvai_ue problem in Egs.
(3.34) and (3.35) [31]. Since the hyperbolic secant function decays‘exponen-
tially, we typically choose a computational window from s = —40 to s = 40,
where sech(s) is on the order of 10~Y7. The eigenfunction (u,v) is sampled and
represented as a column vector [ty,«++,Un, V1, , U]’y where n is the number
of points sampled. The differential, the integral, and the multiplication op-
era,tors; are represented as matrices. The second order differential operator is

approximated by a five-point formula, which yields fourth order accuracy in the
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discretization parameters. For example, at the i-th point

1 4 5 4 1
“:" = ( 12“- -2+ 3‘&'-»1 -z-ug' + .~3»u,-+1 - —ﬁu;”)/:ﬁsz, (3-56)

where As is the sampling interval. At the left end of the calculation window,

the following formulae are used

35 26 19 14 11
= (T o+ e et gue) / A (3:57)
o1l 5 11 1
'U,z' ("i""z“ul - §u2 + 2’(1.3 + 3U4 - §u5)/A82. (358)

Similar formulae are used at the right end of the calculation window. The
integrals in Eq. (3.34) are approximated as finite sums. As an example, we use
LOpO0
/ sech! (s Yuds' ~ E sech! ™ (s! JunAs. (3.59)
i m=1
Combined with the function, sech’**?(s), in front of the integral, this part of the

equation is represented by

~sech#(s) j * sech!—# (s uds' =~

{[ o :SeCh1+£ﬂ(S:n)7 e ]t[ Tt SeChl-iﬁ(S;n)’ o ]AS} [ul’ T un]t' (360)

Using Eqs. (3.56) to (3.60), Eq. (3.34) is transformed to a matrix eigenvalue
problem. Many standard eigenvalue solvers are capable of ca,lculafing the eigen-
values and eigenvectors of the matrix with high accuracy and efficiency {31}.
Typical sampling sizes are n = 300 and 600.

In Fig. 3.8, we show the distribution of A calculated numerically on the com-
plex plane. To show how the gain saturation affect the stability, we have studied
both Eq. (3.34) and Eq. (3.35). In Fig. 3.8(a), we show a typical distribution of

eigenvalues for Eq. (3.35) are shown. The parameters that we used are § = 0.4
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Figure 3.8: Eigenvalues of the linearized equation are shown in the complex
X-plane when # = 0.4 and a = 0.52. The two solid half-lines correspond to
radiation modes and the dots to discrete modes. (a) Without gain saturation,

e, = 0, (b) With gain saturation, €, = 0.1.



and a = 0.52, corresponding to a fiber ring laser. The two solid half-lines cor-
respond to radiation modes and agree well with Eq. (3.36) and its complex
conjugate. In addition to the radiation modes, there exist discrete modes which
are plotted as dots. The eigenvalue at zero has a multiplicity of 2, which are
the two eigenfunctions, Ueven and uoda, described in Egs. (3.40) and Eq. (3.41).
The mode on the right hand side of the A-plane is not stable and therefore a
mode locked laser with this set of parameters has an unstable pulsed mode op-
eration, In Fig. 3.8(b), 8 and a are the same as in Fig. 3.8(a) and ¢, is 0.1.
Cofnparing Fig. 3.8(a) and (b), the unstable discrete eigenvalue is shifted to the
left hand side of the complex plane and, therefore, pulsed mode operation is
stable. In general, as noted in Section 3.2, the effect of gain saturation is to
stabilize the system. Larger values of €, imply a larger shift of the eigenvalue of
the most unstable discrete rﬁode, which is even. By contrast, the eigenvalues of
the radiation modes are not affected. Also, the eigenvalues corresponding to odd
eigenfunctions will not be shifted since they are orthogonal to the perturbation.
The two eigenfunctions teven and u,qq must of course remain.eigenfunctions with
zero eigenvalue at any €.

We ‘check the accuracy of the numeriéal method in several ways. First, the
eigenvalues of the two eigenfunctions Yeven and Uoda are zero and the numerical
results are within 10~*. The discrete eigenva,lues'are compared with the results
from the series expansion and the error is again within 10~*, The accuracy of
the radiation eigenvalues is not as good primarily due to the finite size of the
sampling window. This s:tuatzon is improved when the window size and the
number of sampling points is increased. The error in this case is about 1072,

We verify numerically the tradeoff between the stability of the radiation
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modes and of the discrete modes described in Section 3.2.4. When 3 and a are
on the g, — ! = 0 boundary, there are three eigenvalues at zero and the laser is
marginally stable. We have also verified the minimum e, given analytically in
Section 3.2.4 by use of the numerical method. Using €min from Eq. (3.49) in
the eigenvalue problem, Eq. (3.34), we find three eigenvalues at zero.

The numerical method is particularly useful when the laser configuration
leads to an equation in which analytical or perturbation estimates of A are not
available. A practical example is when the coefficients in Eq. (2.35) are not
constant, as in the case of a figure eight laser with gain in the Sagnac mirror,

whose I' and K parameters are gain dependent.

3.3.2 Beam propagation method

The purpose of the beam propagation method is to solve Eq. (2.5). For simplicity,
we will discuss the beam propagation method, assuming that it is applied to an
evolution equation with two operators.

Suppose that an evolution equation,

U (z,t)

5 = OU(z,t), (3.61)

is to be solved given the initial wave profile U(0,1). Next, assume that this

equation can be decomposed into two operators, i.e.,

9%—?2 = (O + O1)U(z,1), (3.62)
such that
Ulz,t
= “egj“"') =0l(51), (3.63)

where k = 1,2 can be solved exactly and efficiently. To second order accuracy,

advancing the pulse profile by one small step A¢ can be approximated by prop-
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Figure 3.9: (Efra,phicai representation of the beam propagation method when (a)

two operators appear, and (b) three operators appear.

agating a half step just using O; to operate on U, then propagating a full step

just using O, to operate on U, and then finally, propagating a half step just

using ;. Formally, this procedure is represented by the equation,

exp|(O1 + O2)A] = exp (Ox%é) exp({OD,A€) exp (O;%é) + o AE). (3.64)

In Fig. 3.9, we show a graphical representation of this procedure. We also show

the iteration when three operators appear. Since in practice one of the operators

is always a differential operator that can be solved by using the Fourier transform

technique, the beam propagation method

spectral method [32].
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We primarily use the beam propagation method to calculate the evolution
of the pulse shape in fibers when we simulate a figure eight laser or a fiber ring
laser. The wave propagation inside a optical fiber is modeled by the nonlinear
Schrodinger equation or the coupled nonlinear. Schrodinger equation, which is of
the form of Eq. (3.62) and is solvable by the beam propé,gation method.

The growth rate of the unstable discrete mode of Eq. (3.29) when ¢, = 0
is found by using the beam propagation method and then comparing to the
theoretical growth rate obtained by finding the eigenvalues of Eq. (3.35). The
initial pulse profile is set to that of the unstable discrete mode, which is obtained
from the series expansion method. The theoretical energy growth rate of this
initial profile is exp[2Re(A)£], where A is the corresponding eigenvalue. We find

the agreement in the growth rates is within 1072,

3.4 Summary

The stability of both CW and pulsed mode operation are discussed using the
same laser equation, Eq. (2.35). We assume that pulsed mode operation will only
self-start from noise if CW operation is unstable and pulsed mode operation is
stable. We discuss the conditions for a laser to self-start. Generally, increases
in the magnitudes of the relaxation time, bandwidth, dispersion, saturable ab-
sorption, Kerr nonlinearity, and small signal gain, and decreases in the loss will
facilitate self-starting. We plotted the parameter regime in which a laser can
self-start on the loss-gain plane.

The stability of the pulsed mode operation is determined by the stability of

the radiation eigenmodes and the discrete modes. We found that the radiation is
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stable when g, —{ < 0, and discrete modes are stable when €, > €pmin. We found
that gain saturation is essential to stabilize a modelocked laser since without gain
saturation, there is always an unstabie discrete mode when all radiation modes
are stable.

Numerical methods play an important role. By transforming the eigenvalue
problem into a matrix eigenvalue problem, we obtain all eigenvalues of the lin-
earized equation with efficiency and accuracy. A full numerical simulation of
lasers can be performed by using the beam propagation method, which is able

to calculate the evolution of the pulse shape when the initial wave profile is given.
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Chapter 4

Figure Eight Laser

One of 'the key difficulties in building a passively modelocked laser with fast
saturable absorption is finding fast saturable absorbers! For a laser pulse with
a duration on the order of a picosecond, only a few materials demonstrate fast
saturable absorption. Present fast saturable absorbers are made from a dye jet
[33] or a multiple quantum well [34]. However, these components are frequency
dependent or subject to material degradation after a period of time, It is also
difficult to adjust parameters with these materials. In Sections 4.1 and 4.2,
we introduce nonlinear, optical fiber loop mirrors and nonlinear, optical fiber
amplifying loop ﬁirrors as interferometric devices that act as saturable absorbers
when certain parameter values are properly chosen [35]. The Kerr nonlinearity,
which has a response time on the order of femtoseconds, plays a key role in tﬁe
saturable absorption, so that it is very fast acting.

A laser using a nonlinear amplifying loop mirror as a gain and pulse shaping
component was first introduced into a ring laser cavity by Dr. Irl N. Duling at
the Naval Research Laboratory [36], [37]. The structure and analysis of the laser

are discussed in Section 4.3. We simulated the figure laser in a modular fashion,
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Figure 4.1: The structure of a nonlinear loop mirror.

and the results are presented in Section 4.4. A summary is given in Section 4.5.

4.1 Nonlinear loop mirrors as fast saturable
absorbers

A nonlinear loop mirror is basically a Mach-Zehnder interferometer [38]. As
shown in Fig. 4.1, it consists of a couplér or a beam splitter and a fiber that
is connected to both output ends of the coupler or beam splitter. After the
coupler, the separated light waves propagate in opposite directions through the
loop, and their paths are obviously identical. They interfere at the coupler again
and generate reflected and transmitted waves. In the laser that we are going to
discuss, only the transmitted wave are used and the reflected wave are blockgd
by an isolator in the laser cavity. This combination has zero transmission when

the coupler is a 50/50 splitter since the same wave profiles travel through an
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identical waveguide and cancel each other at the output end. However, when
the splitter is not 50/50, optical power propagating in each direction of the
fiber is different, and the relative phase shift in the two propagation directions
changes with the power difference and the length of the loop due to the Kerr
effect. Constructive instead of destructive interference at the output end may

occur if the phase difference is close to 7.

4.1‘.1 Quasi-CW inputs

To understand the behavior of the loop mirror we consider a quasi-CW input
to the nonlinear loop mirror. By quasi-CW input we mean a segment of CW
input which is long enough to be considered continuous, i.e., has no significant
dispersion, but is shorter than the time of passage through the loop mirror so
that the overlap of different directions of propagation is not significant and not

taken into account. The coupler can then be described by the scattering equation

(38],
Us = o2y + (1 — a)/?U;,
(4.1)
Us = i(1 — a)2U; + o*/?Us,

where o is the power coupling ratio of the coupler and Uy, Us, Us, and Uy are
wave amplitudes as indicated schematically in Fig. 4.1.

The Kerr nonlinearity inside the fiber will affect the optical length of each
propagation direction as described in Section 2.2. From Eq. (2.21), the phase

change, ¢n, due to the Kerr nonlinearity is

2719 Laber

_ 2 _ 2
PnL = oA U = K,\U, (4.2)

From Eq's. (4.1) and (4.2) and the loop mirror topology shown in Fig. 4.1, the
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output field can be calculated and, hence, the transmission coefficient. When

the input is quasi-CW with U = Uiy, the output is
Uput = aUsn exp(a,|Uinf?) — (1 — @)Un exp(i(1 - Q) K,|Uinl®), (4.3)

and the transmission coefficient, t, is [38],

=
= 1-2a(l —a){1 + cos{(l — 20)K,|Un|*]}. (4.4)

Since the value of cosine function ranges from —1 to 1, the transmission coeffi-
cient has two bounds, ‘1 and 1 — 4a(l — @) at |[Unl* = 2m + 1)x/[(1 — 20)K,]
and 2mr/[(1 — 2a) K], respectively, with m an integer. When o equal 1/2, the
transmission is always zero, so that the optical energy is reflected back by the
loop.

We plot the transmission coefficient, [t|, as a function of input power, \Uin|®
in Fig. 4.2. The parameters that we used are a = 0.4, Ao = 1.55 pm, Lgper = 100
m, and Acg = 80 pm?. From Eq. (4.2), we now find K, is 0.162 W-t, The curve
oscillates between 0.04 to 1.0 while the period is determined by @ and K. Results
for & = 0.3 and 0.45 are also plotted in Fig. 4.2. Saturable absorption occurs
because parts of the transmission curve shows a higher transmission as the input
power increases, as shown in Fig. 2.3(b) [39], [40]. This effect is fast because the
Kerr nonlinearity has a response time on the order of femtoseconds. Also, a
small change in « when it is close to 0.5 can lead to a large variation in the
oscillation period in the transmission curve. The large input powers shown in
Fig. 4.2, which are required for the loop to become transpa.rent, imply that the

nonlinear loop mirror is not practical unless long fibers or small effective areas
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Figure 4.2: Transmission coefficient of the nonlinear loop mirror with pa,rar;leters

do = 1.55 pm, Lgver = 100 m, and Aeg = 80 pm?. Three o values, 0.3, 0.4, and

0.45 are plotted.

are used. However, for pulse inputs, the peak power reaches this range easily,

and the transmission can reach unity without using high average powers.

4.1.2 Nonlinear Schrodinger equation

A detailed model for pulse propagation in optical fibers is needed when pulse
inputs are considered since both dispersion and the Kerr nonlinearity operate
simultaneously along the length of the fibers. Using the operators for dispersion

and Kerr nonlinearity which are given in Eqgs. (2.14) and (2.19), we obtain the
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evolution equation

BU  ND,0U  2wng ...
Z*éé“‘l‘ dre O + /\erﬁ'tUl U——G, (45)

where we recall that = is length along the optical fiber and we have used the
relation Eq. (2.18) to express k" in terms of Dy, the measured dispersion of the
fiber in delay time per unit wavelength per unit length (psec/nm-km).

In theoretical discussions, it is convenient to normalize the evolution equa-
tion, reducing it to a standard form. We introduce new units for the normaliza-
tion—the so-called soliton units. Choosing a normalization time, T¢, which will

be fixed later and defining new normalization variables,

_2rclE o, doAa

c ™ e == ’ 4.6
z MD,' 2rne s, (4.6)
we normalize the variables, ¢, £, and U as follows,
t = U
s=q (57 “TUR *1

which yield the nonlinear Schrédinger equation,

Ou  10% g

3-5&' + 55‘;5‘ 4 Iul U = 9 (48)

The second term represents the dispersion and the third term represents the
Kerr nonlinearity, which is in the form of a self-induced potential. The nonlinear
Schrodinger equation is one of the small number of special partial differential
equation which can be linearized using the inverse scattering method [41], [42].
As a consequence, it has soliton solutions. These are localized solutions which
propagate without changing shapes and maintain their shape during collision
with other solitons and continuous radiation. Physically, a soliton creates a

self induced potential through the Kerr nonlinearity to counteract the pulse

69




broadening dispersive effect. The soliton has a hyperbolic secant profile which

depends on four parameters, A, vo, 3o, and ¥, in the following way,

A? 4
9

u = Aseéh[A(s — vg€ — 8p)] €Xp [z'vg(s — v — 80) + 1 v?,& + z'¢] . (4.9)

A stationary solution with unity amplitude is obtained by setting A =1, vo = 0,

8o =0, and ¥ = 0 and the resulting soliton solution is
u = sech(s) exp(i£/2). (4.10)

Note that the solution’s phase is uniform as a function of time at each position
as the pulse propagates down the fiber. The full width at half maxima (FWHM)
of this fundamental soliton is 1.763 in s or 1.763 T, in ¢. A convenient choice of
T. is ‘

T =1.763 T, (4.11)
where 7 is the FWHM pulse width. Experimentally, one can create a S(->Iiton
by launching a nearly sech-shaped pulse into a fiber. Then, the experimentalist
adjusts the amplitude until the pulse shape does not change at the output end
of the fiber.

Hasegawa and Tappert first predicted in 1973 '[43] that solitons could be ob-
served in optical fibers. These were first observed experimentally by Mollenauer,
et al. in 1980 [44]. Since the work of Mollenauer, et al., these solitons have been
the continual focus of both theoretical and experimental activity. Solitons are of
_ interest because they tend to act as a unit since they have a uniform phase and
do not change their shape during collisions.

Numerically, the nonlinear Schrddinger equation can be solved accurately and
efficiently using the beam propagation method which was introduced in Section

3.3.9. We observe that the nonlinear Schrodinger equation contains two parts
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which are represented by L, the dispersive operator, and N, the Kerr operator,

so that Eq. (4.8) becomes

)
(—9% = Lu + Nu, (4.12)

 where £ = (i/2)8%/0s* and N = ijul?. The evolution equations with the indi-
vidual operators, Ou/8¢ = Lu and Gu/d€ = Nu, can be integrated exactly. The
solution to Eq. (4.8) is then found numerically by propagating with £ and N

alternatively as described in Section 3.3.2.

4.1.3 Pulse inputs

In order to simulate pulse propagation in the loop mirror, we solve Eq. (4.8)
using the beam propagation method. We assume that the input pulses are sech-
shaped and are divided into two directions in accordance with Eq. (4.1). We
solve sepamtely for the evolution in the two directions, assurmng that pulses in
the two directions do not interact. The two pulses then recombme at the coupler
to create the transmitted wave. Using @ = 0.4, Dy, = 10 ps/nm-km, 7 = 1 ps,
and the same physical parameters used in Fig. 4.2, we find that T, = 0.567 ps,
Z. = 25.3 m, and P, = 24.4 W. The fiber length is 100 m (~ 4 Z.). The input
waveform is
u = Asech(s). (4.13)
The FWHM is 1.763 and the root mean square (r.m.s.) width is (s)1/? = [0 *
sechz(.g)ds]ll 2 = 7//6 = 1.283, which are used for pulse width normalization.
We plot the energy transmission coefficient, i.e., output energy/input energy,
versus A? in Fig. 4.3(a). We also plot the pulse widths in Fig. 4.3(b). Both
normalized full width at half maximum (FWHM) and root mean square widths

(r.m.s.) are plotted. When both widths are close to unity, the output pulse
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Figure 4.3: (a) Transmission coefficient, and (b) pulse width, as a function of

peak power, A?. Normalized peak power is used.
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is sech-like and smooth; otherwise, large pedestals typically appear. Both the
transmission coefficient and the output pulse width depend on the input pulse
amplitude. The transmission coefficients shows oscillatory behavior with peak
values close to unity, which means almost complete transmission is possible. The
oscillation period is related to the length of the loop. Longer loops have smaller
A values for the first transmission peak. The FWHM and r.m.s. widths follow
nearly the same trend; however, the FWHM width changes more drastically .
because the pulse shape can be spiky. When the widths are less than one, the
output pulse duration is shorter than the input, i.e., pulse compression occurs.
The small transmission and large widths at A? ~ 5.5 indicate that the output
power is low and that the pulse has a significant pedestal. The fact that the
output pulse width may become smaller than the input pulse width is due to
the saturable absorption that the loop demonstrates. The loop passes light for
the peak portion of a pulse and block light for the wings of the pulse [39], [40].

As a consequence, the output pulse width can become shorter than the input.

4.2 Nonlinear amplifying loop mirrors

In nonlinear loop mirrors, the asymmetry in the power propagating in the two di-
rections is essential since it generates a phase difference which leads to amplitude-
dependent interference and saturable absorber action. This asymmetry can also
be obtained by using a 50/50 coupler and an erbium-doped fiber amplifier which
is situated close to one end of the loop mirror as shown in Fig. 4.4. Because of the
asymmetric location of the amplifier, the power levels are different in both prop-

agation directions, even though the final output power from each propagation
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Figure 4.4: The structure of a nonlinear amplifying loop mirror.

direction is identical. A phase difference results.

4.2.1 Quasi-CW inputs

The amplitude gain in a nonlinear amplifying loop mirror is VG = go =1+ gs,
where G is the power gain defined in Eq. (2.31), g. is the amplitude gain, and
g, is the steady gain defined in Eq. (2.24). We are assuming that the average
input power is large. The amplifier is placed next to one of the output arms of

the coupler, so that
Usee = 0tga exp(i0K,|Uin | )Uin — (1 — a)ga expli(l — a)GK,iU;nlz}Uin, (4.14)
and the energy transmission coefficient, [t[?, is,
It = G{1 —2a(1 — @)(1 +cos{[G ~ (1 + G)a] KUl 1)} - (4.15)

The transmission coefficient varies between G|l —4a(1—e)] and G, so that power

gain as high as G is possible. Note that when G = 1/(1 — @), the asymmetries
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Figure 4.5: Transmission coefficient of the nonlinear loop mirror with parameters
a = 0.5, Ao = 1.55 pm, Lgper = 100 m, and A.g = 80 ym?. Three gain values,
1.2, 1.4, and 1.8 are plotted.

due to the coupler and the gain cancel each other and no change in transmission
occurs when the input power changes. Setting o = 0.5, the case of greatest

practical interest, we find
J#? = G {1~ 0.5{1 + cos[(G — DK, |Unl*/2]}} - (4.16)

In Fig. 4.5, we use the parameter values as in Fig. 4.2 except that a = 0.5.
In order to obtain the same oscillation period in the transmission curve for
comparison, we choose gain values (G — 1)/2 = 1 — 2a, where the a values are
the same as in Fig. 4.2. For a = 0.3,0.4, and 0.45, we find that G = 1.8,1.4,

and 1.2 respectively.
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The peak gain éf the loop mirror is the gain of the amplifying medium. The
minimum transmission coefficient is zero in contrast to that in Fig. 4.2, which is
never zero. The period of the transmission curves decreases as the gain increases
and becomes highly oscillatory when g is very large. Since the transmission coef-
ficient increases as input power increases in parts of the transmission curves, the
loop mirror with gain can also exhibit fast saturable absorption just as is the case
for the loop mirror without gain described in Section 4.1.1. In addition to the
fast saturable absorption, the loop mirror with gain also provides amplification

in some input power ranges.

4.2.2 Pulse inputs

We proceed to numerical simulations of sech-profile inputs. We use the same
parameters as in the nonlinear loop mirror. The gain element is an erbium-doped
fiber amplifier with a value of 1.4 and is located right next to the coupler. Again,
we use the beam propagation code to find the output pulse shapes, fransmission
coefficients, and pulse widths., The results shown in Fig. 4.6 are similar to’
Fig. 4.2. The peak gain is larger than unity but it does not reach 1.4, the
amplifier gain. Wj:;en the loop gain is low, the output pulse width is large,
and the shape of the output waveform is no longer sech-like. For output pulses
with normalized widths smaller than one, the output pulses are sharper than the
input pulses. Again, we attribute this sharpening to the fast saturable absorption

demonstrated by the amplifying loop mirror.

76




(a)

Transmission coefficient

3r (b)
FWHM width

‘\/

=
T 20\
‘g r.n.s. width
2
E 1
& r
N A
/J ~ \
0 [} H I ! ]
0 2.5 5 7.5 10

Figure 4.6: (a) Transmission coefficient, and (b) pulse width, as a function of

peak power, A%, when g = 1.4. Normalized peak power is used.
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Figure 4.7: The structure of the figure eight laser.

4.3 Figure eight lasers

Since a nonlinear amplifying loop mirror provides gain and fast pulse shaping, it
can be used as an element in a fiber ring cavity to form a modelocked laser. As
shown in Fig. 4.7, the ring cavity contains a nonlinear amplifying loop mirror on
the right hand side. This is the figure eight laser which was proposed by Dr. L
Duling at the Naval Research Laboratory [36], [37]. Pulse widths as short as 100
fsec has been demonstrated using erbium-doped fiber amplifiers. Other elements
inside the cavity include an isolator to obtain a single propagation direction, a
polarization controller to adjust the polarization state, and an output coupler
to access the laser power. No alignment of the laser is needed after fibers are
spliced together, and the whole assembly is compact.

Another way to construct a figure eight laser is to place the gain outside the
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loop mirror [35]. In this case, the loop mirror acts as a fast saturable absorber
and provides pulse shaping without amplification. Successful modelocking has
been observed experimentally [45]. We will focus, however, on the figure eight
lasers with gain in the loop mirfor because more experiments have been done
with this configuration.

We shall extract the laser parameters which are required for use in Eq. (2.35)
from a given physical setup. From Eq. (2.35), we find that the gain, the loss,
the fast saturable absorber, and the Kerr nonlinearity can be determined by
considering CW waves since the second derivative term vanishes for a CW wave.
The dispersion and frequency limiting terms are then determined by summing
up all the dispersive and frequency limiting elements in the cavity. As shown in
Fig. 4.8, a 50/50 coupler joins the main cavity and the nonlinear amplifying loop
mirror. In the main cavity on the left hand sidé, starting from the 50/50 caupler
and proceeding clockwise, there is a 1.75 m fiber (dispersion 16 = psec/nm-km),
a 20% output coupler, and another 1.75 m fiber (dispersion = 16 psec/nm-km)
to the 50/50 coupler. The position of the isolator does not affect the operation of
the laser. On the right hand side, starting form the 50/50 coupler and proceeding
clockwise, there are a 0.4 m fiber (dispersion = 16 psec/nm-km), a 1.58 m fiber
(dispersion = 5 psec/nm-km), a 2.5 m erbium-doped fiber amplifier {dispersion
— 8.8 psec/nm-km), and, finally, 2 0.31 m fiber (dispersioﬁ = 16 psec/nm-km)
back to the 50/50 coupler. The total length of the setup is 8.29 m and the average
dispersion is 11.73 psec/nm-km. The repetition rate is 25 MHz, assuming the
refractive index of silica is ng = 1.45. The effective area Aeg of all the fibers
is measured to be 85 um?, which is also assumed to be uniform for over the

fibers used in the laser. The erbium-doped fiber amplifier is measured to have
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Figure 4.8: Simplified model of the figure eight laser.

go = 3.94 and Py =~ 2.77 mW. The loss is estimated to be 60% to include loss
due to splicing and fiber coupling. We also assume a frequency limiter of 5 nm
to account for other frequency limiting elements as well as the soliton resonance
sideband generation, which Jeads to a frequency dependent loss {10].

Uéing this information, we find the parameters which must be used in the
laser equation, Eq. (2.35). We find that [ = 0.255, D = 0.062 psec?, and
B = 1/w? = 0.108 psec’, using wp as given in Eq. (2.11). We have used a
simplified model of the erbium doped fiber amplifier, in which the spread 6f gain
throughout the erbium-doped fiber amplifier is ignored. In this case, we obtain
the model of the figure eight laser shown in Fig. 4.8. From the fiber lengths in
Fig. 4.7, we infer that Ly = 3.23 m and L; = 1.56 m.
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4.3.1 Determining the fast saturable absorption and
nonlinearity

We will proceed with our analysis of the figure eight laser by first performing
a CW analysis on the nonlinear amplifying loop mirror and then deriving the
laser equation. Using the CW analysis, we found that the loop mirror provides
the gain, the fast saturable absorption, part of the Kerr nonlinearity, and part
of the dispersion while the main cévity on the left hand side provides the loss,
part of the Kerr nonlinearity, and part of the dispersion.

Since polarization controllers are added into the laser cavity to adjust the
polarization state of the cavity as shown in Fig. 4.7, a non-reciprocal phase in
the amplifying loop mirror may result. With this ﬁonwreciprocai phase shift,
the wave traveling in one direction has an additional phase offset from the wave
which travels in the opposite direction. There is experimental evidence for this
additional phase shift from the dependence of the laser operation on the setting
of the polarization controllers. When the figure eight laser is assembled, its
ability to self-start can be optimized by adjusting the polarization controllers.
We account for the non-reciprocal phase by multiplying the counterclockwise

propagating beam by a phase angle, exp(i¢). We then find

Ugut = ng {exp (z‘-———————wmm-mKs’l +292K"2 IU;,,I‘") — exp (i—-—»w---«m——-ggK”l 2+ Koz |Usnl® + zda)] Usn,
(4.17)
where K, and K, account for the nonlinear phase changes in the loop mirror
due to fibers of length L, and L respectively. In order to find the coeflicients
used in the evolution formalism, we take the logarithm of the operator on Ui

and then expand it in terms of [Ui,|*. The evolution equation for the nonlinear
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amplifying loop mirror is then approximated by

o _ {m [(1 - exp(eqs))ga} N

8z 2
i Ks,l - Ks,? eXP(qu) + QZ(Ka,z - Ks,l exp(zqf:))
: T —exp(i9) ] wrfv
o fosm(Im5200)
i [ K1~ K2 exp(iqﬁ) +(1+ 293)(Ks,2 — K, exp(iqS))
] 1= exp(id) Jor}o e

where In(g,) = ¢, and g2 ~ 1 + 2g, are used. The real part of the third term
on the right hand side of Eq. (4.18) corresponds to fast saturable absorption,
while the imaginary part corresponds to the Kerr nonlinearity. When ¢ is close
to zero, the transmission coefficient is close to zero, and the expansion fails.

In contrast to the amplifying loop mirror, the main cavity contributes only
loss and Kerr nonlinearity. The Kerr nonlinearity is due to the fiber and is
denoted as K,, = K,3 + K, 4, where K,3 and K, 4 correspond to fiber length
Ls and L, in Fig. 4.8 respectively. Since there is a unique propagation direction,
there is no fast saturable absorption from this part of the ring. From the laser
configuration, it follows that K,; = 4.93 X 1073 W1, K,, = 2.38 x 1072 W™,
and K,. = 5.34 x 1073 W~1,

Combining the effects due tlo the nonlinear phase changes with the param-
‘e'ters, B, D, and I mentioned previously, we obtain the laser equation for the

figure eight laser, which is

— y . 2
au _ {g, l+in (Lﬁ’iﬁﬁfﬂ) +(B +iD)-C%—2 +iK, JUP+

0z 2
i [K,1 — Kszexp(ig) + (1 + 2¢,)(Ks2 — K, exp(id))
g T exp(i9) ] P} 19

We will now study the conditions required for self-starting and pulse stability.
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4.3.2 Conditions to self-start

Using the technique described in Section 3.1, we determine the parameter re-
quirements for the figure eight laser to self-start. The CW solution has a form
of U = U.exp(iP.z) as in Eq. (3.1), which we will substitute into Eq. (4.19).
Both Egs. (3.2) and (3.3) have to be modified accordingly in order to find the

CW solution. The amplitude of the CW state is determined by solving

. go 7 1 — exp(i¢) T2
9= TP VTP [—In (-—-———-----—2‘ rv;, (4.20)

where I' depends on g,, or, from Eq. (4.18),

Koy — Kagexp(ie) + (1+29,) Koz — Ko exp(w)]} . (421)

['=Re {2 2 — 2exp(i¢)
When ¢ = 0.6, we find that U, = 0.068 W*/2,
We now linearize Eq. (4.19) around this CW solution, and we transform
the resulting equation into an eigenvalue problem, in precise analogy with Egs.
(3.7)-(3.12). The resulting eigenvalue problem, which corresponds to Eq. (3.12)

is

A A
A\ 1 - M 1
Az Az

M1 Mg €, m m Al

, (4.22)

i

M; Mr 1 + 3(-0Tc m* m* A2

where m = U, +i[K, 3 — K,1exp(i¢)]UZ/[1 — exp(i¢)]. The other variables, T¢,
M,, and M,, are defined in Chapter 3 after Egs. (3.6) and (3.12). The relaxation
time constant T is 10 msec. The eigenvalue is plotted on the complex A-plane
for all w in Fig. 4.9 using ¢ = 0.6. We plot only the right hand side of the

complex plane to show that the laser will self-start. We find that A reaches the
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Figure 4.9: The eigenvalue on the complex plane shows that this figure eight

laser can self-start.

right hand side of the complex plane when Re(}) =~ 2T'U? = 5.63 x 1073, as
described in Section 3.1. Solving Eq. (4.22) numerically for A, we find that its
actual maximum value is 5.73 x 10~%, which happens at w = 7.18 x 102 psec™!,
For other va,iués of ¢, we find that the figure eight laser self-starts except when

¢ is close to but less than 2.

4.3.3 Stability of the pulse solution

We begin by determining the parameters in the ansatz in Eq. (3.14). To do
so, we must sé,tisfy Egs. (3.15) and (3.16). Since both T' and K now depend
upon gain and therefore upon A and 7, the solution to these two equations is
not straightforward. We have solved these equations numerically in the range

0 < ¢ < 27 and the results may be summarized as follows: For 0 < ¢ < 0.9,
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there exist pulse solutions; for other values of ¢ there is no pulse solution. The
parameter 3 is roughly constant over the region that pulse solution exists and its
value is approximately 0.56. We will describe the analysis in more detail using
¢ = 0.6 as an example. When ¢ == 0.6, 8 = 0.5437 and a = 0.8680, the pulse
width is 7 = 206 fsec and the amplitude is A = 41 W'/2,

~ We now study the linear stability using the technique described in Section
3.2. Again, since I’ and K depend on gain, the stability can be studied by using '
perturbation method or solving the resulting eigenvalue problem numerically.
In addition to the terms in Eq. (3.29), the terms due to the gain dependence
of I' and K have to be taken into account. From Eq. (4.18), the perturbation
U = Uy, + @ will lead to an extra term on the right hand side of Eq. (3.29), and
the equation becomes

4
9

where R(#) is the right hand side of Eq. (3.29) and €, = {[K,2— Ko exp(ig)] A%e,

= R(&) — e sech™ ¥ (s) / * sech!=% (.3’)11 + sech'*#(s"ards',  (4.23)

/11 —exp(i¢)] and ¢, is defined in Eq. (3.31). Note that € is in general a complex
number. Using the calculated A and 7, we find ¢, = 0.0373 and ¢ = 0.259 +
0.230:. We- find the eigenvalue X = 0.3273 for the most unstable discrete mode
and the corresponding eigenfunction using series expansion method. The adjoint
problem is also solved for the same eigenvalue. We estimate that the eigenvalue
is A = 0.1443 when only ¢, is used, while A = —0.4798 when both ¢, and € are
applied. These are to be compared to results from the matrix eigenvalue solver,
which gives A = 0.1426 when only ¢, is used, and A = —0.5734 when both ¢, and
¢, are applied. The eigenvalues which were determined numerically, are plotted |
on the complex A-plane in Fig. 4.10. All the eigenvalues are on the left hand

side of the plane, and the laser is therefore stable.
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Figure 4.10: Eigenvalues of the figure eight laser on the complex A-plane.

Since I' and K depend on g, and, therefore, Py, the inequalities given in
Eqs. (3.52) and (3.53) are not applicable, and the value of €, which is required
to stabilize the laser is reduced, since the effect of non-zero ¢ is to further
stabilize the laser. From a perturbation calculation using Eq. (3.44), we find
that the eigenvalue will shift to the left when Re{e:) is positive. The implication
of this additional eigenvalue shift is that it extends the parameter range in which
the figure eight laser is stable. Physically, it is easier to modelock the laser by
putting the saturable gain inside the loop mirror, the case considered here, thaﬁ

outside the loop mirror, the case considered in Section 3.2.
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4.4 Simulation of the figure eight laser

We will carry out the numerical simulation in the modular fashion described
in Section 3.3.2. The laser configuration has been shown in Fig. 4.8. Using
the beam propagation method, we calculate the pulse evolution in each segment
of the fiber using the nonlinear Schrédinger equation in Eg. (4.8). We follow
the pulse envelope, which will change after passing through each element. We
normalize the time variable to T, = 200 fsec. The dispersion of each of the fibers
is set to 11.73 psec/nm-km and the effective area of the fibers are assumed to be
85 um? uniformly. Then we calculate Z, = 2.677 m and P, = 244.77 W from Eq.
(4.6). The fiber lengths in this normalization are Ly = 1.21 Zey Ly = 0.58 Z,
and Ls = L4 = 1.21 Z.. The gain inside the loop mirror is assumed to be a
lumped gain, whose behavior is given by Eq. (2.29). The parameter values for
the gains are go = 3.94 and P = 2.77 mW. The parameter Fou correspoﬁds to
2.963 in the normalized units, assuming a repetition rate of 25 MHz. The average
power P,, is now represented by [, lu|? ds, since the round trip time has been
taken into account in finding P.... The output coupler is set to 60% to include
other losses in the cavity. The frequency limiter is described by Eq. (2.9), where
wo is 3.05 psec™! in this normalization, corresponding to 5 nm in the frequency
apectrum. We use the smaller value to include other possible frequency limiting
effects from other elements, such as the coupler and the isolator, or the effect .
referred to as soliton resonance sideband generation.

The non-reciprocal phase shift exp(i¢) is important in the laser operation,
since it affects the characteristic of the nonlinear amplifying loop mirror at the
working point of the laser. With a 50/50 coupler and a small value of ¢, the

amplifying loop mirror becomes a reflector and transmits little light. The laser
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becomes harder to self-start since the light energy must have large fluctuations
to reach the transparent portion of the loop mirror. With a large value of ¢,
i.e., around 7, there is no saturable absorption. The transmission curve in Fig.
4.5 is translated by the phase angle ¢ and the transmission coefficient and slope
at |Uis|* = 0 are changed. Experimentally, one finds that there is sensitivity
when adjusting polarization controllers in the loop mirror, since they affect the
¢ value.

We show a numerical simulation using ¢ = 0.6 in Fig. 4.11. With this ¢ value,
the loop mirror provides fast saturable absorption. We plot the pulse evolution
from initial noise into a pulse after about 80 round trips, which corresponds to
3.2 psec. The pulse width (FWHM) is 2.46 T, = 492 fsec, the spectral width is
4.48 nm and the AtAf = 0.28.

| We have also carried out a more thorough study on the effect of varying the
¢ value from 0 to 2x. When 0 < ¢ < 1.2, the laser operate in pulse mode stably.
When 1.3 < ¢ < 4.8, the optical energy in the laser evolves into pulses but
the pulse operation is not stable. A typical outcome is shown in Fig. 4.12 with
¢ = 2.0. When 4.8 < ¢ < 2, the laser does not self-start and has only a CW
output. When ¢ is close to 2, there is no output energy since loss is larger than

gain.

4.5 Summary

We have carried out an analysis of the figure eight laser. Since the gain medium
is located in the nonlinear loop mirror to provide both gain and saturable absorp-

tion, T and K are both functions of the pulse shape. We calculate the working
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points for both the CW and pulse solutions. The stability of both working points
is then investigated and particular results for ¢ = 0.6 are presented. We find
that the dependence of T' and K on gain saturation further stabilizes the mode-
locking relative to the model considered in Section 3.2 which corresponds to a
gain located outside the loop mirror.

The numerical and analytical results both show that there is a range of ¢ in
side of which the laser can operate stably. The numerical simulation shows that
the figure eight laser is able to self-start from noise and operate stably in pulsed
mode for 0 < ¢ < 1.2, while analytical results predicts 0 < ¢ < 0.9. When
¢ = 0.6 the pulse width calculated analytically is 206 fsec and is 492 fsec in the
numerical simulation. This result can be further improved if more sophisticated
models for the saturable absorber are used, such as one that includes higher

orders in the expansion of Eq. (4.18).
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Chapter 5

Fiber Ring Laser

The fiber ring laser discussed in this chapter was first proposed by Dr. L. Mol-
lenauer [27] for telecommunication applications. Since solitons are to be used as
carriers to convey digital signals, a suitable laser source is desirable. The laser
basically consists of a long fiber and a fiber amplifier arranged in a ring config-
uration. The original idea was that the modulational instability in the fibers in
the anomalous dispersion regime would lead to self-starting of the laser and evo-
lution of the modelocked pulses into solitons since solitons are the fundamental
nonlinear propagation mode in fibers.

Unfortunately, the modulational instability does not provide saturable ab-
sorption, and simulations show that the laser will not modelock when only the
modulational instability is present [9]. It was-found, however, that nonlinear
polarization rotation and polarization selective elements would lead to the laser
self-starting. This issue is discussed in Section 5.1. Since no polarization selec-
tive elements were explicitly included in the design of the fiber ring laser, we
discuss ways in which they may have been implicitly included. The structure of

the fiber ring laser is presented in Section 5.2 and models of the laser elements
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not previously described are presented.

To analyze the fiber ring laser, we assume a set of polarizer angles and extract
parameters used in the laser equation. In Section 3.3, we perform a stability
analysis of the fiber ring laser. The evolution of optical waves inside the laser
system is then simulated in Section 5.4 using the beam propagatioh method. A

summary is given in Section 3.5.

5.1 Saturable absorption due to soliton polar-
ization rotation

In Chapter 4, we discussed fast saturable absorption using nonlinear amplifying
mirrors. The Kerr effect plays a key role in the mirrof’s operation. In this
Chapter, applying the Kerr nonlinearity again, we will present another setup
that comsists of polarization selective elements and a birefringent optical fiber
to form a saturable absorber. Two polarization modes of an optical fiber are
utilized in the process. A single mode fiber actually has two polarization modes
with slightly different refractive indices. Light energy in one polarization axis,
which is called the fast axis, propagates faster than the other, which is called
slow axis. The difference between the refractive indices is small, An/n = 1075-
10~7 [46}, and the group velocity dispersion is negligible in our study. The
Kerr nonlinearity affects the phases in both the self and cross polarizations,
leading respectively to self and cross phase modulation. The coefficient of cross
phase modulation is 2/3 that of the self phase modulation in standard, linearly

birefringent fiber [47], [48], which was used in construction of fiber ring lasers.
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Figure 5.1: A birefringent optical fiber of length L in between of a pair of polar-
izers. The polarization states are indicated. The elliptically polarized output of

the fiber is made linear. This simple setup is equivalent to a saturable absorber.
5.1.1 Transmission curve for CW inputs

For CW inputs to a birefringent fiber, the effect of the Kerr nonlinearity is
obtained by modifying Egs. (2.19) which yields,

?_I{ 279 2, 2 27ng )

9% |k e (/\g 01" + 3 doAeq syl (5.1)
?J_/_ (2 27ng U + 27N 271 ) .
0% |kerr 3 AoAes AoAest

where U and V are the CW powers in the two polarizations. The fiber length is
L. Equation (5.1) describes the phase evolution in each polarization. Since the
ratio of cross phase modulation to self phase modulation is not unity, the relative
phase between U and V and, therefore, the polarization state of the output can

be changed by the power levels of U and V [49]-[51]. Using a polarizer at the
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output end, we can change the transmission coefficient by varying the input
power. Therefore, a piece of birefringent fiber with polarizers at both ends, as
shown in Fig. 5.1, will act as a fast saturable absorber. The input light to the
fiber is linearly polarized at an angle § with respect to the u polarization. The
output light from the fiber then passes through another polarizer at an angle
3. To make a saturable absorber, we adjust both polarizers such that the lower
intensity wave is discarded, while the higher intensity wave is passed. Expliéitly,

we find that

Usat = {cos f cos ¥ exp [z (0032 0+ %sinz 9) UiiKs + iqﬁ]

2
+sin fsin exp [z (§ cos? 0 + sin? 9) U;*;K,]} Ui (5.2)
where K, is the self phase modulation constant as defined in Eq. (4.2) and Ui,
and U,y are the amplitudes of the input and output waves. The additional
phase shift ¢ in the U polarization is to account for the linear phase difference

caused by other effects such as a difference in the refractive indices. The power

transmission coefficient can be derived from Eq. (5.2), t.e.,
2 - 2 . 2 2 2 1 » - UiiKs
|t|? = sin® @sin® ¢ + cos* § cos” b + —z-sm?@ sin 21 cos —a cos28 + ¢, (5.3)

When 0 = 0 or 7/2, the light energy is transmitted along one of the polarization
axes, so |t| is independent of Ui,. Also when 8 = 45°, |¢] is a constant since
both polarizations have equal power and the phase shifts due to cross phase
modulation are the same. The transmission amplitude |¢| has its maximum
variation at 8 = 22.5°.

To show the fast saturable absorption demonstrated by this combination,
we set ¢ = 0, § = 22.5°, and ¢ = 100°, 112.5°, 125°, and obtain the set of

transmission curves shown in Fig. 5.2. In plotting Fig. 5.2, we assume a 100 m
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Figure 5.2: The power transmission coefficient as a function of input power.
The length of the fiber is 100 m, A.g = 80 pm® and A¢ = 1.55um. The input
polarization angle is ¢ = 22.5° and output polarization angles are ¢ = 100°,

112.5°, and 125° as indicated.

long fiber with A.g = 80 pm? and Ag = 1.55 pm, which gives a K, of 0.162 Wt
These parameter values are taken from Section 4.1 so that we compare the loop
mirror to the nonlinear polarization rotator. Observing this figure, we find that
the transmission characteristic is equivalent to that of fast saturable absorbers
at low power inputs. The transmission can be zero for the curve corresponding
to ¢ = 112.5°. We note that when ¢ = 0, the transmission is zero for small

input power if § — ¢ = £ /2.
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5.1.2 ‘Transmission curve for pulse inputs

Wave propagation in linearly birefringent optical fibers is described by the cou-

pled equations [47], [48]

'
Ry vl L TR W

OV OV 1,0 2w

2
.U oUu k,,a U L 2 21, (IU[2 Wiz) U =0,
(5.4)

— 4 gl
3 ot 2 at? roAeq

(e +1vE)v =0,

where k(w) and [ (w) are the dispersion relations for the two axes, k' = 9k/0wlu,
= B1/0|ugy k" = 8%k 8wy, and I = 0?1/8w*|u,. In the following, we assume

K" = " = —\?D,,/(2rc). We also assume k' > I, i.e., U is the slow axis, and

k' — ¥ = An/c, where An is the difference in refractive indices between the two

polarization axes. The normalization that we will use is similar to that of Section

4.1. First, we transform to retarded time by setting t' = t — [(k' + I)/2]E and

=' = =, Then, we define new variables [48],

v = U | 4
— __, focnad -——-, S e - 5.
= = YR YR (53)
where Z, and P. given in Eq. (4.6). Finally, we let
Z.An
= ST (5.6)

The quantity § which is a measure of the birefringence strength is negligible in
all the cases we will be considering. The equation that we finally obtain is the

coupled nonlinear Schrédinger equation [48],

.Ou du 18 2, 2 2 _
z~5~€-+ ’53 +232+(| | +3lvl)u 0, -
Bv . Fv 10% (2 5 o). '
i =52ty ga * (g +0F)u=0
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Figure 5.3: (a) Transmission coefficient, and (b) pulse widths, of the setup shown

in Fig. 5.1, as a function of peak power A? in normalized units.
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Setting § = 0 and using the same parameters which we previously used in our
discussion of the loop mirror in Section 4.1, i.e., D,, = 10 ps/nm-km, 7 =1 ps,
Ap = 1.55 pfn, L = 100 m, we obtain the transmission coefficient and normalized
pulse widths in Fag 5.3. The fiber length is 4Z. in the normalized units. The
polarizers are set to § = 22.5° and ¢ = 112.5° and the phase offset ¢ is set to
zero. The transmission curve shows an oscillatory characteristic similar to those
in Figs. 4.3 and 4.6. The device exhibits saturable absorption for A?* < 3. Its
maximum transmission value is near 0.5, since the output polarizer blocks the low
power pedestal. When the peak is larger than 4, the output pulse is degraded,
and r.m.s. widths larger than one are observed. Whén the transmission value is
near its maximum, the pulse widths are less than unity and saturable absorption

OCccurs.

5.2 Structure of the soliton ring laser

A schematic diagram of the fiber ring laser that we are going to study is shown in
Fig. 5.4 [27]. It contains a length of fiber, a delay stage, a polarization controller,
a fiber Fabry-Perot interferometer, an Er-doped fiber amplifier, an isolator, and
an output coupler. The long fiber has a negative group velocity dispersion which
can sustain solitons when the Kerr nonlinearity becomes important. The Fabry-
Perot interferometer controls the pulse repetition rate by passing only those
pulse trains that have a repetition rate T', where T is the etalon round-trip
time. The delay stage is used to tune the central wavelength of the fiber ring
laser. Since the optical length of the fiber ring has to be an integral multiple of

twice the etalon length, the wavelength will be forced to adjust through group
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Figure 5.4: Schematic diagram of the fiber ring laser.

velocity dispersion to compensate any extra optical length in the delay stage.
The erbium-doped fiber amplifier is generally pumped at either 980 pm or 1480
pm and acts as the gain medium in the laser cavity. The isolator is used to block
countérpropagating waves and the polarization controller is used to change the
polarization state inside the ring cavity.

One might suppose that the startup and modelocking of the fiber ring laser
occurs as follows: The laser could start from noise and build up its CW state
-when the gain and loss balance each other. The CW state then breaks into
pulses due to the modulational instability which exists in an optical fiber with,
anomalous dispersion. The pulses are equally separated after passing through the

| fiber Fabry-Perot interferometer. Next; these pulses evolve into solitons because
that solitons are the modes of nonlinear wave propagation in optical fibers. The

output soliton trains could be useful in telecommunication. Since soliton output
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is anticipated from this intuitive picture, this laser has been named the soliton
ring laser. However, in the following sections, we will show that to make the fiber
ring laser start from noise and operate stably, we need both a frequency limiter
and a saturable absorber. These were present in the original, experimental setup
[27] although not part of the explicit design.

First, we discuss the modeling of the elements in the soliton ring laser that
were not previously discussed in Chapter 3. We assume that the Fabry-Perot

interferometer has an infinite finesse, which implies that
fiout(w) = comb(w)itia(w), (5.8)

where fiz(w) is the Fourier transform of uin(t), the pulse train at the input of the
Fabry-Perot interferometer, and @iou(w) is the corresponding output. The comb
function is shown in Fig. 5.5 and defined as: comb{w) = 1 when w = 2mn/T,
where n is any integer and T is the repetition period of the interferometer;
comb(w) = 0, wheni w # 27n/T {52]. A typical repetition rate in the experiments
is 2.5 GHz, which is appropriate for high speed telecommunication applications.

_This frequency corresponds to 7' = 400 psec. In numerical simulations, the
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interferometer action is implemented through the periodic boundary conditions
in the simulation window.

Referring to the model in Section 2.3, we use Eq. (2.29) to model the erbium-
doped fiber amplifier. Since the length of the cavity is usually much longer than
the length of the amplifier, the gain is treated as a 1urnped. gain. We set go = 3.94
and P, = 2.77 mW, as in previous chapters. The output coupler extracts 10%
of the power from the cavity. We also introduce a frequency limiter as in Section
4.4, whose pass band is 5 nm at 1.55 gm. The fiber is modeled by the coupled
nonlinear Schrodinger equation to take into account the effect of birefringence,
dispersion, and nonlinearity. The fiber length is L = 2000 m with an average
group velocity dispersion of 10 psec/nm-km. The effective area is 85 um?.

We assume that the fast saturable absorption mentioned in Section 5.1 is
acting on this long fiber and the polarization selective elements at both. ends
are assumed to be at @ = 22.5°, ¢ = 112.5° by the polarization controllers in
the cavity, and ¢ is allowed to change. Although polarization selectivity is not
explicitly in the model of Fig. 5.4, many of the physical elements are polarization
sensitive, such as the isolator and the fiber Fabry-Perot interferometer. The
orientation of the polarization controller must be optimized in the e#periments
for the laser to self-start [27], which shows the importance of the polarization

state inside the cavity.

5.3 Stability study

We first consider CW inputs. The input-output relation has been given in Eq.
(5.2). To use the laser equation, Eq. (2.35), we first take the logarithm of the
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operator in Eq. (5.2) and then expand it in terms of |Ual3. The action of the

fiber and polarizer assembly is described by

ou = In{exp(i¢) cos b cos p + sin fsinp] U+

dz
K 2 + 1 exp(ig) cos® f cos ¢ + sin® @ sin ¥
*13 * 3 exp(i¢)cos@cosp +sinfsiny

\U|PU. (5.9)

" Loss, phase shift, fast saturable absorption, and self-phase modulation are con-
tributed by the real and imaginary parts of the ﬁfst and second terms in Eq.
(5.9). When ¢ = 0, the fast saturable absorption vanishes since the coefficient of
the nonlinear term becomes purely imaginary. The laser equation is obtained by
adding the terms corresponding to gain, loss, dispersion, and a frequency limiter.
We find

U _

62
....5,; = ——

{g‘g — 1 + Inlexp(i¢) cos 8 cos ¢ + sin@sin ] + (B + D) £
. [2 | lexp(ig)cos®fcos i + sin® § sin ¥ 2 ’
K, [3 3 exp(i¢)cosfcosp + sinfsiny U U (3.10)

The dispersion D corresponds to 22.5 psec? and B is 0.19 psec® for a 5 nm
pass band. The nonlinearity is from the Kerr effect and K, = 3.05 W~ for th.e
long fiber. The 10% output coupling gives [ = 0.105.

The CW solutions and the pulse solutions for 0 < ¢ < 27 can now be found.
To illustrate the results of the analysis, we assume ¢ = 0.4, in solving Egs. (3.2)
and (3.3), and find the operating points. We then obtain I' = 1.77 W-1 and
K =254 W-t, The CW output power is found to be 2.5 mW.

We assume, as always, that the iaser will self-start when the CW solution
is unstable. So, we examine the eigenvalues of the linearized solutions in the
complex plane. We find that the laser self-starts at all ¢ values because of the
large relaxation time. The eigenvalue trace on the complex plane is plotted in

Fig. 5.6(a).
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Figure 5.6: (a) Self-starting of the fiber ring laser. (b) Pulse stability of the fiber

ring laser. The radiation modes all satisfy Re(}) < —0.3.
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We next examine the pulse solutions. In contrast to the figure eight laser,
with gain, I' and K do not depend on gain saturation, and the analysis of Chapter
3 is directly applicable. When ¢ = 0.4, we find two solutions. One has pulse
width 4.68 psec and the other has pulse width 30.89 psec. The output powers are
17.1 mW and 2.6 mW respectively. In both cases, 8 = —0.4170 and a = 0.0042.
Applying the results of Section 3.2, the stability is determined by Eqgs. (3.54)
and (3.55). We find that €,min = 0.421 from Eq. (3.49). As expected, only
the solution with lower power, for which ¢, = 5.92, is stable. The eigenvalues

obtained by solving Eq. (3.34) numerically are plotted in Fig. 5.6(b).

5.4 Simulation of modelocking

We will use the beam propagation method described in Section 3.3.2 to solve
the coupled nonlinear Schrédinger equation and assume periodic boundary con-
ditions. There is no absorber in these simulations because that is equivalent to
introducing an active mode locker. The simulation is unidirectional; so, it is
not necessary to model the isolator. The simulation window T is 400 psec, T,
is 5 psec. The 2000 m length of the fiber is 1.02 Z, in normalized units. The
erbium-doped fiber amplifier is typically a few meters long; hence, it is treated
as a lumped gain. The normalized saturation power Py = 0.664, when P,y is
replaced by [, |u|®ds.

First, to demonstrate the importance of the nonlinear polarization rotation
in providing saturable absorption and a frequency limiter, we used the usual
nonlinear Schrodinger equation, i.e., Eq. (4.8), to model the long fiber, which

is equivalent to assuming that the polarizers at both ends of the long fiber are
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aligned to the same axis. In the simulations, we found that the system does not
self-start. We have tried several combinations of parameter values and none of
them exhibit a stable pulse. A typical outcome of the simulated modelocking
process is plotted in Fig. 5.7. A saturable absorber that obeys Eq. (2.32) has
been introduced artificially into the loop and we observe stable pulses. We have
also removed the frequency limiter while keeping the saturable absorber. We
find that stable pulses do not appear. Instead, fluctuating waves similar to those
in Fig. 5.7 are observed.

The saturable absorber and the frequency limiter act together to stabilize the
modelocked pulse operation of the ring laser. The saturable absorber sharpens
the pulse in the time domain, while the frequency limiter sharpens the pulse
in the frequency domain. The detailed behavior depends strongly on the pulse
shape at the input end of each element, but the actions of these two elements
are balanced when we observe a fixed pulse width after one round trip through
the laser. This balance is stable because if the width becomes too large, then
the effect of the saturable absorber grows while that of the frequency limiter
shrinks, and the pulse width tends to decrease. The converse takes place if the
width becomes too small.

We attribute the saturable absorption to nonlinear polarization rotation [50].
The input polarization angle § is then set to 22.5° and the output angle ¥ is set
to 112.5°. We carried out the simulation for 0 < ¢ < 2 and found that the laser
generates stable pulses in the range 0.1 < ¢ < 0.9. A particular simulation is
presented using ¢ = 0.4 for comparison with the stability analysis in the previous
section. The simulated results are shown in Fig. 5.8. The laser self-starts from

noise, generating a stable soliton train. The amplifier raises the initial noise to a
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Figure 5.8: The simulated startup process. Each line represents 20 round trips
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large intensity, at which point nonlinearity becomes important. The initial light
train then breaks into pulses with large fluctuations. After about 200 round
trips, soliton pulses emerge and remain stable. The pulse width (FWHM) in
normalized units is 9.8 T, or 49 psec, and we find a AtA f = 0.393. This value
of AtAf is close to the that of a sech pulse, which is 0.315. Note, however, the
contrast with the figure eight laser, for which we found AtAf = 0.28. The figure

eight laser evidently produces higher quality pulses.

5.5 Summary

We have studied the stability of the fiber ring laser and we find that the ring
laser in Fig. 5.4 is self-starting if a saturable absorber and a frequency limiter
are included. Numerical simulations confirm this conclusion. We have identified
a plausible source of the saturable absorption in the existing experimental con-
figuration. The match between the results from the stability analysis and the
numerical simulations is reasonable. From the stability analysis, we find that
stable pulses are generated when 0.1 < ¢ < 1.4, a somewhat larger range than
we found in the simulations. However, the eigenvalue of the most unstable dis-
crete mode is close to zero when ¢ ~ 1.4, which implies that the mode may be
nonlinearly unstable; this point requires further investigation. When ¢ = 0.4,
we find that the pulse width obtained from the laser equation is 31 psec and
is 49 psec from the numerical simulation. For 8 = —0.4170, the pulse solution
in Eq. (3.14), has AtAf = 0.352, in contrast to 0.393 from simulation. Again,
as in the figure eight laser, the primary cause of this discrepancy is that the

saturable absorber model which we use in the stability analysis is not the same
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as in the simulations because the latter becomes opaque at high power levels.
By improving the model of the saturable absorber in the stability analysis, we

should ultimately arrive at even better agreement.

110



Chapter 6

Conclusions

We have derived a laser equation which we use to ‘study the stability of passively
modelocked lasers with fast saturable absorbers. This analysis allows us to
determine when a laser will self-start from noise to produce modelocked pulses.
To confirm this approach and determine its limitations, we have also carried out
numerical simulations. We have applied this approach to the figure eight laser
and the fiber ring laser.

Both the CW and pulse solutions to the laser equation are found first. We
then linearize the laser equations around the CW or pulse solution to determine
its stability. To study the laser’s ability to self-start, we determine the stability
of the CW solutions. We derive a dispersion relation which gives the growth
rate of a sinusoidal perturbation with frequency w. We assume, as is physically
plausible, that for a laser to self-start, the CW solution must be unstable at some
frequency. To determine the stability of modelocked pulses, we transform the
linearized equation into an eigenvalue problem. A perturbation analysis shows
that gain saturation helps stabilize the modelocking by shifting the eigenvalue of

an unstable discrete mode to the stable side of the complex A-plane. When the
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gain medium is the only element that depends on the pulse shape, the condition
for the pulse mode to be stable is that ¢, > €p,miny Which is given analytically in
Eq. (3.49). In other cases, perturbative or numerical approaches can be used to
obtain the eigenvalues.

We have applied this approach to the figure eight laser and the fiber ring
laser and determine the parameter regimes in which they operate stably. In
both examples, we carried out numerical simulations to verify our results and
their limitation. We use the beam propagation method to calculate the wave
evolution inside optical fibers. Each element inside the cavity is modeled and
the dynamics of the laser is studied by iterating the wave profile through each
element. Comparing the simulation results to the results obtained from the laser
equation, we find that the results agree reasonable well, although they suggests
ways in whiéh some elements, notably the saturable absorber, can be improved.

Our work to date suggest several directions for future research. First, the gain
model in the laser equation should be improved. Second, we should modify the
basic model to allow for component discreteness. Third, and most important,
these results can and should be extended to lasers with moderate relaxation

times such as Ti:sapphire lasers [53], [54].
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Appendix A

Series Solution of the Linearized

Ginzburg-Landau Equation

An effective approach for calculating bounded eigenfunctions with real eigenval-
ues is to use a series expansion to solve the linearized Ginzburg-Landau equation,
Eq. (3.35). It is efficient because the calculation requires considerably less-comu
putation than the matrix eigenvalue solver. It is also highly accurate since we are
able to bound the error and keep it small. However, the series solution method
can only used to find the eigenvalues and eigenfuncﬁions for a few discrete modes;
we use the matrix eigenvalue solver to obtain a global distribution of eigenvalues,
including those for radiation modes. We rely on this series solution approach to
find accurate eigenvalues of Eq. (3.35) which are then compared with the results
from the finite difference approach in Section 3.3.1 as an additional verification
of the accuracy of the finite difference approach. We also use this approach to
obtain eigenfunctions that are used in Eq. .(3.44) to calculate the shiff in the
eigenvalue. \

The series solution is described in the following. For simplicity, we will only

~ use the upper sign of Eq. (3.35) in the following discussion, and, since we are
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dealing with real eigenvalues, we will set u = v*. The equation written in terms

of uis

; 2
Au = (a + -;-) {blu + —g}% — by [ZSechz(s)u + sechz"’z"ﬂ(s)u*] } . (A.1)

Setting u = f(s)sech!** (s), our equation becomes

A

— bysech?(s)(f + f*) — 2(1 +i8) tanh(s)f' + f" = a+i/2

£, (A.2)

where, again, b; = 8% — 3i — 2 and the primes indicate derivatives with respect
to s. We next let w = tanh(s) so that 8/8s = (1 — w?)8/0w, and we write f as

a power series in w,

flw) = i Comgno W (A.3)

n=0

The function must have a definite parity. When np = 0, f is an even function,
while, when no = 1, f is an odd function. Note that —1 < w < 1 for real s.

Replacing the independent variable s with w, we obtain

A
a+ i/2f'
(A4)

“*52(1“wz)(f+f*)—2(1+z’ﬁ)w(1—-w2)..a.% FH(1~w?) % (1) 5% ;e

Substituting Eq. (A.S) into Eq. (A.4) and collecting equal powers of w?™, we

obtain

2b262m_2‘r + 4(1 + zﬁ)(m - 1)Cgm~..2 + (2m - 2)(2m - 1)02",,...2
~2bycamy — 41 + if)meam — 8mieom

A
+(2m + 1)(2771 + 2)Cgm+2 = a

—m-é-{:gm, (A.5)

where the subscript r represents the real part. Note that 2m = 2n + no, and so

m=20,1,--- when ng = 0 and m = 1/2,3/2,--- when ng = 1, corresponding to
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even and odd f respectively. We find, in particular, that form=0and m =1,
we obtain

~ 2bycoy + 203 = (A.6)

A
atif2™

2526{),r e QbQCQ,,- - 4(1 + iﬁ)c;; b 802 + 1264 = (A.?)

mq.

When the series, Eq. (A.3), converges, an eigenvalue A and eigenfunction u
are obtained; hence, the series can only converge when A equals an eigenvalue.
One possibility is that the series truncates at a finite value of m which implies

Cam = Camaz = -+ = 0. It follows from Eq. (A.4) that
2b2c2m-—2,r -+ [4(1 + zﬁ)(m e 1) + (2m -_ 2)(2?’!’& — 1)]62,-,,,..,2 = (. (A.S)

Dividing ¢ into its real and imaginary parts, c2m-2,r and cgm—-2,i, we find

2ﬁ2 g (m — 1)(4?’7’& -+ 2) —4ﬁ(m e 1) Com—2,r _ 0’ (A.g)
““Gﬂ + 4;8(m et 1) (m - 1)(4’-‘71 + 2) Com—2,4
which implies
[68% + (m+ 1){(dm +2))(m - 1)(2m —3) = 0. (A.10)

Since 632 + (m + 1)(4m + 2) is always larger than zero, the only possible values
of m are m = 1 and m = 3/2, which correspond, respectively t0 even and odd,
which we found earlier.

Assuming now that the series does not truncate, we first observe that the
recursion relation, Eq. (A.5) depends on two variables, A and 6, where § is used
to specify cn, = exp(if). The value of ¢ at each m is a function of A and ¢
and can therefore be expressed as cam(A, 9).

In general, the series will diverge. To force it to converge, so that we obtain

an eigenfunction and its eigenvalue, we use the following algorithm. First, the
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sequence is truncated artificially at ey, %.€., Cam = Comi2 = ... = (. We then
use Newton’s method to find (A, 0.,) such that c;m(A,0) = 0 at a specific m.
Increasing the m value, we find that the (An, 6,,) converges to a particular point
(X0, 8o) on the A- plane. An eigenvalue A = X is thus found as well as its corre-
sponding eigenfunction. To find more eigenvalues, we apply the same algorithm
and exclude Ao by searching for a zero of cam(A,8)/Ao instead of ¢z (A, 8). The
process may be repeated until no more accumulation points on the A-8 plane
can be found. Since the sequence is truncated after 2n-th term, there exists an
error term associated with each truncation. The sequence ¢, -+, Cam-2,0,0,- -
satisfies Eq. (A.5) up to the m — 1. The next equation is not satisfied, and the

error is
Ert,, = [2bacamez,r + 4(1 + i8)(m — 1)cam—2
+(2m — 2)(2m — Degmaa]w®™(1 — w?)' %, (:A.ll)
where (1 — w?)+# accounts for the sech'**(s) term in the reduction to Eq.

(A.2). We must show that the error term goes to zero as m increases. An

uniform bound for |Err,,| over w can be find by noting that

1 ey _ o 2YLHB| — 20201 _ an? (n)“_l_j__
en<|w (1 — w? )| = (1 —w*) < T ~ <3 (A.12)

which implies

[Errm) < [2b2cam—2r + 4(1 + iB8)(m — )czm-2 + (2m — 2)(2m ~ 1)ezm-2)/(2m).

(A.13)

When this bound tends to zero as m — oo, our approach must yield an eigen-
function.

A similar algorithm can be implemented when the eigenvalues are complex,

but this of little interest since the eigenvalues are real in almost all cases. Finally,
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the adjoint linearized Ginzburg-Landau equation, Eq. (3.43) can be solved using
the same algorithm, allowing us to calculate AX using Eq. (3.44) and to estimate
€pmin- Since the calculation is efficient, we have an estimate of AX and €pmin
before the eigenvalue problem is solved numerically. An example is found in the

discussion of the stability of pulsed operation in Section 4.3.3.
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Appendix B

A useful equation

In this part of the Appendix, we introduce a new function and derive a relation
which is useful in our discussi:on of the degeneracy of the eigenvalues. Observing
Eq. (3.15) and Eq. (3.16), we introduce a scaling variable 7 and a set of scaling
transformations such that Eq. (3.15) and Eq. (3.16) continue to hold,

T — T[n, (B.1)
A — An, (B.2)
g—1+i0—¥) — 7’lg—14+40-)) (B.3)

With this substitution, the ansatz in Eq. (3.14) becomes -
Uo(t;n) = nAsech' (gt /7), (B.4)
which is a solution to the equation,
0= {lo— 1450 W)+ (B+iD) T + C+IKNGP U (B

Differentiating the above equation with respect to n and evaluating at 7 = 1, we

obtain the function

up = A[l — (1 + i8)(t/7) tanh(¢/7)]sech (¢ /1), (B.6)
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which satisfies the equation

~2lg 14090y = lo=1+i0= Do+ (B+iD) 2

(T + iK)(2|Usl?uo + Ulul), (B.7)

where Us(t;n = 1) = Asech!*#(¢/7) is denoted as Uj. Usiﬁg the variables
defined in Eqgs. (3.24)-(3.28) and omitting A in Eq. (B.6), we find that

up = [1 — (1 + iB)s tanh(s)]sech'**(s), (B.8)
and the equation that it satisfies is

. 2
(a, * %) l:bluo + %ﬁg - 2bgse(:h2(3)u0 - bﬁeeh%ﬁﬁ(&)us}

= ~2 (a + %) blsechl+iﬁ(s) (B.9)

When the coefficient {(a % ¢/2)b; in Eq. (B9) is imaginary, the left hand side of

this equation is proportional to ueven in Eq. (3.40).
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