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Abstract
Department of Computer Science and Electrical Engineering

University of Maryland Baltimore County

Doctor of Philosophy

Analysis of Self-Induced Transparency Modelocking of Quantum

Cascade Lasers

by Muhammad Anisuzzaman Talukder

The possibility of using the self-induced transparency (SIT) effect to modelock

lasers has been discussed since the late 1960s, but has never been observed. It

is proposed that quantum cascade lasers (QCLs) are the ideal tool to realize SIT

modelocking due to their rapid gain recovery times and relatively long coherence

times, and because it is possible to interleave gain and absorbing periods. Designs

of QCLs are presented here that satisfy the requirements for SIT modelocking. The

coupled Maxwell-Bloch equations that define the dynamics in QCLs that have both

gain and absorbing periods have been solved both analytically and computation-

ally. Analytical modelocked solutions have been found under the conditions that

there is no frequency detuning, the absorbing periods have a dipole moment twice

that of the gain periods, the input pulse is a π pulse in the gain medium, and the

gain recovery times in the gain and the absorbing periods are much longer than

the coherence time T2 and are short compared to the round-trip time. It is shown

that the modelocked pulse durations are on the order of T2, which is typically

about 100 fs. The Maxwell-Bloch equations have been solved computationally to

determine the robustness of the modelocked solutions when frequency detuning is

present, the dipole moment of the absorbing periods differs from twice that of the

gain periods, the gain recovery time T1 is on the order of 1–10 ps, as is typically

the case in QCLs, and the initial pulse is not a π pulse in the gain medium. We

find that modelocked solutions exist over a broad parameter range. We have also

investigated the evolution of pulses that are initially much broader than the final

modelocked pulses. As long as the initial pulse duration is on the order of T1 or

shorter and has enough energy to create a π pulse in the medium, a modelocked

pulse with a duration on the order of T2 will ultimately form.

We have developed a carrier transport model that includes both incoherent

scattering and coherent tunneling mechanisms. The decay of the coherence of the



levels is also included in the model. We have implemented the carrier transport

model for a QCL, and we have studied the effects of an external applied electric

field, a finite temperature, and the doping density on the carrier distribution in

different energy levels. We find that coherence of the energy levels plays a signifi-

cant role in carrier transport. In particular, when temperature increases, coherent

tunneling of the electrons between the injector and the active regions decreases

because the coherence time of the levels is shorter. We have then used these mod-

els to calculate the ratio of the gain obtained from one gain period and absorption

obtained from one absorbing period in the SIT-modelocked QCLs. Hence we have

estimated the ratio of the gain and absorbing periods for stable modelocked oper-

ation.

We have studied the effects of backward propagating waves and lumped mirror

losses on SIT modelocking of QCLs. The qualitative features of the modelocking

are unaffected when these effects are included in the model, but the parameter

regime in which stable modelocked pulses may be found is reduced. This reduction

is due to incomplete gain recovery near the edges of the QCL when pulses pass

through after reflecting from the mirrors, coincident with the loss of pulse energy

at the mirrors. Spatial hole burning is observed in parameter regimes in which

continuous waves can grow, but it does not affect the stability of the modelocking.

We extend the model by including the effects of saturable nonlinearity and

chromatic dispersion. Due to the strong intensity dependence of the refractive

index of the QCL core, the loss or gain that the pulses experience may become

saturated. We find that QCL modelocking is still obtained as long as either the

saturable gain or the saturable loss is below a critical limit. The limit is larger in

magnitude for saturable gain than it is for saturable loss by more than a factor of

10 in all cases that we examined. The critical limit also depends on the gain and

absorption coefficients of the laser. There is also a critical limit for the magnitude

of the chromatic dispersion. When saturable loss and chromatic dispersion act

simultaneously, these two effects compensate each other and their respective sta-

bility limits increase. By contrast, when saturable gain and chromatic dispersion

act simultaneously, their stability limits decrease.
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6.2 Stability limits of ḡ vs. ā for the∼ 8 µm QCL. If the laser is operated
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ā = 5. The dispersion coefficient (β2) is set to zero. . . . . . . . . . 126



List of Figures xiv

8.3 Equilibrium modelocked pulse shapes vs. the saturable nonlinearity
coefficient (γ). In each case, the pulse is shown after it has propa-
gated a distance of 1000Lc. We set ḡ = 4 and ā = 5. The dispersion
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Chapter 1

Introduction

In 1971, Kazarinov and Suris [1] proposed that light amplification is possible in

a transition between two subbands of an energy band in a semiconductor with

quantum wells. This proposal followed Esaki and Tsu’s seminal paper of 1970

[4], presenting the concept of a superlattice. In a superlattice, thin layers that

are only a few monolayers thick of two alternating materials that have different

energy gaps are grown, producing barrier-well structures for the potential energy

of the carriers. These quantum wells confine the carriers along the growth axis of

the heterostructure [5]. In their scheme, Kazarinov and Suris [1] proposed that

electrons tunnel from the ground state of a quantum well to the excited state

of the neighboring well, emitting a photon in the process; this process is often

called photon-assisted tunneling. After emitting a photon, the electrons relax

nonradiatively to the ground state and then tunnel into the excited state of the

next stage to emit another photon. This process may be repeated many times.

Unfortunately, the structure proposed by Kazarinov and Suris cannot produce

gain. When several stages are cascaded, this structure cannot achieve a uniform

electric field or the structure will become electrically unstable due to the formation

of space charge domains when electrons are injected from the contacts [6]. The

understanding of electron tunneling and relaxation rates was still in its infancy.

Additionally, the known ultra-fast nonradiative relaxation of electrons by emitting

1
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longitudinal optical (LO) phonons — relaxation times are typically in the order

of a picosecond — made it appear unlikely that a laser could be achieved with a

subband spacing larger than the optical phonon energy. A spontaneous emission

time in the nanosecond range, i.e., several orders of magnitude slower than the

nonradiative scattering events, supported the notion of a highly inefficient optical

system. The stimulated optical emission time, however, easily approaches the fast

nonradiative scattering times.

Recognizing that the fast nonradiative LO phonon emission rate, rather than

being a hindrance for intersubband laser action can be harnessed for the laser pro-

cess, Faist et al. [7] demonstrated the first intersubband laser, i.e., the quantum

cascade laser (QCL), in 1994 through careful band-structure engineering. They

added injectors to the basic Kazarinov and Suris [1] active regions that would inject

electron into the upper lasing level and would collect them from the lower lasing

levels when an appropriate bias voltage is applied across the structure. These

injector regions act as electron reservoirs as they are pre-doped to be n-type when

the structure is grown. The population inversion was achieved by engineering the

lifetime between the two lasing levels and introducing a level below the lower lasing

level at the LO phonon resonance, so that the lower level is quickly depopulated

by emitting LO phonons. The first demonstrated QCL emitted light at a wave-

length of 4.3 µm and produced a power of 10 mW in pulse-mode and at cryogenic

temperatures. The first QCL was grown using state-of-the-art molecular beam

epitaxy (MBE) technology [8, 9].

The QCL’s unique properties compared to other semiconductor lasers, such as

the ease of generating light at a design wavelength, tunable gain spectrum [10],

and ultra-fast carrier dynamics, make them the most important semiconductor

lasers that operate today in the mid-infrared. Since their invention, QCLs have

undergone great developments in tailoring the emission wavelength so that they

can operate in the near- and far-infrared region, increasing their power so that it

is possible to generate several watts, making them increasingly efficient, enabling

them to emit single-mode and multi-mode, and increasing their tuning over a wide
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wavelength range [11, 12]. The successes have been made possible by employing

improved band-structure engineering, new material systems that give different

conduction band offsets, waveguide engineering, and by increased knowledge of the

basic physics of QCLs, especially carrier transport. However, efforts are underway

to make the QCLs lase at a wavelength beyond the presently obtainable range, e.g.,

at λ < 3 µm, to increase their output powers, to make them more efficient, and

to make them tunable over a broader range. In addition, efforts have been made

to modelock QCLs in order to obtain short pulses. Active modelocking of QCLs

that produces ∼ 3 ps pulses has recently been achieved [13]. However, it has not

proved possible to date to passively modelock QCLs and obtain sub-picosecond

pulses.

Modelocking is a technique to generate stable trains of ultrashort light pulses

with large instantaneous intensities from a laser [14]. These pulses are the key

elements for many important applications such as nonlinear frequency conver-

sion [15–17], time-resolved measurements [18, 19], coherent control [20, 21], and

frequency combs [22]. To date, the most common approach to generate short

pulses in the mid-infrared (3.5–20 µm) molecular “fingerprint” region relies on the

down-conversion of short-wavelength modelocked lasers through nonlinear pro-

cesses, such as optical parametric generation [23–25] and four-wave mixing [26].

These systems are usually bulky, expensive, and typically require a complicated

optical arrangement.

There are two basic approaches to modelocking. First is active modelocking

[14], in which the laser is electronically modulated using an electro-optic modulator

or some other means at a harmonic of a light pulse’s round-trip in the laser. In this

approach, there is a tradeoff between the pulse duration and the repetition rate,

so that it is not possible to obtain sub-ps pulses from a semiconductor laser. The

second approach is passive modelocking [14], also called self-modelocking, in which

the formation of short pulses is energetically more favorable than the formation

of dispersive waves. That can be accomplished, for example, by combining a fast

saturable loss with a slow saturable gain. Using passive modelocking, it is possible
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to obtain pulses with a duration below 100 fs [27]. While QCLs have been actively

modelocked [13], they have never been passively modelocked.

Conventional passive modelocking techniques are difficult to apply to QCLs

because of their inherently narrow linewidths and large coherence times T2 relative

to other semiconductor lasers and their very fast gain recovery time T1 compared

to the cavity round-trip time Trt [28, 29]. The gain linewidth in QCLs is narrow

compared to other semiconductor lasers because the lasing transition takes place

between two subbands within the conduction band [30]. The gain recovery time

of a conventional QCL is generally on the order of a ps due to carrier transport

by resonant tunneling and LO phonon relaxation [31, 32], while the round-trip

in a typical 3-mm-long cavity of conventional QCLs takes around 50 ps. The

condition T1 ¿ Trt makes it difficult to form a pulse and the laser often becomes

unstable when operated above threshold due to the Risken-Nummedal-Graham-

Haken (RNGH) instability [27, 33, 34]. If the gain recovery time is longer than the

cavity round-trip time, then a single laser pulse oscillating in the cavity depletes the

gain and prevents the formation of other pulses; if the gain recovery time is much

shorter than the cavity round-trip time, multiple pulses that are separated by the

gain recovery time or more can propagate in the laser cavity. If the gain recovery

time is faster than the pulse duration, the gain reacts nearly instantaneously to the

intensity of the pulse. In this case, the peak of the pulse saturates the gain, and the

wings of the pulse, which have too low an intensity to saturate the gain, experience

more gain than the peak of the pulse. This process leads to lengthening of the

pulse, i.e., the suppression of intensity fluctuation, which suppresses modelocking

and leads to continuous-wave (CW) lasing. The latter situation is what occurs in

most QCLs.

There have been several reports of modelocking in QCLs [13, 35–38]. However,

the evidence for modelocking reported in [35–38] were based on broadband optical

spectra with a large number of longitudinal modes and a narrow microwave beat

note in the power spectrum at the laser round-trip frequency, which indicated

that the electric field waveform circulating in the laser cavity and thus the phase
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relationship between the longitudinal modes was stable over a large number of

round-trips. However, due to the lack of a suitable apparatus for second-order

autocorrelation measurements, no direct evidence was given to demonstrate that

the circulating waveform was indeed a periodic sequence of isolated pulses, which

would result from all modes having equal and stable phases. Subsequent pulse

characterization using autocorrelation techniques showed that under the previous

conditions, the output of free running QCLs was not composed of one isolated

pulse per round-trip [28, 29]. The physics of multimode behavior observed in

those lasers is described by spatial hole burning and the RNGH instability [28,

29], rather than by modelocking. Only Wang et al. [13] reported unequivocal

demonstration of modelocked pulses from a mid-infrared QCL. Wang et al.’s [13]

success came through using a two-section specially engineered QCL in which they

actively modulated the gain of the smaller section while applying a fixed bias to

the larger section. Using this active approach, they obtained pulse with a 3 ps

duration.

The fundamental objective of the research work presented in this dissertation

is to find a new approach to modelock quantum cascade lasers in their usual pa-

rameter regime, which will allow in principle the generation of sub-ps pulses. We

propose that the self-induced transparency (SIT) effect can be used to modelock

QCLs. For this purpose, one must grow QCLs with absorbing periods in addition

to the gain periods. The absorbing periods help stabilize the pulses by preferen-

tially absorbing continuous waves, while allowing sub-ps pulses to pass through the

laser with a smaller loss. In this dissertation, we will discuss the physical concept

of SIT modelocking, we will present the results of analytical and computational

studies that demonstrate the viability of this concept, we will present QCL designs

that satisfy the requirements for SIT modelocking, and we will demonstrate the

robustness of SIT modelocking when backward-propagating waves, mirror losses,

saturable nonlinearity, and chromatic dispersion are taken into account.

The remainder of the dissertation is organized as follows:
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Chapter 2 introduces self-induced transparency, modelocking, and quantum

cascade lasers. In this chapter, we describe SIT, present the McCall-Hahn area

theorem, and then discuss the pulse shaping capability of SIT. Next, we discuss

the basics of different (i) active and (ii) passive modelocking approaches, and draw

a line from the first proposal of light amplification from an intersubband transition

by Kazarinov and Suris in 1971 [1] to the realization of the first QCL in 1994 [7].

Finally, we discuss the band-structure engineering of QCLs that has made lasing

possible and the distinct features of an intersubband laser, i.e., QCLs, compared

to an interband laser. Chapter 2 also gives an overview of the present status of

QCL research.

Chapter 3 describes our proposal to use SIT to modelock QCLs as an alterna-

tive to the conventional passive modelocking mechanism. This proposal overcomes

the difficulties with conventional passive modelocking techniques in modelocking

QCLs due to the fast gain recovery time and narrow gain bandwidth relative to

interband semiconductor lasers. In this chapter, we illustrate the physical con-

cept of SIT modelocking using a simple two-level model. We present analytical

modelocked solutions of the Maxwell-Bloch equations that describe the dynamics

in a QCL in special cases, and we derive the conditions for stable modelocking.

In Chapter 3, we give a detailed computational analysis of the stability limits of

the key parameter values for stable modelocked pulse evolution. We also calculate

the pulse dynamics, in order to determine the initial pulse durations and intensity

that lead to stable operation.

Chapter 4 describes the theoretical and computational approaches that we

use to model a QCL. We discuss the procedure to calculate the electronic states in

a multi-quantum-well heterostructure like a QCL. We then describe the different

transition rates that characterize a QCL and show how to calculate them. These

include the intersubband radiative transition rates, inter- and intrasubband non-

radiative transition rates, and tunneling rates.

Chapter 5 presents carrier transport calculations for QCLs. It introduces
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a model to calculate the carrier density in the energy levels of a QCL’s active

and injector regions. This model incorporates the carrier scattering and tunneling

contributions under different design and operating conditions. We also introduce

a model for the coherence time T2 between two energy levels, which is an integral

part of the model to calculate the carrier transport and is a key parameter in the

operation of SIT modelocking. Chapter 5 also presents the implementation of the

carrier transport model for a QCL structure. We find the time evolution of the

carrier densities at different energy levels as the applied electric field, operating

temperature, and total carrier density vary. The coherence time T2 is calculated

in each case to show the impact of coherence on the carrier transport of QCLs.

Chapter 6 presents practical QCL designs at two different wavelengths that

satisfy the requirements for SIT modelocking. This chapter discusses the issues

that must be addressed when designing these structures. We present the calcula-

tion of the ratio of number of the gain to absorbing periods to determine the actual

number of gain and absorbing periods that are required for stable operation.

Chapter 7 discusses the impact of backward-propagating waves and lumped

mirror losses on SIT modelocking. The discussion in Chapter 3 does not take into

account the backward-propagating waves and averages the lumped mirror losses

over the length of the cavity. By contrast, Chapter 7 treats a realistic geometry

in which waves propagate in both directions and lose a significant amount of their

energy at each mirror, depending on the reflection coefficients.

Chapter 8 discusses the impact of saturable nonlinearity and chromatic dis-

persion on SIT modelocking. The discussion in Chapter 3 does not take into

account the intensity-dependent modulation of the index of refraction in the laser

cavity and chromatic dispersion in the laser medium. Due to the intensity de-

pendence of the index of refraction, a propagating pulse may experience saturable

loss or saturable gain. A narrow pulse may broaden while propagating through a

dispersive medium. Since the generation of very intense and narrow pulses is the
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focus of this dissertation, these effects should be investigated. Chapter 8 presents

and discusses these results.

Chapter 9 summarizes the results and concludes.



Chapter 2

Self-Induced Transparency,

Modelocking, and Quantum

Cascade Lasers

2.1 Introduction

The principal objective of this dissertation is to theoretically demonstrate that

quantum cascade lasers (QCLs) operating in their standard parameter regime can

be self-modelocked and sub-picosecond pulses can be obtained without using the

conventional passive techniques. QCLs cannot be modelocked using conventional

passive modelocking technique due to their fast gain recovery times relative to

the round-trip time in the lasers and their narrow gain bandwidths relative to

other semiconductor lasers. We will instead propose a new technique, self-induced

transparency (SIT) modelocking, to modelock these lasers, and we will show that

stable modelocking with sub-ps pulses is obtained. Hence, three basic concepts —

(i) self-induced transparency, (ii) modelocking, and (iii) quantum cascade lasing

— are inter-weaved in this dissertation. In this chapter, we will describe these

three concepts.

9
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The remainder of this chapter is organized as follows: Sec. 2.2 introduces

the concept of SIT. We will describe how SIT can be used to compress pulses

in accordance with the area theorem. In Sec. 2.3, we will introduce the basic

modelocking concept and describe different conventional ways to modelock lasers.

In Sec. 2.4, we will present QCLs. We will give a brief introduction of the history

of QCLs, describe the key features of QCLs, and explain how quantum cascade

strucutres are engineered to produce light.

2.2 Self-Induced Transparency

McCall and Hahn [39, 40] observed that a pulse with a duration τ that is short

compared to the coherence time T2 of a saturable resonant medium will pass

through the medium as if the medium were transparent, as long as the pulse energy

exceeds a critical value. They gave this effect the name self-induced transparency

(SIT). When the pulse energy is below the critical value, the pulse damps. SIT

reshapes pulses in the correct energy range, so that they have a hyperbolic-secant

shape with a well-defined energy and duration. In a two-level resonant absorber,

ideal transparency persists when stimulated absorption of pulse energy during the

first half of the pulse is coherently followed by stimulated emission during the

second half of the pulse, as shown schematically in Fig. 2.1. The pulse velocity

is smaller than the velocity of nonresonant light in the medium because of the

continual absorption of energy from the pulse’s leading edge and emission of energy

into the pulse’s trailing edge.

McCall and Hahn [39, 40] derived a theorem for A(z) the integral of the inten-

sity envelope’s magnitude of a resonant propagating light pulse multiplied by µ/~,

where µ is the medium’s dipole moment and ~ is Planck’s constant. This theorem

is generally referred to as the area theorem. According to the area theorem, A(z)

obeys the relation
dA(z)

dz
= −α

2
sin A(z), (2.1)
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Figure 2.1: Schematic diagram for self-induced transparency. If a 2π
hyperbolic-secant pulse is input to a resonant absorber, the leading edge of
the pulse (dashed) is absorbed but the trailing edge of the pulse is amplified
(solid).

where α is the linear optical attenuation coefficient for the material. The area

theorem implies the following: (i) When the pulse is weak, sin A ∼ A. Therefore,

the pulse will decay exponentially. (ii) A pulse whose initial area equals positive

integral multiples of π, i.e., A(z = 0) = nπ, n = 1, 2, . . . will maintain the same

area during propagation. (iii) A pulse with another initial area will evolve until its

area reaches the nearest even multiple of π. Hence, areas with even multiples of

π are stable, and areas with odd multiples of π are unstable. The evolution of the

pulse envelope area A(z) has been plotted in Fig. 2.2. We see that pulses with an

initial area of slightly less than π, e.g., with an area of 0.9π, damp, while pulses

with an initial area of 1.1π and 2.9π both evolve to pulses having an area of 2π.

The area theorem also shows that 2π is not the only solution; rather, any integer

multiple of 2π is a solution.

McCall and Hahn [39, 40] verified their initial theoretical predictions of SIT

with experimental observations in a ruby sample at resonance with a pulsed ruby-

laser beam. They observed single and multiple 2π pulse outputs, and they mea-

sured pulse areas in the range of 2π. A number of experimental observations of

SIT in different laser systems followed in the literature [41–45]. Patel and Slusher

[41] were the first to present results for a gaseous absorber. They demonstrated
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Figure 2.2: The McCall-Hahn area theorem. Several branches of the solution
to Eq. (2.1) are shown by plotting envelope area A(z) against the distance of
propagation z inside the medium. The value of z that corresponds to the entry
face of the absorber is determined by the input area of the pulse.

delay times of about 0.2 µsec in SF6, and found output pulses that appeared more

symmetric than the input pulses produced from a CO2 laser. However, their work

was questioned, particularly by Rhodes et al. [42], because of the level degeneracy

in SF6 and because of the possibility of bleaching or incoherent saturation. In

a subsequent work, Patel [43] argued against the idea that incoherent bleaching

was the explanation of the results by showing that the optical delay was intensity-

dependent, and that at higher SF6 pressures the delay began to decrease after

passing a maximum. Gibbs and Slusher [44] carried out detailed experiments on

the propagation of coherent optical pulses in dilute Rb vapor, a nodegenerate res-

onant absorber. They verified most of the basic aspects of SIT including the area

theorem.

Due to the inherent pulse-shaping of SIT characterized by the area theorem, it

has been used to compress optical pulses. Gibbs and Slusher [46] have compressed

and amplified strong pulses by sending them through an absorbing medium, and

they reported a compression of an order of magnitude. Their starting point was a

pulse with an area slightly less than 3π, which according to Fig. 2.2 will reshape

into a pulse of area 2π. Bonafico et al. [47] showed theoretically that the SIT effect
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can generate short pulses when pulses that are short compared to the coherence

time in the medium propagate through a medium with both nonlinear absorption

and gain.

2.3 Modelocking

The word modelocking implies the locking of multiple axial modes in a laser cavity.

By enforcing coherence between the phases of the different modes, pulsed radiation

can be produced. Modelocking is a resonant phenomenon. A pulse is initiated by a

relatively weak modulation synchronous with the round-trip time of the radiation

circulating in the laser and then grows shorter on every pass through the resonator.

Eventually the shortening process is limited by frequency-domain filtering that is

due to the finite modulation depth in the case of active modelocking, the finite

gain bandwidth in the case of conventional passive modelocking, and — as we

will show — the Rabi frequency in the case of SIT modelocking. The history of

laser modelocking dates back more than 40 years, and, since its discovery, there has

been a continuous effort to generate shorter pulses using new and better techniques

[48–60].

The first indications of modelocking appear in the work of Gürs and Müller

[48, 49] on ruby lasers, and Statz and Tang [50] on He-Ne lasers. The first papers

clearly identifying a modelocking mechanism were written in 1964 by DiDomenico

[51], Hargrove et al. [52], and Yariv [53]. Hargrove et al. [52] achieved active mode-

locking by internal loss modulation inside the resonator. Mocker and Collins [54]

showed that the saturable dye used in ruby lasers to Q-switch a laser could also be

used for modelocking. Crowell [61] reported both theoretically and experimentally

the passive generation of short pulses by mode-coupling in a gas laser resulting from

a time-varying loss within the optical cavity or from the nonlinear characteristics

of the inverted population. Ippen et al. [55] generated the first cw saturable

absorber modelocking using a saturable dye in a dye laser. Shortly thereafter,
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Figure 2.3: Schematic illustration of active modelocking.

this work led to the production of sub-picosecond pulses [56]. The work on dye

lasers continued unabated for the next decade producing increasingly short pulses

[57–59]. Ultimately, a record 6-fs pulse duration was achieved by Fork et al. [60]

using pulse compression external to the cavity.

2.3.1 Modelocking methods

Methods for producing modelocking in a laser to date have been classified as either

(i) active or (ii) passive [14, 27]. Active methods use an external electrical signal

and an electro-optic modulator to induce a modulation of the intra-cavity light.

Passive methods do not use an external signal, but rely on elements in the laser

cavity that cause a self-modulation of the light by making the production of short

pulses more energetically favorable than continuous waves. The theory of active

modelocking was firmly established in a classic paper by Kuizenga and Siegman

[62], while the theory of passive modelocking was developed by Haus [63, 64].

Active modelocking

The most common active modelocking technique uses an amplitude modulator

(AM) in the laser cavity that sinusoidally modulates the light, as shown in Fig. 2.3.

This process is most easily analyzed in the frequency domain. If a mode has optical

frequency ν and is modulated at a frequency f , the resulting signal has sidebands

at optical frequencies ν − f and ν + f . If the modulator is driven at the same
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Figure 2.4: Actively modelocked pulse in the time domain and the time de-
pendence of the net gain. When the gain, which is constant (indicated by a
blue line) exceeds the loss, which varies sinusoidally (indicated by the red line),
then the pulses can grow.

frequency as the cavity-mode spacing ∆ν, which is the round-trip frequency 1/Trt,

then these sidebands correspond to the two cavity modes adjacent to the original

mode. Since the sidebands are driven in phase, the central mode and the adjacent

modes will be phase-locked together. Further operation of the modulator on the

sidebands produces phase-locking of the ν − 2f and ν + 2f modes and so on until

the loss exceeds the gain.

The active modelocking process can also be considered in the time domain.

The amplitude modulator produces a time window in which the gain exceeds the

loss and therefore acts on the light bouncing between the mirrors of the cavity like

a weak shutter, attenuating the light when it is “closed,” and letting it through

when it is “open.” If the modulation rate f is synchronised to the cavity round-

trip time Trt, then a single pulse of light will bounce back and forth in the cavity,

as shown schematically in Fig. 2.4. The actual strength of the modulation does

not have to be large; a modulator that attenuates 1% of the light when “closed”

will modelock a laser [14], since the light is repeatedly attenuated as it traverses

the cavity.

It is possible to use frequency modulation (FM) rather than amplitude mod-

ulation to actively modelock a laser [62, 65, 66]. This approach uses a standing
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Figure 2.5: Schematic illustration of passive modelocking.

wave modulator based on the acousto-optic effect. This device induces a small,

sinusoidally varying frequency shift in the light passing through it. If the fre-

quency of the modulation is matched to the round-trip time of the cavity, then

some light in the cavity experiences repeated up-shifts in frequency, and some of

the light experiences repeated down-shifts. After many repetitions, the up-shifted

or down-shifted light is swept out of the bandwidth that experiences net gain. The

only light that is unaffected is the light that passes through the modulator when

the induced frequency shift is zero, which forms a short pulse of light.

A third method of active modelocking is synchronous modelocking or syn-

chronous pumping [67–71]. In this approach, the pump source (energy source) for

the laser is itself modulated, effectively turning the laser on and off to produce

pulses. Typically, the pump source is itself another modelocked laser. This tech-

nique requires accurately matching the cavity lengths of the pump laser and the

driving laser.

Passive modelocking

Passive modelocking techniques do not require a signal external to the laser, such

as the driving signal of a modulator, to produce pulses. Rather, the light in the

cavity changes one or more intracavity elements, which in turn produces a change

in the intracavity light. Commonly, one combines a slow saturable gain with either
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Figure 2.6: Schematic illustration of passive modelocking of laser with a slow
saturable gain and a slow saturable loss. We show time dependence of pulse
and the net gain.

a fast or a slow saturable loss, as shown in Fig. 2.5. In any combination, the light

dynamically affects the cavity gain in a way that favors the production of short

pulses rather than continuous waves.

In Fig. 2.6, we show a schematic illustration of a passively modelocked system

that combines a slow saturable gain with a slow saturable loss. In this case, the

pulse creates its own narrow time window in which the gain exceeds the loss.

Hence, short pulses are stable. In some cases in which continuous waves are

modulationally unstable, the modelocking will self-start from noise. In other cases,

one must seed the modelocking with a mechanical or electrical shock.

Passively modelocked lasers of current importance that use slow saturable loss

include semiconductor lasers and fiber lasers with semiconductor saturable absorb-

ing mirrors (SESAMs) [72–74] and carbon nanotubes [75]. Passively modelocked

lasers of current importance that use fast saturable absorbers include fiber lasers

that are locked using nonlinear polarization rotation [76] and nonlinear optical

loop mirrors (NOLMs) [77] and solid-state lasers like Ti:Sapphire lasers that are

locked using Kerr lens modelocking [78–80]. In all cases, the lasers use a slow

saturable gain.
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Active modelocking does not lead to ultrashort pulses. Near the peak of the

gain modulation, the gain varies in time as g(t) = g0(1− 4π2f 2t2), where f is the

modulation frequency and g0 is the peak gain. As the pulse duration decreases, the

effect of the modulation diminishes quadratically, so that it eventually becomes

ineffective. By contrast, since a passively modelocked pulse directly modulates the

gain that it experiences, the modulation remains effective as the pulse duration

decreases. Ultimately the bandwidth of the gain medium and the mirrors limit

the pulse duration.

2.4 Quantum Cascade Lasers

QCLs are electrically pumped unipolar photonic devices in which light emission

takes place due to intersubband optical transitions in two-dimensional quantum

wells of semiconductor heterostructures. QCLs are an example of “bandgap en-

gineering.” In these lasers, the energy spacing between the subbands that are

involved in the lasing transition, and hence the frequency of the light emission,

can be engineered by varying the thickness of the quantum wells. Another key

characteristic of QCLs is the use of periodically-repeated multiple quantum well

structures, in which each period has an active region and can generate a photon.

Thus, an electron will generate multiple photons as it passes through the QCL.

The most commonly used technology for creating superlattice and quantum

well semiconductor structures is molecular beam epitaxy (MBE) [8, 9], where lay-

ers as thin as several monolayers can be grown with atomic precision. Milestones

in the realization of QCLs include the invention of the concept of a superlattice

by Esaki and Tsu [4], the proposal for light amplification in an intersubband tran-

sition by Kazarinov and Suris [1], the first observation of intersubband absorption

in a quantum well in 1985 [81], and the first observation of sequential resonant

tunneling in a superlattice in 1986 [2]. Helm et al. were the first to observe in-

tersubband emission in a superlattice, initially pumped by thermal excitation [82]
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and then by resonant tunneling [83]. However, it took two decades until the first

laser based on intersubband transitions, i.e., the QCL, was experimentally demon-

strated by Faist et al. [7]. This first demonstrated laser worked at 10 K in pulsed

mode with a peak power of 10 mW. The emission wavelength was λ ∼ 4.3 µm.

QCLs have achieved dramatic performance improvements since their invention

and have become the dominant semiconductor laser sources in the mid-infrared

spectral range. An overview of the history of the QCL’s development as well as

descriptions of state-of-the-art designs, will be given in this section. More detailed

discussions may be found in the review papers by Capasso et al. [84], Faist et

al. [85], and Gmachl et al. [86].

QCLs emitting at a wavelength as short as 3 µm has been demonstrated to lase

at 80 K [87], while room temperature pulsed mode operation has been achieved

down to 3.5 µm [88], and room temperature CW operation has been achieved at

3.8 µm [89]. Terahertz QCLs have been demonstrated in the range of ∼ 60–300

µm [90–93] at an operating temperature up to 178 K [94] and can also operate

at 300 K when THz frequencies are generated via difference frequency generation

[95]. There have been breakthrough advances toward realization of high power CW

operation above room temperature, including stable single-mode operation. A CW

output power as high as 300 mW at 298 K in the wavelength range of λ ∼ 4.8−
6.0 µm was demonstrated using a strain-balanced GaInAs/AlInAs heterostructure

[96, 97]. A record temperature of 400 K at 8.38 µm has been achieved [98].

2.4.1 Intersubband vs. Interband Semiconductor Lasers

In Fig. 2.7, we schematically show two-dimensional quantum heterostructures for

intersubband and interband transitions. In an interband laser, a transition occurs

in which an electron in the conduction band combines with a hole in the valence

band and energy is released. Therefore, an interband laser is inherently bipolar

in nature. The frequency of the radiation is determined by the bandgap energy

Eg of the quantum well material (which is on the order of 1 eV or λ ∼ 1.24 µm).
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Figure 2.7: Schematic diagram of the band structure and dispersion relation
for an (a) interband laser and (b) intersubband laser.

However, a small fractional tuning of the emission wavelength can be obtained by

varying the quantum well thickness. The joint density of states for the optical

transition is constant, which is typical of the two-dimensional density of states

for a parabolic E(k‖) dispersion with opposite curvatures in the conduction and

valence bands. Therefore, the gain spectrum is typically broad at temperatures

where the thermal distribution of the carriers have a pronounced effect.

On the contrary, an intersubband transition happens between two subbands

within a single energy band. Therefore, intersubband lasers are inherently unipolar

since they use only electrons in the conduction band or holes in the valence band.

Intersubband lasers have two major advantages. First, the emission wavelength is

no longer a function of the bandgap energy of the material, but depends on the

quantum well thickness, which can be engineered. The shorter wavelength limit is

set by the conduction band offset ∆Ec of the materials used in the heterostructure

for the quantum well and barrier, and the longer wavelength limit is set by the
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wavelength of the optical phonons, design complexity, and temperature. Second,

as the subbands lie within the same band, they have the same curvature in the

energy dispersion relation. If non-parabolicity in the energy dispersion relation

is neglected, the subbands have a joint density of states that can be expressed

as ρ(E) = δ(E − ~ω), where δ(x) is the Dirac delta function. Therefore, all the

inverted carriers emit light at nearly the same wavelength. As a consequence, the

gain can potentially be very large, since the gain g(E) ∝ ρ(E). However, this

advantage is offset by the short nonradiative lifetimes for intersubband transitions

that are on the order of a ps, as compared to the nonradiative electron-hole recom-

bination times in an interband diode-laser that are on the order of a ns, mostly

due to fast polar longitudinal optical (LO) phonon intersubband scattering in

semiconductor heterostructures. The relatively short lifetimes of the intersubband

transitions limit the amount of population inversion that can be achieved. One

may compensate in part for this disadvantage by engineering the lifetime of the

two lasing levels using a multi-quantum well structure. In addition, a cascade of

the basic period is used that increases the gain by a multiple of the number of

periods used. The unipolar nature of intersubband transitions makes this cascade

possible.

Based on these basic operating principles, there are several characteristics that

distinguish interband lasers from intersubband lasers. For an intersubband laser

such as a QCL, despite having close to a delta-function-distributed joint density of

states, the gain spectrum has a finite width due to homogeneous broadening from

collisions as well as inhomogeneous broadening from fluctuations in the material

growth of the subbands. By contrast, in an interband laser, the broadening of the

gain spectrum is principally due to the thermal distribution of the carriers. Typi-

cal full-width half-maximum (FWHM) spontaneous-emission linewidths observed

for QCLs have been 2–20 meV, as compared to ∼ 50 meV or more for the inter-

band quantum-well diode lasers [99]. An intersubband laser usually has an even,

Lorentzian-shaped gain spectrum around the peak gain frequency. Consequently,

the Kramers-Kronig relations dictate that the contribution of the imaginary part
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of the laser transition to the index of refraction must be odd about the peak

gain frequency, and hence zero at the center. As a result, the linewidth enhance-

ment factor in an intersubband laser is smaller than in an interband diode-laser

by at least an order of magnitude [100]. A small linewidth enhancement factor

allows an intersubband laser to maintain optical coherence over large device ar-

eas [101], which is important for the development of high-power surface-emitting

lasers, among other applications.

The short nonradiative relaxation time leads to distinctive features in the high

frequency modulation response of QCLs. Experimental observation shows that the

relaxation oscillations that are typically observed in the modulation response of

interband diode-lasers are absent in QCLs [102]. However, the modulation band-

width of QCLs, like that of interband lasers, is limited by the photon lifetime in

the cavity, which is on the order of 10 GHz. This lifetime is the longest of all

the lifetimes that determine the modulation response. As a consequence, an inter-

subband laser offers no particular advantages over interband diode lasers, despite

having nonradiative carrier relaxation mechanisms that are orders of magnitude

faster.

Another distinctive feature of QCLs is their multi-mode behavior due to spatial

hole burning. QCLs use a standing wave configuration, in which the forward- and

backward-going waves interfere each other and produce standing waves [14]. As the

gain recovery time is orders of magnitude shorter than the diffusion time, spatial

hole burning may be observed when the input current is above the lasing threshold

[29]. The fast gain recovery time also plays a negative role when modelocking

QCLs. Since the gain recovery time is on the order of 1 ps and the cavity round-

trip time is on the order of 50 ps, stable modelocked pulses cannot be generated

[27]. Instead, the lasers become unstable due to the Risken-Nummedal-Graham-

Haken effect [28, 29].
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2.4.2 Realization of Quantum Cascade Lasers

In 1960, before the invention of the diode laser, a semiconductor laser based on

transitions between Landau levels in a strong magnetic field was proposed by

Lax [103]. This proposed semiconductor laser was the first in which the optical

transition occurs between low-dimensional states of the same band (conduction or

valence) rather than across the semiconductor bandgap. The idea of a unipolar

laser was then ignored for many years since only two years after Lax’s proposal,

the first diode laser was demonstrated [104].

In 1970, Esaki and Tsu published a seminal paper presenting the concept

of a superlattice [4]. A year later, Kazarinov and Suris suggested that optical

gain could be obtained by using transitions between two-dimensional states in a

superlattice biased by an external electric field [1]. This structure, which was very

different from other semiconductor lasers, introduced the concept of a unipolar

device in which the optical transitions could be completely engineered by the

judicious choice of the quantum well thickness and barrier materials, regardless of

the material’s bandgap.

Though the present day QCLs differ significantly from the original structure

that Kazarinov and Suris proposed [1], we will discuss their proposed structure

since this structure laid the foundation of QCLs, and understanding the physics of

this simple structure helps in understanding the physics of the more complicated

QCL structures. In Fig. 2.8, we show schematically the proposed structure of

Kazarinov and Suris [1]. The structure basically consists of a semiconductor su-

perlattice of multiple repeated quantum wells. The quantum wells are electrically

pumped as electrons transport through the one-dimensional periodic potential of

the heterostructure. The energy separation between the first excited state 2 and

the ground state 1 is approximately at the LO phonon emission energy ~ωLO.

Therefore, electrons within the wells scatter very fast from the excited state to the

ground state by emitting LO phonons. The excited states have a lifetime much

less than one ps. By contrast, the carrier transport between the wells through the
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barrier is mainly due to tunneling. The transport rate due to tunneling depends

on the barrier thickness, barrier height, and the applied electric field. The com-

bination of resonant-tunneling and intersubband scattering for electron transport

in multiple quantum wells is often described as sequential resonant-tunneling.

(a)

2

1

2′

1′

(b) (c)

V

I
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Vb
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Figure 2.8: Schematic illustration of the proposal of Kazarinov and Suris [1]
to obtain light amplification from a semiconductor superlattice. We show a
hypothetical I-V for this device, along with the conduction band diagrams and
the location of the subbands in energy space under different bias conditions.
Electron transport in the electrically-pumped structure is due to resonant tun-
neling.

Due to the fast nonradiative transition to the ground state in which an LO

phonon is emitted, the ground state has a larger population than the excited state

for any bias. When the bias applied to the structure is changed, the ground state

of a quantum well may align with the excited state of another quantum well. For

example, when a bias Va is applied, the ground state of the n-th quantum well

aligns with the excited state of the (n+2)-th quantum well; leading to a peak in

the I-V characteristics. However, the current flow reaches its maximum when the

ground state of n-th quantum well aligns with the excited state of the (n+1)-th

quantum well, which occurs when V = Vb. At biases larger than Vb, the interaction
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between the ground state and the excited state of the adjoining well is sufficient

to lead to coherent electric-dipole oscillations diagonally across the barrier. Light

amplification at ~ω = E12′ , where 2′ is the excited state in the (n+1)-th quantum

well, can be obtained since a population inversion is maintained between levels

1 and 2′ due to the short lifetime of level 2′ (¿ 1 ps), and the long lifetime of

level 1 (∼ 1–10 ps depending on the thickness and height of the barriers between

the quantum wells). Moreover, the energy of the radiative transition E12′ may be

tuned by changing the bias over a relatively wide range.

Motivated by Kazarinov and Suris’s proposal [1], intense research was carried

out in the 1980s to study electrical transport phenomena in semiconductor su-

perlattices. However, the proposed idea was not practical in its original form.

Kazarinov and Suris [1] originally proposed to use undoped superlattices, which

meant that electrons were to be injected in the periodic structure from the contact

regions at the ends of the superlattice. Injected electrons in this way leads to for-

mation of space charge domains across the structure and prevents the development

of a homogeneous static electric field, ultimately leading to electrical instability in

the device. This problem, which is due to the unipolar nature of the device and

the specific electrical-pumping scheme, can be solved by doping the superlattice

within each of its periods, such that the positive charges on the ionized donors

compensate for the steady-state electron population within each quantum well.

However, this device has yet another problem. The operating bias point for a

photon-assisted tunneling transport mechanism at Vc is beyond the peak-current

bias at Vb, which is in a negative-differential resistance (NDR) region on the I-V

curve. An NDR region is inherently unstable for an electrically-pumped superlat-

tice that has multiple repeated modules, since the modules separate into high-field

domains in an NDR region [6, 105]. This separation occurs because there is no

mechanism that can enforce a homogeneous field distribution across the structure,

and complex nonlinear charge oscillations occur in the NDR. Hence, even though a

population inversion is guaranteed at the bias Vc, the superlattice cannot be biased

at that point. It may be noted that even though a single quantum well structure
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could be electrically biased in the NDR, a superlattice with multiple quantum

wells is almost necessary to achieve sufficient intersubband gain for lasing.

While resonant-tunneling through a double barrier was observed as early as

1974 [106], attesting to the high quality of molecular beam epitaxy (MBE) already

achieved at that time, it took several years before Capasso et al. [2] were able

to observe sequential resonant-tunneling through a semiconductor superlattice in

1985. Part of the reason for this delay was the inherent difficulty in electrically

biasing a superlattice beyond the NDR regions. To ensure a rigorously controlled

and spatially homogeneous electric field throughout the structure, the superlattice

was placed in the i region of a reverse-biased p+-i-n+ junction [2]. This scheme was

critical to the success of their experiment since it prevented domain formation in

the NDR regions of the I-V curve. In Fig. 2.9, we show a schematic illustration of

that structure and a qualitative sketch of the low-temperature I-V curve, similar

to the one that was actually measured. The peaks corresponding to the two

dominant resonant-tunneling transitions were clearly resolved in the experiment

[2], providing evidence of the high quality of the material growth and paving the

way for unique device applications based on resonant-tunneling phenomena in

semiconductor superlattices.

Multiple proposals to achieve intersubband lasing were considered in the late

1980s and early 1990s [107]. The structure of Capasso et al. [2], based on the

schematic illustration in Fig. 2.9, merits further discussion since it bears the clos-

est resemblance to the first superlattice-based intersubband laser, i.e. the QCL,

that was invented a few years later [7]. In their subsequent paper [108], the authors

considered the idea of achieving population inversion between levels 2 and 3 within

the same well. At the 1-3′ resonance (bias point Vb) in Fig. 2.9, the second excited

state 3′ in the (n + 1)-th well is selectively populated by the ground state 1 of

the n-th well through resonant-tunneling. If a population inversion is established

between levels 3 and 2 in a well, stimulated emission is possible through a vertical

intrawell radiative transition. It may be noted that this scheme differs significantly
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Figure 2.9: First observation of sequential resonant-tunneling in a semicon-
ductor (In0.53Ga0.47As/In0.52Al0.48As) superlattice with 35 periods [2]. Conduc-
tion band schematic illustrations corresponding to two different bias points in
the I-V curve are shown. The I-V curve shown here is a qualitative sketch of
the measured I-V curve in [2]. Note that at all biases, the ground state 1 in the
quantum wells will have the largest population due to fast electron-LO phonon
scattering from levels 3 → 2, 3 → 1, and 2 → 1.

from the original Kazarinov and Suris proposal shown in Fig. 2.8, where the radia-

tive transition is an interwell diagonal transition. However, as Capasso et al. [108]

noted, it is difficult to obtain population inversion with this scheme because of

fast (sub-ps) electron-LO-phonon scattering times between levels 3 → 2, 3 → 1,

and 2 → 1.

The electron-LO phonon scattering matrix element for two dimensional sub-

bands is proportional to 1/|∆k|, where |∆k| is the momentum exchanged in the

scattering process [107]. If the subbands in the scheme of Fig. 2.9 are designed

with an energy spacing such that E32 À ~ωLO, the momentum exchange required

for an electron-LO phonon scattering event from level 3 → 2 or 3 → 1 is an order

of magnitude greater than it is from level 2 → 1, where E21 ≈ ~ωLO, so that the

scattering matrix element is significantly reduced. This reduction is necessary to
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Figure 2.10: Conduction band diagram and modulus-squared wavefunctions
of a GaAs/AlGaAs quantum cascade laser. Levels 1–3 are in the active region
and level 4 is the ground level in the injector. Level 4′ is the ground level in the
next injector.

obtain inversion.

2.4.3 A Typical Quantum Cascade Laser Structure

Despite the fast carrier relaxation between the subbands in the conduction band,

a population inversion that ultimately allows laser action can be achieved between

these states by means of “band-structure engineering” [109]. By engineering the

thicknesses of the quantum wells and by properly choosing the materials for the

wells and the barriers, it is possible to manipulate the fundamental properties of

the electronic states, carrier scattering rates, optical dipole matrix elements, and

the tunneling rates of carriers from one state to another through the barriers.

With an engineered multiquantum well structure, the “quantum engineer” may

optimize the population inversion and gain at a desired emission wavelength.

In Fig. 2.10, we show the conduction band diagram of a typical quantum cas-

cade laser when an external bias is applied. Typical quantum cascade lasers consist

of 20–30 periods, each of which contains an injector region and an active region.

To minimize space-charge effects caused by carrier injection under applied bias,
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the injector region is n-type doped. The doping concentration per period is typ-

ically 2–4 × 1011 cm−2. Here, the active region acts as a three-level laser system.

Four-level active regions are also used in QCLs [110]. To achieve population inver-

sion between subband 3 and subband 2, the active region is designed so that the

energy separation between subband 2 and subband 1 is nearly resonant with the

LO phonon energy. Hence, intersubband relaxation from subband 2 to subband 1

by emission of LO phonons is strongly enhanced, resulting in a lifetime of subband

2 on the order of τ2 ≈ 0.3 ps, while the lifetime of subband 3 is typically τ3 > 1 ps.

Electrons leave the active region by tunneling through a thin exit barrier into the

following injector region. The injector region acts as an electron reservoir. It is

a superlattice that typically consists of 5–7 quantum wells. It is designed so that

with an applied bias the coupling between adjacent quantum wells leads to the

formation of minibands, which ensures an efficient carrier transport. The mini-

gap in the injectors prevents electrons residing in the upper laser subband 3 from

leaking into the continuum states. A crucial point is the carrier injection from the

injector into the upper laser subband 3 in the active region. With an appropriate

bias, the injector subband 4 becomes resonant with subband 3. This leads to an

efficient carrier injection via resonant tunneling. However, the very high carrier

density in the injector leads to high carrier-carrier scattering rates, resulting in a

strong damping of the coherent wavepacket propagation and, thus, a less efficient

carrier injection. We will discuss this point in more detail in Chapter 5.



Chapter 3

Self-Induced Transparency

Modelocking of Quantum

Cascade Lasers

3.1 Introduction

In quantum cascade lasers (QCLs), the light is generated by a transition between

two subbands in the conduction band, in contrast to interband semiconductor

lasers, in which the light is generated by a recombination of an electron-hole pair.

Two subbands in the conduction band have approximately same curvature in the

energy-momentum relation, while the conduction and valence bands have opposite

curvatures, as shown in Fig. 2.7. As a consequence, QCLs have narrow linewidths

and long coherence times T2 compared to interband lasers. In QCLs, values of T2 on

the order of 100 fs are achievable [30]. The coherence time is mainly determined by

intrasubband electron-electron, electron-LO phonon, and electron-interface rough-

ness scattering [111, 112]. Another important feature of the QCLs is their rapid

gain recovery times T1 compared to inter-band semiconductor lasers, due to fast

carrier transport through quantum cascade structure by coherent tunneling and

incoherent scattering mechanisms [31]. Typical values of T1 are in the range 1–10

30
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ps, which is short compared to Trt, the round-trip time in the cavity. Typical

values of Trt are on the order of 50 ps.

The narrow linewidths and fast recovery times of QCLs make it difficult to

achieve conventional passive modelocking. Gain bandwidths that are significantly

larger than the pulse bandwidths are required, and that is hard to obtain when

the linewidths are narrow, as in QCLs. A saturable gain with a recovery time that

is long compared to Trt is also required for conventional modelocking in order to

suppress continuous waves, and the typical gain recovery times in QCLs are shorter

than the round-trip times. Thus, conventional passive modelocking cannot work

in QCLs that operate in a standard parameter regime.

Self- or passive modelocking of lasers [61, 113] was discovered experimentally

at almost the same time as SIT, and there was speculation that the modelocking

was due to SIT [114, 115]. However, subsequent work made it clear that SIT

could not account for the observed modelocking [116, 117]. Conventional passively

modelocked system operate in regimes in which the pulse bandwidth is smaller

than the gain bandwidth, so that typically coherence times T2 are short compared

to the pulse duration. With the development of the standard theory of passive

modelocking [63, 64], work on SIT modelocking almost ceased. An exception is

work by Kozlov [118], who pointed out the importance for SIT modelocking of

including an absorbing medium, in which the pulse is a 2π pulse, along with

a gain medium in which the pulse is a π pulse. The absorbing medium acts

as a saturable absorber, suppressing the generation of continuous waves and the

Risken-Nummedal-Graham-Haken instability [33].

We have found that QCLs are an ideal tool to realize SIT modelocking [119,

120]. We proposed that absorbing periods should be interleaved with the gain

periods as shown in Fig. 3.1 and that absorbing periods should have a dipole

moment approximately twice as large as the dipole moment in the gain periods.

Therefore, the π pulses in the gain periods become 2π pulses in the absorbing

periods. As in standard QCLs with just gain periods, the electrons are injected
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into the upper resonant levels in the gain periods, to produce gain. However,

electrons are injected into the lower resonant levels in the absorbing periods, so

that the light pulses experience SIT in the absorbing medium (see Fig. 3.2). We

have found analytical modelocked solutions when there is no frequency detuning,

the absorbing periods have a dipole moment twice that of the gain periods, the

input pulse is a π pulse in the gain medium, and the gain recovery times in the

gain and the absorbing periods are much longer than the coherence time T2 and

are short compared to the round-trip time. However, the analytical results are

only of practical interest if they continue to hold under realistic circumstances. In

practice, gain recovery times in a QCL are on the order of a ps, the population

inversion in both the gain and absorbing periods will be incomplete, and the initial

pulse will have an energy that does not correspond exactly to a π pulse, and an

initial pulse duration that is on the order of a ps. Therefore, we computationally

solved the Maxwell-Bloch equations and carried out an extensive parameter study.

We determined the stability regimes for SIT modelocking, and our results showed

that SIT modelocking for QCLs is robust [119–121].

In this chapter, we will discuss the physics of SIT modelocking in QCLs using

two-level models for the gain and absorbing periods; we will present analytical

modelocked solutions of the Maxwell-Bloch equations in special cases that describe

the dynamics of a QCL having both gain and absorbing periods; we will derive

conditions for stable modelocked pulses. We will then solve the Maxwell-Bloch

equations computationally for more general cases and determine the stability limits

of all key parameters for stable modelocking. We will show that SIT modelocking

is stable for a broad regime when the parameters are varied around the typical

values for conventional QCLs.
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3.2 Physical Picture of SIT Modelocking

In order to obtain SIT modelocking, it is necessary to have two highly-coherent

resonant media with nearly equal resonant frequencies. In one medium, denoted

the gain medium, electrons should be injected into the upper lasing state so that

the resonant states are nearly inverted. In the other medium, denoted the absorb-

ing medium, electrons should be injected into the lower state so that the resonant

states are not inverted. Also, the dipole strength in the absorbing medium should

be nearly equal to twice the dipole strength in the gain medium. At the same

time, the ratio of the gain per unit length to the absorption per unit length should

be small enough so that the growth of continuous waves is suppressed, but large

enough so that a modelocked pulse can stably exist. It is possible to simultaneously

satisfy all these conditions by interleaving gain and absorbing periods that have

the required dipole strengths as shown schematically in Fig. 3.1. By appropriately

choosing the number of gain periods and the number of absorbing periods, one can

in principle obtain any desired ratio for the gain and absorption per unit length.

As long as there are many periods within the transverse wavelength of the lasing

mode, the gain and absorbing periods will experience the same light intensity.

In Fig. 3.2, we show simplified two-level resonant structures for the gain and

absorbing media. In the gain medium, electrons are injected into level 2g and

are extracted from level 1g. The carrier lifetime in 2g should be longer than

the modelocked pulse duration, and the equilibrium population inversion should

be nearly complete. When an optical pulse with a photon energy equal to the

resonant energy impinges on the gain medium with its polarization oriented in the

direction perpendicular to the layers, electrons scatter to level 1g and photons are

emitted. Then, the electrons are nonradiatively extracted from level 1g. In the

absorbing medium, electrons are injected into the lower level 1a. The lifetime of

state 1a should again be longer than the pulse duration. When a light pulse of

the appropriate wavelength and polarization impinges on the absorbing medium,

photons are absorbed and electrons scatter to level 2a. If a light pulse is sufficiently
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Figure 3.1: Schematic illustration of a QCL structure with gain and absorb-
ing periods. On the left, we show a cutaway view of QCL structure. The
active region is shown as a filled-in rectangle. We are looking in the direction
along which light would propagate. Electrodes would be affixed to the top and
bottom, so that electrons flow vertically. The heterostructure would also be
stacked vertically as shown on the right. We show one absorbing period for
every four gain periods, corresponding schematically to the case in which the
electron density in the gain periods (Ng) ' 4×the electron density in the ab-
sorbing periods (Na), and we show absorbing periods that are twice as large as
gain periods to indicate schematically that the dipole moment in the absorbing
periods (µa) ' 2×the dipole moment in the gain periods (µg).

e

(a)

1g

2g

e

2a

1a

(b)

e e

Figure 3.2: Schematic illustration of the (a) gain and (b) absorbing media.
Black straight-line arrows indicate the direction of electron flow. Red wavy
arrows indicate radiative transitions.

intense, then photons are re-emitted with no overall loss in one Rabi oscillation.

In order for these processes in the gain medium and absorbing medium to occur

simultaneously, the energy spacing between the resonant levels should be nearly

the same in both media.

In the theory of resonant two-level media, both π pulses and 2π pulses play

an important role [122]. A π pulse is a pulse with sufficient energy to exactly

invert the lower state population of a two-level medium if the medium is initially
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Figure 3.3: (a) Electric field and population inversion profile in the presence
of a π pulse. An initially inverted medium becomes completely uninverted. (b)
Electric field and population inversion in presence of a 2π pulse. An initially
uninverted medium first becomes inverted and then becomes uninverted again.
In both cases, the intensity has been normalized by the peak of the π pulse
and the time has been normalized by the (full width half maximum) / 1.763
duration of the pulse.

uninverted, or, conversely, to uninvert the upper state if the medium is initially

inverted, as shown in Fig. 3.3(a). In the former case, the pulse experiences loss

and rapidly attenuates, but, in the latter case, the pulse experiences gain. The

pulse duration is approximately half a Rabi oscillation period. If a pulse lasts a

longer time than required to drive the population from the upper level to the lower,

then the medium will amplify the first part of the pulse and attenuate the latter

part, in a way that shortens the pulse. Conversely, if a pulse is initially too short,

it is lengthened. Because a π pulse experiences gain, it is natural that shortly

after the initial observations of passive modelocking in lasers, it was proposed that

the pulses in these lasers are actually SIT-induced π pulses [114, 115]. However,

these pulses are not suitable for use on their own as passively modelocked laser

pulses. Where one π pulse can exist, there is nothing to prevent continuous waves

from generating multiple pulses, leading to chaos rather than a single stable pulse

oscillating in a laser cavity.

One can in principle circumvent this difficulty by combining a gain medium in

which the optical pulse is a π pulse with an absorbing medium in which the optical

pulse is a 2π pulse [118]. A 2π pulse is a pulse with sufficient energy so that in an

uninverted medium the lower state population is first inverted and then returned
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to the lower state in approximately one Rabi oscillation, as shown in Fig. 3.3(b).

Like a π pulse, a 2π pulse is stable. If its initial duration is too long, the duration

decreases, and, if its initial duration is too short, the duration increases. The

2π pulse propagates through the medium without loss, in contrast to continuous

waves at the resonant optical frequency, which experience loss. This remarkable

property is what led to the name “self-induced transparency” [39, 40]. Because of

this property, the absorbing medium acts like the saturable loss in a conventional

passively modelocked system, suppressing the growth of continuous waves, while

allowing a short pulse to propagate.

It is evidently important that both the gain medium and the absorbing medium

act on the optical pulse simultaneously. We may achieve this simultaneous inter-

action by designing a QCL structure that has the gain and absorbing periods

interleaved along the growth axis of the structure, as shown in Fig. 3.1. By mak-

ing the dipole moment in the absorbing periods twice that of the gain periods, a

π pulse in the gain periods is a 2π pulse in the absorbing periods. Therefore, an

injected π pulse completely depletes the gain medium as it makes its way through

the QCL, whereas, the absorbing medium becomes transparent. We will show that

by controlling the amount of gain and absorption per unit length in the gain and

absorbing media, pulse durations can be controlled.

In order to suppress spatial hole burning, the RNGH instability, or the growth

of multiple pulses, we do not want continuous waves to grow in an SIT modelocked

laser. The absorption parameter should be large enough to keep the laser operating

below the threshold for the growth of continuous waves. Therefore, the laser cannot

self-start, and it is necessary to use external means to start the modelocking.

Essentially, we need a seed pulse that has sufficient energy and a duration on the

order of T1. We suggest two optical approaches. First, we can seed the pulse from

an external source by injection-locking, or, second, we can use active modelocking

to generate an initial pulse that will have a suitable energy and initial duration

for SIT modelocking. It may also be possible to use a mechanical or an electrical

impulse to start the modelocking.
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3.3 Maxwell-Bloch Equations

Wang et al. [28] and Gordon et al. [29] have observed evidence for Rabi oscillations

and the RNGH instability in QCLs that only have gain periods. They demon-

strated that the two-level Maxwell-Bloch equations [122, 123] apply to QCLs in

some parameter regimes, although they also showed that saturable absorption

affects the behavior quantitatively, significantly reducing the RNGH threshold.

They attributed the saturable absorption to Kerr lensing that increases the mode

overlap with the active region and reduces the losses in the cladding. These effects

depend sensitively on the details of the QCL geometry. They also observed that

spatial hole burning due to the interaction of forward- and backward-propagating

waves has an important effect on the pulse spectrum. They did not find it neces-

sary to include chromatic dispersion or other nonlinearities. Motivated by these

results, we started by using a simple two-level model based on the standard one-

dimensional Maxwell-Bloch equations [122, 123] for the analysis of our proposed

SIT modelocking in QCLs. However, we extended our model to include the sat-

urable nonlinearity and chromatic dispersion, and we will discuss their effects

on SIT modelocking of QCLs in Chapter 8. The Maxwell-Bloch equations that

describe the light propagation and light-matter interaction in a QCL having in-

terleaved gain and absorbing periods may be written as

n

c

∂E

∂t
= −∂E

∂z
− i

kNgΓgµg

2ε0n2
ηg − i

kNaΓaµa

2ε0n2
ηa − 1

2
lE, (3.1a)

∂ηg

∂t
=

iµg

2~
∆gE − ηg

T2g

, (3.1b)

∂∆g

∂t
=

iµg

~
ηgE

∗ − iµg

~
η∗gE +

∆g0 −∆g

T1g

, (3.1c)

∂ηa

∂t
=

iµa

2~
∆aE − ηa

T2a

, (3.1d)

∂∆a

∂t
=

iµa

~
ηaE

∗ − iµa

~
η∗aE +

∆a0 −∆a

T1a

, (3.1e)

where the subscripts g and a in Eq. (3.1) refer to quantities in the gain and ab-

sorbing periods, respectively. The independent variables z and t are length along
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the light-propagation axis of the QCL and time. The dependent variables E, η,

and ∆ denote the envelopes of the electric field, polarization, and inversion. The

parameter µ denotes the dipole moment between the resonant levels. The param-

eters ∆g0 and ∆a0 denote the equilibrium inversion away from the modelocked

pulse. The parameters n and c denote the index of refraction and the speed of

light. The parameters N and Γ denote the electron density and the overlap factor

of the optical mode with the active region. The parameters k, l, ε0, and ~ denote

the wavenumber in the active region, the linear loss including the mirror loss, the

vacuum dielectric permittivity, and Planck’s constant. The notation closely fol-

lows that of Wang et al. [28] and Gordon et al. [29], with the differences that we

have an absorbing as well as a gain medium, and we are considering uni-directional

propagation, as is often done in the literature to study the evolution of modelocked

pulses [27].

3.4 Analytical Solutions and Stability Limits

Assuming that T1g and T1a are large enough so that they may be set equal to ∞ in

Eqs. (3.1c) and (3.1e), and focusing on the special case in which µa = 2µg and the

pulse is a π pulse in the gain medium, Eq. (3.1) has an exact analytical solution

that we may write

E =
~

µgτ
sech x, (3.2a)

ηg =
iBg

2
∆g0 sech x, (3.2b)

∆g = Bg∆g0

(
τ

T2g

− tanh x

)
, (3.2c)

ηa =
iBa

2
∆a0

(
− sech x tanh x +

τ

3T2a

sech x

)
, (3.2d)

∆a =
Ba

2
∆a0

(
1 +

τ 2

3T 2
2a

)
−Ba∆a0

(
sech2 x +

2τ

3T2a

tanh x

)
, (3.2e)
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where

x =
t

τ
− z

vτ
. (3.3)

We also set

Bg =
1

1 + τ/T2g

and Ba =
2

(1 + τ/3T2a)(1 + τ/T2a)
, (3.4)

so that ∆g → ∆g0 and ∆a → ∆a0 as t → −∞, and the equilibrium population

completely recovers on every pass of the pulse through the laser. Hence, Eq. (3.2)

shows that stable modelocked operation can be achieved in QCL structures that

satisfy the SIT modelocking requirements.

The following governing equations can be derived for the parameters τ and

v that correspond to the pulse duration and the pulse velocity, respectively, by

substituting Eqs. (3.2a), (3.2b), and (3.2d) in Eq. (3.1a):

τ/T2g

1 + τ/T2g

g∆g0 +
τ 2/3T 2

2a

(1 + τ/T2a)(1 + τ/3T2a)
a∆a0 − l = 0 (3.5)

and
1

v
=

n

c
− aτ

τ/2T2a

(1 + τ/T2a)(1 + τ/3T2a)
∆a0. (3.6)

The full-width at half-maximum (FWHM) pulse duration τFWHM equals 1.763τ .

We now consider in more detail the special case T2g = T2a ≡ T2. Writing ḡ = g/l,

ā = a/l, and τ̄ = τ/T2, we find that the equation for the pulse duration becomes

3

τ̄
=

3ḡ∆g0 − 4

2
+

[(
3ḡ∆g0 − 4

2

)2

+ 3(ḡ∆g0 + ā∆a0 − 1)

]1/2

. (3.7)

Equation (3.7) only has a solution when ā < (3ḡ∆g0− 2)2/12|∆a0|, where we note

that ∆a0 < 0.

In order to achieve SIT modelocking, the growth of continuous waves must

be suppressed. In order to suppress continuous waves, the gain must be below

threshold. To derive this condition, we set ∆g = ∆g0 and ∆a = ∆a0 in steady
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state, where there is no evolution in z. We then find from Eqs. (3.1b) and (3.1d),

ηg = i
µg

2~
T2g∆g0E, ηa = i

µa

2~
T2a∆a0E, (3.8)

where we are considering continuous waves, so that there is no dependence on t

and the t - derivatives vanish. After substitution in Eq. (3.1a), we obtain in steady

state

kNgΓgµ
2
gT2g∆g0

2ε0n2~
+

kNaΓaµ
2
aT2a∆a0

2ε0n2~
− l = 0, (3.9)

which may also be written g∆g0 + a∆a0 − l = 0, where

g =
kNgΓgµ

2
gT2g

2ε0n2~
, a =

kNaΓaµ
2
aT2a

2ε0n2~
. (3.10)

Physically, the parameter g corresponds to the gain per unit length from the gain

periods of the QCL, and the parameter a corresponds to the absorption per unit

length from the absorbing periods. The condition for the linear gain to remain

below threshold is g∆g0 + a∆a0 − l < 0. In the case of a fully inverted gain

medium, so that ∆g = ∆g0 = 1 and a fully uninverted absorbing medium so that

∆a = ∆a0 = −1, the condition to suppress continuous waves becomes g−a−l < 0.

Writing ḡ = g/l, ā = a/l, and τ̄ = τ/T2, we find that the condition to suppress

the growth of continuous waves becomes ḡ∆g0 + ā∆a0 − 1 < 0.

The conditions for stability may be summarized,

(ḡ∆g0 − 1)

|∆a0| < ā <
(3ḡ∆g0 − 2)2

12 |∆a0| . (3.11)

When ā is above the upper limit in Eq. (3.11), we have found by solving Eq. 3.1

computationally that an initial pulse damps away. When ā is below the lower

limit, continuous waves grow, we have computationally found that multiple pulses

are generated [120].
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Figure 3.4: Stability limits of the normalized absorption (ā) vs. the normalized
gain (ḡ) coefficients with different values of ∆g0 and ∆a0. The ratio T1/T2 is
infinite in all cases. For a given τ̄ and ā, the required ḡ increases as ∆g0 and
|∆a0| decrease.

Equation (3.11) defines a parameter regime in which stable modelocked oper-

ation is possible. In Fig. 3.4, we present the stability limits when the population

inversion in the gain and absorbing periods vary. In all cases, the lower lines indi-

cate the limiting values for ā, below which continuous waves grow, and the upper

lines indicate the limiting values for ā, above which initial pulses damp. Figure 3.4

shows that the minimum value of ḡ that is required for stable operation increases

when ∆g0 decreases and ∆a0 increases by the same amount. There is also a slight

decrease in the lower limit for ā and a larger decrease in the upper limit. Since the

upper limit drops more than the lower limit, the stable parameter region becomes

smaller. We also show contours of the pulse duration, normalized by the coher-

ence time T2g, denoted τ̄ , as given by Eq. (3.7). Pulse durations are approximately

on the order of T2g when ḡ ≈ 2.5 and ā ≈ 2.0. We also note that pulses become

shorter as ḡ and ā increase. However, both ḡ and ā are directly proportional to the

current; so, to increase the gain and absorption in a fixed ratio, one must increase

the current. At the same time, we note that ḡ and ā are directly proportional to

T2. Hence, it is possible to reduce the required current by increasing T2.

We have studied what happens to the stability limits if T2a/T2g vary, and we

show the results in Fig. 3.5. In Fig. 3.5, we have varied T2a keeping T2g constant.
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ḡ

ā

Figure 3.5: Stability limits of the normalized absorption (ā) vs. the normalized
gain (ḡ) coefficients with different values of T2a/T2g. We set T1g = T1a = ∞ in all
cases. At equilibrium, the gain medium is completely inverted, i.e., ∆g0 = 1.0,
and the absorbing medium is completely uninverted, i.e., ∆a0 = −1.0.

In a QCL, typical values of T2g and T2a are on the order of 100 fs. A change

in T2a affects the stability limits more than does a change in T2g, as is evident

from Eq. (3.5). When T2a/T2g increases, the upper stability limits increase. When

ḡ = 4.0, we find that the upper limit for ā varies from 3.75 to 8.3 to 24 as T2a/T2g

varies from 0.5 to 1.0 to 2.0. The lower limit for ā remains unchanged.

We now derive an energy-balance equation that describes the energy input

limits for stable operation when τ ¿ T2. We define Θ(z, t) =
∫ t

−∞ E(z, t
′
) dt

′
.

Then, Eqs. (3.1b) and (3.1c) may be written as

∂ηg(z, t)

∂t
=

iµg

2~
∆g(z, t)

∂Θ(z, t)

∂t
(3.12)

and
∂∆g(z, t)

∂t
= 2

iµg

~
ηg(z, t)

∂Θ(z, t)

∂t
. (3.13)

In the gain medium, the polarization and population inversion may be written in

terms of a single angle α as 2iηg = cos α and ∆g = sin α. We integrate both sides

of Eq. (3.12) or Eq. (3.13), after substituting these expressions for ηg and ∆g and

assuming that ∆g(z, t → −∞) = 1. We then obtain α(z, t) = π/2+ (µg/~)Θ(z, t).
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We may similarly write 2iηa = cos β and ∆a = sin β in the absorbing medium, and

we then find β(z, t) = −π/2 + (µa/~)Θ(z, t), where we have set ∆a(z, t → −∞) =

−1. We now consider Eq. (3.1a) in steady state, where there is no evolution in

z, and in the limit t → ∞, where there is no evolution in t. We also define a

normalized pulse energy

θ̄(z) = (µg/~)Θ(z, t →∞). (3.14)

Equation (3.1a) now becomes

g sin[θ̄(z)] = a
µg

µa

T2g

T2a

sin

[
µa

µg

θ̄(z)

]
, (3.15)

where we note that the linear loss may be neglected in the limit τ ¿ T2. In the spe-

cial case µa = 2µg and T2g = T2a ≡ T2, we find a(µg/µa)(T2g/T2a) sin[(µa/µg)θ̄] =

a cos θ̄ sin θ̄, so that Eq. (3.15) becomes cos θ̄ = g/a, which defines the limits of

the input energy that is required to generate a single pulse,

cos−1(g/a) < θ̄ < 2π − cos−1(g/a). (3.16)

When the initial value of θ̄ is within these limits, a single pulse with a final value

of θ̄ = π is generated. When the initial value of θ̄ is below this value, the lower

limit in Eq. (3.16), the initial pulse damps. When the initial value of θ̄ is above

the upper limit, the initial pulse splits into multiple pulses.

In the analysis up to now it has been assumed that the central carrier frequency

of the light pulse and the transition frequency in both the gain and absorbing media

are the same. Since the frequency of the light is largely determined by the gain

medium, it is reasonable to assume that there is no detuning between the light and

the gain medium. Even if the modelocking is seeded by injection-locking, as in

the experiment of Choi et al. [124], the injection-locking laser can be tuned to the

gain resonance. In principle, there may be a small detuning between the gain and

absorbing media due to design or growth issues; however, it is possible to design the
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gain and absorbing media so that detuning is nearly absent. QCLs are currently

being grown with high accuracy and experimentally-observed wavelengths agree

closely with the designed values.

If there is a detuning of ∆ω between the gain and the absorbing periods and

the light pulses are tuned to the gain periods, as would normally occur in a laser,

then Eq. (3.1d) becomes

∂ηa

∂t
=

iµa

2~
E∆a −

(
1

T2

− i∆ω

)
ηa. (3.17)

Analytical solutions for ηa and ∆a may be found in presence of detuning ∆ω when

τ ¿ T2, so that the term proportional to 1/T2 may be neglected in the polarization

equation. In this case, the solutions become

ηa =
∆ωτ

1 + (∆ωτ)2
sech x + i

1

1 + (∆ωτ)2
sech x tanh x, (3.18)

∆a = −1 +
2

1 + (∆ωτ)2
sech x, (3.19)

where x = t/τ − z/vτ and ∆a0 = −1 at t → −∞.

On physical grounds, it is apparent that the criterion for acceptable detuning is

that ∆ω . 1/T2, since τ . T2 and the bandwidth of the pulse in angular frequency

is ∼ τ−1. If T2 is 100 fs, and we demand conservatively that ∆ω < 0.1/T2, then

∆ω . 1012 s−1, corresponding to an allowed frequency detuning of 1.6× 1011 Hz,

which is 2% of the carrier frequency of 8 µm light and is not overly demanding. We

have found a more exact criterion computationally that we will present shortly.

3.5 Computational Analysis

In order for the solution reported in Eq. (3.2) to be of any practical interest, it

must be robust when µa differs from 2µg, when T1g and T1a are on the order of a

picosecond or less, when an initial pulse that is long compared to its final, stable
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duration is injected into the medium, and when the initial pulse area differs from

the ideal value of π in the gain medium and 2π in the absorbing medium. The

Maxwell-Bloch equations must be solved computationally to determine what hap-

pens under these conditions. For computational analysis, we normalize Eq. (3.1).

We define Ē = (µgT2g/~)E and we introduce the retarded time t′ = t−(n/c)z, the

normalized time t̄ = t/T2g, and the normalized distance z̄ = lz, so that Eq. (3.1)

becomes

∂Ē

∂z̄
= −iḡηg − i

ā

(T2a/T2g)µ̄
ηa − 1

2
Ē, (3.20a)

∂ηg

∂t̄
=

i

2
∆gĒ − ηg, (3.20b)

∂∆g

∂t̄
= i(ηgĒ

∗ − η∗gĒ) +
∆g0 −∆g

T1g/T2g

, (3.20c)

∂ηa

∂t̄
=

i

2
µ̄∆aĒ − ηa

T2a/T2g

, (3.20d)

∂∆a

∂t̄
= iµ̄(ηaĒ

∗ − η∗aĒ) +
∆a0 −∆a

T1a/T2g

, (3.20e)

where ḡ = g/l, ā = a/l, and µ̄ = µa/µg.

In our simulations, we used different window sizes, depending on the pulse

evolution, and we verified that the pulse intensities are always zero at the window

boundaries. We spaced our node points 1 – 5 fs apart, and chose a step size between

1 µm and 10 µm, depending on the material parameters in the simulation. In each

simulation these values were constant, and we checked that reducing these values

made no visible difference in our plotted results. Finally, we verified by extending

the propagation length that we were following the pulses over a sufficiently long

length to reliably determine whether the pulses are stable or not.

In Fig. 3.6, we show the limits of ḡ and ā for stable operation with different

values of T1/T2 when T1g = T1a ≡ T1 and T2g = T2a ≡ T2. We begin by assuming

that a hyperbolic-secant-shaped pulse having an area of π is injected into the

QCL. Before the pulse is injected, the population is completely in the upper lasing

level in the gain medium, i.e., ∆g0 = 1.0 and is completely in the ground level in
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Figure 3.6: Stability limits of the normalized absorption (ā) vs. the normal-
ized gain (ḡ) coefficients with different values of T1/T2. In equilibrium, the
gain medium is completely inverted, i.e., ∆g0 = 1.0, and the absorbing medium
is completely uninverted, i.e., ∆a0 = −1.0. In each bundle of dashed lines,
corresponding to a fixed value of τ̄ , T1/T2 decreases from left to right.

the absorbing medium, i.e., ∆a0 = −1.0. In Fig. 3.6, the black solid line at the

bottom defines the lower limits of ā for any T1/T2. The solid curves on the top

are the loss-limited boundaries for different values of T1/T2. The injected pulses

are only stable when the gain and absorption parameters are set between these

two boundary limits. Stable pulses propagate in the laser cavity with no change

in shape and energy. In Fig. 3.7, we show the pulse evolution in the stable regime

and the two unstable regimes. Figure 3.7(a) shows stable pulse evolution when

ḡ = 4.0 and ā = 3.5. The laser becomes unstable when operated with ā smaller

than the lower limits given in Fig. 3.6 due to the growth of continuous waves. In

this case, the net gain of the laser becomes positive, i.e., ḡ−ā−1 > 0, and multiple

pulses may form in the cavity, leading to the generation of multiple pulses in our

simulations. We give an example of this behavior in Fig. 3.7(b). In this case, we

set ḡ = 4.0 and ā = 1.0; the laser becomes unstable when z̄ = 20, and the laser

cavity develops more than one pulse. With ā greater than the upper limit, the

gain medium cannot compensate for absorption and the linear loss. As a result,

pulses damp. In Fig. 3.7(c), which exhibits this behavior, we have set ḡ = 4.0,

and ā = 7.8. The upper limit for ā decreases when T1/T2 decreases as shown
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Figure 3.7: Pulse evolution in the system. (a) Gain and absorption coefficients
are in the stable regime, ḡ = 4.0, ā = 3.5. (b) Gain and absorption coefficients
are in the regime in which continuous waves are unstable, ḡ = 4.0, ā = 1.0. (c)
Gain and absorption coefficients are in the regime in which any initial pulse
attenuates, ḡ = 4.0, ā = 7.8. The ratio T1/T2 equals 10 in all cases. In equilib-
rium, the gain medium is completely inverted, i.e., ∆g0 = 1.0, and the absorbing
medium is completely uninverted, i.e., ∆a0 = −1.0.
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Figure 3.8: Stability limits of the normalized absorption (ā) vs. the normal-
ized gain (ḡ) coefficients with different values of T1a/T1g. We set T2g = T2a

and T1g/T2g = 10 in all cases. In equilibrium, the gain medium is completely
inverted, i.e., ∆g0 = 1.0, and the absorbing medium is completely uninverted,
i.e., ∆a0 = −1.0.

in Fig. 3.6, because the damping increases. We also show contours of the stable

normalized pulse duration, τ̄ = τFWHM/(1.763T2), with dashed lines in Fig. 3.6.

Pulse durations are on the order of T2 when ḡ & 2.5 and ā & 2.0. The pulse

durations can be made arbitrarily short by increasing ḡ and ā. However, ḡ and

ā are proportional to the current, so that the current must also be increased. If

T1/T2 decreases, then ḡ must increase if ā is constant in order to maintain τ̄ at a

constant value.

In a practical QCL design, the gain recovery times in the gain and absorbing

periods will not be equal, i.e., T1g 6= T1a. For generality, we consider here the

stability limits as T1a/T1g varies between 0.5 and 2.0. Figure 3.8 shows the stability

limits of ḡ and ā as T1a/T1g is varied. The solid black line at the bottom is the

lower limit of ā and remains the same for any T1a/T1g. However, the upper limit

of ā decreases when T1a/T1g decreases.

The analytical solution of the Maxwell-Bloch equations given in Eq. (3.2) as-

sumes that the absorbing medium has a dipole moment twice that of the gain

medium, i.e., µa = 2µg. The condition µa = 2µg will not be exactly satisfied due

to design constraints and growth limitations. The QCL gain is determined by µg



Chapter 3. SIT modelocking of QCLs 49

2.5 3 3.5 4 4.5

2

4

6
2.5

3.0
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Figure 3.9: Stability limits of the ratio of dipole moments in absorbing and
gain media (µ̄) vs. normalized gain coefficient (ḡ) for three cases of normalized
absorption (ā). The ratio T1/T2 is 10 in all cases. In equilibrium, the gain
medium is completely inverted, i.e., ∆g0 = 1.0, and the absorbing medium is
completely uninverted, i.e., ∆a0 = −1.0.

and T1g. To produce large gain, it is preferable that µg is large. In a vertical-

transition QCL, the dipole moment is generally & 2 nm. In diagonal-transition

QCLs, the dipole moment is & 1.4 nm, which is smaller. Despite the smaller value

of µg with diagonal transitions, we must have µa/e = 2.8 nm to satisfy the con-

dition µa = 2µg. Therefore, it is useful in practice if SIT modelocking is possible

when µa < 2µg. We determine the stability limits of µ̄ = µa/µg for stable opera-

tion. Figure 3.9 shows the lower and upper stability limits of µ̄ vs. ḡ as ā varies.

The solid lines in Fig. 3.9 indicate the lower limits for µ̄, while the dashed lines

indicate the upper limits. The two ends of each of the lines are at the stability

boundaries for ḡ at each particular ā. In each of the cases, the minimum value

of µ̄ is approximately 2 when ḡ is near its minimum, below which an input pulse

attenuates. As ḡ increases towards the limit at which continuous waves become

unstable, the minimum value of µ̄ required for stable operation decreases signif-

icantly. Pulses are stable with µ̄ ∼ 1.2 when ḡ = 3.5, 4.0, and 4.5 with ā =

2.5, 3.0, and 3.5, respectively, with ḡ just below the stability limit for generating

continuous waves. However, the stable pulse duration increases significantly as

µ̄ decreases. When µ̄ is below the solid lines in Fig. 3.9, pulses attenuate. The
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minimum value of µ̄ required for stable operation increases as ā increases for any

fixed ḡ. We have found no hard upper limit to stability as µ̄ increases, although

the pulses are increasingly distorted. The dashed lines in Fig. 3.9 indicate the

values of µ̄ at which the pulses become double peaked.

We simulated a number of cases in which we investigated the effect of detuning

the absorbing medium from the gain medium and the carrier frequency of the light.

Setting T1/T2 = 10, ∆g0 = 1.0, and ∆a0 = −1.0, we found that stable operation

can be obtained with a detuning ∆ωT2 ≤ 0.53 when ḡ = 3.5, ā = 3.5. Stable

operation can be obtained with ∆ωT2 ≤ 0.36 when ḡ = 3.5, ā = 3.0, and with

∆ωT2 ≤ 0.15 when ḡ = 3.5, ā = 2.5.

3.5.1 Injection-Locked Pulse Dynamics

An initial pulse can be externally injected into the QCL [124]. Its duration and

energy are critical parameters that must match the requirements to generate a

modelocked pulse. We have derived an energy balance equation in Eq. (3.16) that

defines the limits of the input energy for stable operation. However, Eq. (3.16)

assumes that input pulse has a duration, τi = τFWHM/1.763 ¿ T2 ¿ T1, so that the

effects of a finite coherence time T2 and damping due to finite T1 may be ignored.

If this condition is not satisfied, then Eq. (3.16) is no longer valid. From a practical

standpoint, an input pulse having a duration on the order of T2 or longer than T2 is

advantageous. We have calculated the dependence of the minimum and maximum

input energy on the input pulse duration for two different combinations of gain

and loss. We show the results in Fig. 3.10. The input pulse duration is normalized

to T2 = T2g = T2a and is plotted on a logarithmic scale. The value of T1/T2 has

been set to 10. When τi/T2 = 0.1, we find that the minimum normalized energy

θ̄ = (µg/~)
∫∞
−∞ Edt =

∫∞
−∞ Ēdt̄ that is required for stable operation is 0.30π when

ḡ = 3.5 and ā = 3.0. However, as we increase τi/T2, the minimum normalized

pulse energy that is required for stable operation increases significantly due to the

pulse’s decorrelation over its duration. It increases to 0.42π when τi/T2 = 1, 1.31π
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Figure 3.10: Input pulse energy limits vs. normalized input pulse width (τi/T2)
for two different cases of ḡ and ā. In both the cases, we set T1/T2 = 10. In
equilibrium, the gain medium is completely inverted, i.e., ∆g0 = 1.0, and the
absorbing medium is completely uninverted, i.e., ∆a0 = −1.0.

when τi/T2 = 10, and 9.59π when τi/T2 = 100. Pulses are stable for an input

energy of at least 20π when τi/T2 . 3.

We find that pulses split into multiple pulses when the input pulse energy & 2π.

However, as the stable pulse duration τ̄ ∼ 0.5 for the parameters ḡ = 3.5, ā = 3.0,

only one pulse is stable, and the others damp even with an initial normalized energy

of 20π when τi/T2 < 4. When τi/T2 & 4, continuous waves become unstable.

We find that multiple pulses are generated when the input energy is ≥ 3π with

τi/T2 = 10. The upper stability limit for the input energy decreases as τi/T2

increases when τi/T2 . 10. However, beyond that point, the upper stability limit

increases with τi/T2 as damping due to T1 comes into effect. The stability limits

for the input normalized energy when ḡ = 3.5 and ā = 3.5 show a similar trend

with the exception that both the stability limits are shifted upward due to an

increase in absorption.
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3.6 Conclusion

In this chapter, we showed that by combining absorbing with gain periods in

a QCL, one can create nearly ideal conditions to observe SIT modelocking and

thereby obtain pulses that are less than 100 fs long from a mid-infrared laser.

We presented detailed computational studies of the Maxwell-Bloch equations, in

which we extensively investigated the stability of the solutions as the equation

parameters vary. The solutions demonstrate the robustness of the SIT modelocking

technique and that QCLs can be modelocked using the SIT effect within practically

achievable parameter regimes.

In this work, we have treated g and a as parameters. While we expect them

both to increase proportional to the current, it is important to calculate the contri-

butions of the individual gain and absorbing periods, so that we know how many

of each kind of period should be grown. These calculations require a complete

calculation of the carrier distribution and coherence times in all the QCL levels.

We have developed a complete carrier transport model, and we have implemented

it to determine the raio of gain obtained from one gain period to absorption ob-

tained from one absorbing period, so that we can estimate the number of gain and

absorbing periods that will be required for stable modelocked operation. These

results will be presented in Chapter 6.

The uni-directional, two-level Maxwell-Bloch equations that we have used in

our study are a good starting point for the investigation of SIT modelocking. How-

ever, effects that are not included in the model are expected to affect the stability

limits. First, it is not possible to determine the effect of edge reflections with

a uni-directional model, and we cannot realistically investigate the consequences

when continuous waves become unstable. For that reason, we have implemented

a bi-directional model like that of Wang et al. [28] and Gordon et al. [29], but

keeping both gain and absorbing media. We will present and discuss the results in

Chapter 7. Second, nonlinear saturation and chromatic dispersion will set limits

on the validity of our theory as they become large. The results of Wang et al. [28]
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and Gordon et al. [29] indicate that these effects are not large enough in practice

to seriously impact the validity of our model, but the limits that these effects

impose merit further study. Therefore, we have extended our model by including

the effects of the saturable nonlinearity and chromatic dispersion, and we have

studied their effects on the stability of SIT modelocing in QCLs. Those results

will be presented and discussed in Chapter 8.



Chapter 4

Quantum Cascade Laser Theory

and Modeling

4.1 Introduction

Esaki and Tsu’s invention of the superlattice in 1970 [4], together with the progress

in crystal growth techniques such as molecular beam epitaxy (MBE) or metal-

organic chemical vapor deposition (MOCVD) [125], opened up the possibility of

creating new devices that have ultra-low dimensions with characteristics that can

be precisely controlled. Quantum confinement of the electrons and the possibility

of band-gap engineering [109] in heterostructures with thin layers have led to the

development of novel semiconductor laser sources, detectors, and light modulators.

The fundamental properties of these devices can be engineered by selective doping

of the heterostructures at the time of growth. Heterostructures with appropriate

doping concentrations can bend the potential energy profile across the device, and,

upon application of an external electric field, the charged particles (electrons or

holes) can contribute to the conduction current, so that the mobility of the devices

can be enhanced.

54
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It is important to understand the physics that underlies the electronic and op-

tical properties of these ultra-low dimensional heterostructures, in order to create

novel devices that fully utilize these properties. A quantum cascade laser (QCL)

is a semiconductor heterostructure device that takes advantage of the ability to

engineer the physics of quantum wells and superlattices and that exploits mod-

ern semiconductor growth technologies. When sufficiently thin layers (∼ 100 Å)

are alternatively grown with different material compositions, the band edge dis-

continuity leads to quantum confinement along the growth direction and modifies

the density of states [5]. Since the photon generation in a QCL is based on an

intersubband transition within the conduction band, the radiation energy can be

tailored by choosing different layer thicknesses and material compositions for the

quantum well and barrier.

When layer thicknesses approach the de Broglie wavelength, one must solve the

Schrödinger equation to obtain the quantized energy levels and eigenstates. Next,

one uses these energy levels and eigenstates to determine the radiative and non-

radiative transition rates, including the tunneling rates from the injector regions

into the active regions and vice versa. This modeling approach is routinely used

to design QCLs [107].

In this chapter, we first present the theoretical concepts, followed by a discus-

sion of the modeling approach. We then use this approach to design and under-

stand the characteristics of SIT-modelocked QCLs.

4.2 Electronic States in Heterostructures

Intersubband lasers such as QCLs are composed of thin, atomically abrupt layers

of two alternating materials that have different band-gap energies. Therefore, at

the interfaces of two such materials, there is an offsest in the band energies. When

the layers are made sufficiently thin, i.e., on the order of a de Broglie wavelength,
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electron motion is restricted in the growth direction ẑ and its energy is quantized

[5].

To obtain the electronic states in heterostructures, we will use the effective

mass approach in the envelope function approximation, and we will use the Γ-point

effective mass to describe the conduction band curvature [126–129]. In general,

the wavefunction for the electron is given by

ψ(r) = F (r)Un,0(r), (4.1)

where Un,0(r) is the lattice-periodic Bloch state wavefunctions at the band min-

imum, n is the subband index, and F (r) is the envelope function that depends

on the shape of the quantum well potential or other external potentials such as

the electric or magnetic fields. The variation of the material composition is in-

cluded in the model by using a spatially varying effective mass m∗(z) and potential

Ec(z). This potential represents the conduction band edge profile, including any

externally applied field and local variations due to space charge. Under the as-

sumption that the lattice-periodic function is the same in all constituent materials,

a Schrödinger equation for the envelope function may be written as

[
−
~2∇2

‖
2m∗(z)

− ~
2

2

∂

∂z

1

m∗(z)

∂

∂z
+ Ec(z)

]
F (r) = EF (r), (4.2)

where ∇‖ is the in-plane differential operator [130] and E is the corresponding

energy. We may write the envelope function F (r) as [128]

F (r) =
1√
S‖

exp(ik‖ · r‖)ψn(k‖, z), (4.3)

where k‖ is the in-plane wavevector, S‖ is the sample area, and ψn(k‖, z) is the

one-dimensional wavefunction of the n-th energy level at a fixed value of z. We
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find that ψn(k‖, z) satisfies

[
−~

2

2

d

dz

1

m∗(z)

d

dz
+ Ec(z) +

~2k2
‖

2m∗(z)

]
ψn(k‖, z) = En(k‖)ψn(k‖, z), (4.4)

where k2
‖ = k‖ · k‖. The spatially dependent effective mass introduces a cou-

pling between the in-plane direction and the z-direction. This coupling is usually

neglected, and Eq. (4.4) becomes the one-dimensional Schrödinger equation

[
−~

2

2

d

dz

1

m∗(z)

d

dz
+ Ec(z)

]
ψn(z) = Enψn(z), (4.5)

where the total energy is given by

En(k‖) = En +
~2k2

‖
2m∗ (4.6)

and m∗ is the well material effective mass. The energy En(k‖) is the sum of the

z-direction energy and the in-plane free particle kinetic energy. We can justify the

neglect of coupling between the in-plane and z-directions by noting that inclusion

of this coupling in Eq. (4.5) would effectively change the barrier height Ec(z) by

the energy

∆Ec =
~2k2

‖
2m∗

[
m∗

m∗(z)
− 1

]
, (4.7)

as can be derived from Eq. (4.4), assuming the form of Eq. (4.5) for En(k‖). As

long as the in-plane kinetic energy is within the barrier height, it is reasonable to

neglect this coupling. The form of the kinetic energy operator is chosen to preserve

continuity of the envelope functions and current density across material interfaces.

If the layer thickness becomes smaller than the de Broglie wavelength, then

there will be a large contribution of the individual atomic potentials to the crystal

potential. However, for most QCLs, the use of an envelope function and the

validity of the envelope function can be justified using the mathematical approach

developed by Bastard [126–128].

In this work, we solve Eq. (4.5) using a finite-difference scheme, where the
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structure of interest is divided into nodes with constant material parameters. QCL

material compositions usually consist of an InGaAs alloy for the quantum well and

an InAlAs alloy for the barrier lattice matched to an InP substrate and a GaAs

alloy for the quantum well and an AlGaAs alloy for the barrier lattice matched to

GaAs.

The electron population in the quantized energy levels introduces space charge

that affects the conduction band profile Ec(z). For this reason, it is sometimes

necessary to solve the Poisson equation

d

dz

[
ε(z)

d

dz
Φ(z)

]
= −ρ(z), (4.8)

where Φ(z) is the electrostatic potential, ε(z) is the spatially varying permittivity,

and ρ(z) is the charge density, yielding Ec(z) = Ec,0(z) − eΦ(z), where Ec,0(z)

is the intrinsic conduction band profile and e is the charge of an electron. The

Poisson and Schrödinger equations are iteratively solved to obtain a self-consistent

solution. However, for designs where the electron density is sufficiently low that

the Ec(z) is not significantly perturbed, a self-consistent solution is not necessary

[131].

In a QCL, the electronic energy levels are designed to force the electrons to

move into the lower subband minima. As a consequence, in-plane motion of

the electrons is close to the bulk conduction minimum, so that the band non-

parabolicity can be neglected in most cases. However, this approximation can be

improved by expanding the E vs. k‖ relation by adding additional even polynomial

terms [132]. Inclusion of band non-parabolicity is often described in terms of a

k‖-dependent — or equivalently E-dependent — effective mass given by [133]

m∗(E) = m∗(0)[1 + γ(E − V )], (4.9)
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rather than a constant effective mass, where V is the barrier height. The non-

parabolicity coefficient γ is given by

γ =

[
1− m∗(0)

m0

]2

E−1
g , (4.10)

where Eg is the bandgap of the material and m0 is the mass of an electron.

4.3 Strained Heterostructures

The introduction and improvement of novel growth techniques, particularly, MBE,

have made it possible to produce high-quality epitaxial interfaces, not only between

lattice-matched semiconductors, but even between materials that differ in their lat-

tice constants by several percent. Such a lattice mismatch can be accommodated

by a uniform lattice strain in sufficiently thin layers [134]. The resulting “pseu-

domorphic” interface is characterized by an in-plane lattice constant that remains

the same throughout the structure. These strains can cause profound changes in

the electronic properties, and therefore provide extra flexibility in device design.

In particular, the conduction band offset can be increased, and hence light of new

wavelengths can be generated. In this section, we will discuss a simple model —

the deformational potential theory — that is often used to describe the effects of

strain on the band structure.

The strains in a pseudomorphic system can be determined by minimizing the

macroscopic elastic energy with the constraint that the lattice constant in the

plane, a‖, is the same throughout the structure. We will derive the strain tensors

in each of the materials. For a system in which h1 and h2 are the respective
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thicknesses of the unstrained layers of semiconductors 1 and 2, we can write [135]

a‖ =
a1G1h1 + a2G2h2

G1h1 + G2h2

, (4.11a)

εi‖ =
a‖
ai

− 1, (4.11b)

ai⊥ = ai[1−Di(a‖/ai − 1)], (4.11c)

εi⊥ =
ai⊥
ai

− 1, (4.11d)

where i denotes the material (1 or 2), ai denotes the equilibrium lattice constants,

εi‖ and εi⊥ denote the parallel and perpendicular components of the strain tensor,

and Gi is the shear modulus given by

Gi = 2(ci
11 + 2ci

12)(1−Di/2). (4.12)

The constant D depends on the elastic constants c11, c12, and c44 of the respective

materials, and on the interface orientation

D001 = 2
c12

c11

, (4.13a)

D110 =
c11 + 3c12 − 2c44

c11 + c12 + 2c44

, (4.13b)

D111 = 2
c11 + 2c12 − 2c44

c11 + 2c12 + 4c44

. (4.13c)

Equation (4.11a) implies that when h1/h2 → ∞, then a‖ → a1, which corre-

sponds to a substrate of semiconductor 1 with a strained overlayer of semicon-

ductor 2. In general, if a thin overlayer is grown on a substrate, the value of a‖

is determined by the substrate and may be varied by using different substrates.

However, in the general case, a‖ must be determined using Eq. (4.11a). Once a‖

is known, ai⊥ can be obtained using Eq. (4.11c).

Van de Walle’s [135] model-solid theory gives the expressions for relative shifts

of conduction and valence bands that are valid for both diamond and zinc-blende
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lattices in terms of model-solid deformation potentials

∆Ec = ac
∆Ω

Ω
, (4.14)

∆Ev,av = av
∆Ω

Ω
, (4.15)

where Ec is the conduction band energy, Ev,av is the average of the three top valence

bands, ac and av are respectively the conduction and valence band deformation

potentials, and, ∆Ω/Ω = Tr(ε̂) = (εxx + εyy + εzz) is the fractional volume change.

Heterostructures are often based not only on pure materials, but also on al-

loys. Varying the composition of an alloy yields variations in the lattice constant.

These variations are well-described by a linear interpolation such as in the virtual-

crystal approximation. Varying the compositions provides additional flexibility in

tailoring the electronic properties of the alloy. When the constituent materials are

not lattice-matched, one should actually also consider a strain contribution, since

in an alloy AxB1−xC, with lattice constant a0 = xa0(AC) + (1 − x)a0(BC) one

material is effectively expanded, while the other is compressed. For an energy E,

with deformation potential ai, this effect leads to the following expression [136]

E(x) =xE(AC) + (1− x)E(BC)

+ 3x(1− x)[−ai(AC) + ai(BC)]
∆a

a0

, (4.16)

where ∆a = a0(AC)− a0(BC).

4.4 Intersubband Radiative Transitions

The optical gain for a QCL is provided by stimulated emission of photons from

electron transitions between subbands in the multi-quantum well structure. Ne-

glecting non-parabolicity, the initial and final subbands have the same curvature,

and hence the joint density of states for an intersubband transition is a Dirac

delta function at the subband separation ~ω = Ei−Ef . The following section will
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review the calculation of the spontaneous and stimulated transition rates. The

discussion given here is standard and has been adapted from [5, 137, 138].

Transitions between conduction subbands in quantum wells occur at a rate

given by Fermi’s golden rule

Wi→f =
2π

~
|〈f, nq,σ |H ′| i,mq,σ〉| δ[Ef (kf )− Ei(ki)± ~ωq], (4.17)

where

H ′ = − e

m∗A · p (4.18)

is the interaction Hamiltonian. In Eq. (4.18), A is the vector potential of the

incoming light and p is the momentum operator. The initial and final states

|i, nq,σ〉 and |f,mq,σ〉 are product states of the electron conduction band envelope

function eigenstates i, f and the photon eigenstates with n and m photons in each

mode. The modes are given by the photon wavevector q at frequency ωq, and the

polarization state discribed by σ = 1, 2. The parameter m∗ is the effective mass in

the well. In this discussion, we neglect the non-parabolicity of the band structure.

The inclusion of the band non-parabolicity will modify the oscillator strengths and

selection rules. More complete expressions that include the spatial dependence of

the effective mass and non-parabolicity are given in [133] and [139].

The Lorentz-gauge vector potential A for a harmonic interation can be written

in terms of the creation and annihilation operators a†q,σ and aq,σ as

A =

√
~

2εωqV
êqσ

[
aq,σexp(iq · r) + a†q,σexp(−iq · r)] . (4.19)

In this expression, ε is the permittivity, V is the volume of the cavity, and êq,σ

is the polarization vector. Application of the creation and annihilation operators
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yield an expression for the matrix element

∣∣〈H ′
i→f

〉∣∣2 /C =mq,σδmq,σ−1,nq,σ |〈f |exp(iq · r)êq,σ · p| i〉|2

+ (mq,σ + 1)δmq,σ+1,nq,σ |〈f |exp(−iq · r)êq,σ · p| i〉|2 , (4.20)

where

C =
e2~

2m∗2εωqV
. (4.21)

The first term in Eq. (4.20) corresponds to absorption of a photon, and the second

term corresponds to emission of a photon. The terms proportional to the number

of photons in the mode mq,σ correspond to stimulated emission, and the field-

independent term corresponds to spontaneous emission.

The initial and final electron states can be written in coordinate space r =

(x, y, z) as the product of a transverse and longitudinal envelope function as in

Eq. (4.3), where the in-plane coupling has been neglected, so that ψn(k‖, z) =

ψn(z). We then find,

Fi(r) = 〈r|i〉 =
1√
S‖

exp(ik‖,i · r‖)ψi(z), (4.22a)

Ff (r) = 〈r|f〉 =
1√
S‖

exp(ik‖,f · r‖)ψf (z), (4.22b)

where S‖ is the normalization area.

Since the cell period is by assumption small compared to the oscillation period

of the envelope, we can adopt the dipole approximation exp(iq · r) ' 1. Then the

dipole interaction between the conduction subbands may be written as

〈f |exp(±iq · r)êq,σ · p| i〉 ∼= 〈f |êq,σ · p| i〉

= (êq,σ · k‖,i) ~
Sxy

∫
dr‖ exp[i(k‖,i − k‖,f ) · r‖]

∫
dz ψ∗f (k‖,f , z)ψi(k‖,i, z)

− ẑ
i~
Sxy

∫
dr‖ exp[i(k‖,i − k‖,f ) · r‖]

∫
dz ψ∗f (k‖,f , z)

∂ψi(k‖,i, z)

∂z

= (êq,σ · ẑ)δk‖,f ,k‖,i
〈ψf |pz|ψi〉. (4.23)



Chapter 4. QCL theory and modeling 64

The first term in the second form of Eq. (4.23) vanishes due to the orthonormality

of the envelope functions ψi and ψf . The disappearance of this term is an example

of the intersubband selection rule: Only transitions with the E-field polarized

along the growth axis ẑ are permitted. The delta-function in Eq. (4.23) ensures

conservation of in-plane momentum over a transition.

Equation (4.23) is more commonly written in terms of the dipole interaction

er · E. We can rewrite the matrix elements by making use of the commutation

relation for the unperturbed Hamiltonian H0

i

~
[H0, z] =

pz

m∗ , (4.24)

where [H0, z] is the commutation operator H0z − zH0. We then obtain

〈f |pz|i〉 =
im∗

~
(Ef − Ei)〈ψf |z|ψi〉, (4.25)

where the integral 〈ψf |z|ψi〉 is the dipole matrix element zi→f . Inserting this

matrix element into Eq. (4.17) and Eq. (4.21) gives the following spontaneous and

stimulated transition rates W sp
i→f/mode and W st

i→f/mode per mode between the initial

i and final f states,

W sp
i→f/mode =

πe2ωq

εV
|êq,σ · ẑ|2 |zi→f |2δ(Ef − Ei + ~ωq), (4.26a)

W st
i→f/mode =

πe2ωq

εV
|êq,σ · ẑ|2 |zi→f |2δ(Ef − Ei + ~ωq)mq,σ, (4.26b)

where the Kronecker delta functions conserving in-plane momentum and photon

number have been dropped to simplify the notation.

4.4.1 Spontaneous Emission

To obtain the total spontaneous emission rate W sp
i→f , we must sum Eq. (4.26a)

over all of the photon modes and polarizations in the cavity. The number of
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electromagnetic modes in a differential volume d3q in q-space is given by

ρ(q)d3q =
d3q

8π3/V
=

q2dq sin θdθdφV

8π3
, (4.27)

when it is assumed that the cavity dimensions are much larger than the wavelength.

If we choose the polarization direction such that êq,σ=1 lies in the plane defined

by ẑ and q, we can write |êq,σ=2 · ẑ|2 = 0 and |êq,σ=1 · ẑ|2 = sin2 θ. Then, it is only

necessary to sum over one set of polarizations. We obtain

W sp
i→f =

e2

8π2ε~
|zi→f |2

∫ ∞

0

∫ π

0

∫ 2π

0

(nωq

c

)3

sin3 θδ(Ef − Ei + ~ωq)d~ωdθdφ

=
e2nω3

0

3πε0~c3
|zi→f |2 =

e2nω2
0

6πm∗ε0c3
fi→f , (4.28)

where n is the index of refraction at the center transition frequency ω0 = (Ei −
Ef )/~, c is the speed of light in vacuum, and fi→f is the scaled oscillator strength.

As shown above, the spontaneous emission rate can be expressed in terms of

the dipole matrix element or the scaled oscillator strength. The scaled oscillator

strength is given by

fi→f =
m∗

m0

fi→f,unscaled =
2m∗(Ef − Ei)|zi→f |2

~2
, (4.29)

where fi→f,unscaled is the unscaled oscillator strength. The scaled oscillator strength

is f ≡ 1 for a classical Hertzian dipole. It is convenient to use the scaled oscillator

strength fi→f since it is proportional to the gain, and it is a measure of the strength

of a transition. Furthermore, one can use the commutation rules [z, pz] = i~

and im∗[z, H] = ~pz to obtain the Thomas-Reiche-Kuhn sum rule for the scaled

oscillator strength
∑

f 6=i

fi→f = 1. (4.30)

Note that these commutation relations hold strictly only in the case of a single

effective mass m∗, rather than a spatially dependent one. Modifications to this

sum rule due to a spatially dependent effective mass and non-parabolicity are
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discussed in Sirtori et al. [133].

In a typical QCL structure, the spontaneous emission time τ sp
i→f is longer than a

microsecond and τ sp
i→f scales as ω−2. Therefore, radiative transitions are expected

to play no role in subthreshold transport, since nonradiative lifetimes are on the

order of picoseconds.

4.4.2 Stimulated Emission

The stimulated emission rate can be found by using the single mode transition

rate Eq. (4.26b) to examine the interaction of the dipole with the l-th cavity mode

whose central frequency is νl. Since each energy level has a finite width due to its

finite lifetime, it is useful to replace the Dirac delta-function with a normalized

lineshape function γ(ν) for the transition. A homogeneously broadened transition

will have a Lorentzian lineshape

γ(ν) =
∆ν/2π

(ν − νl)2 + (∆ν/2)2
, (4.31)

where ∆ν is the full width half maximum linewidth of the transition centered

about νl.

The stimulated emission rate W st
i→f is given by

W st
i→f =

ηλ2Iν

8πhνn2τ sp
i→f

γ(ν), (4.32)

where we have substituted the incident wave intensity

Iνl =
cmlhνl

nV
(4.33)
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that corresponds to ml photons in the l-th cavity mode. The interaction of the

incident field with the atom-like dipoles is described by the parameter

η =
3|zi→f |2
|ri→f |2 , (4.34)

where ri→f = 〈ψf (r)|r|ψi(r)〉. As long as the incident radiation is z-polarized, as is

the case for intersubband spontaneous noise input, we find that η = 3 for intersub-

band stimulated transitions because all of the multi-quantum well “dipoles” are

oriented in the same direction, rather than being randomly oriented as in atomic

media.

4.4.3 Intersubband Gain

It is now possible to obtain an equation of the intersubband optical gain using

the expressions for spontaneous and stimulated emission. Let us consider a two-

level system with population densities N1 and N2 in subbands with energies E1

and E2, so that, in the presence of the l-th cavity mode, there will be N2W21

induced transitions from 2 → 1, and N1W12 induced transitions from 1 → 2. As a

consequence, this is a net power flow into the propagating wave, given by

Power

Volume
= [N2W21 −N1W12]hν, (4.35)

where W st
12 = W st

21 is proportional to the field intensity Iν as seen in Eq. (4.32).

The initial and final subbands have the same density of states if we neglect the

non-parabolicity. Therefore, we can neglect differences in level degeneracy. Now,

if N2 > N1, the propagating wave will be amplified, so that

dIν

dz
= g(ν)Iν . (4.36)

The gain for intersubband transitions can be obtained by inserting the stimulated

transition rate of Eq. (4.32) into Eq. (4.35). The small signal bulk gain per unit
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length for a transition with a population inversion per unit volume ∆N is

g(ν) =
∆Ne2πν0|zi→f |2

~cnε0

γ(ν)

=
∆Ne2fi→f

4m∗cnε0

γ(ν). (4.37)

We can write the three-dimensional population inversion as ∆N = ∆N2D/Lmod,

where ∆N2D is the two-dimensional population inversion density, and Lmod is the

length of a module. The peak gain at frequency νl is therefore

g(νl) =
2∆Ne2νl|zi→f |2
~cnε0∆ν

=
e2

2πm∗cnε0

∆Nfi→f

∆ν
. (SI units). (4.38)

Hence, according to Eq. (4.38), the intersubband gain is proportional to the pop-

ulation inversion ∆N and |zi→f |2 or the oscillator strength fi→f .

When a single-mode QCL operates above threshold, the population inversion

is ideally clamped at its threshold value ∆Nth. Since the spontaneous emission

rate is independent of the photon mode number, the stimulated emission rate

exponentially increases and reduces the total lifetime, while amplifying the incident

wave. Thus, it is useful to relate the stimulated emission rate to the gain at

threshold gth and the intra-cavity photon number S.

Since the traveling intensity Iν , according to the Eq. (4.36), is directly pro-

portional to the photon density S, the growth of the intra-cavity photons from an

initial value S to a value S + ∆S is

S + ∆S = Sexp[g(z)∆z]. (4.39)

If ∆z is sufficiently small, then the growth rate can be approximated as exp[g(z)∆z]

' 1 + g(z)∆z. Given ∆z = vg∆t, where vg is the group velocity c/n, we find
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∆S = Sgvg∆t. Therefore, the photon generation rate is

dS

dt
= vggS. (4.40)

The expression for the gain at threshold gth can be rewritten in terms of the

population inversion at the threshold ∆Nth by using Eq. (4.32) and Eq. (4.36) to

yield

gth = ∆Nth
ηλ2

8πn2τ sp
i→fvg

γν

= ∆NthW
st
i→f

hν

vgIν

. (4.41)

Since hν/Iν (cm−2) is equal to 1/S (cm−2), this expression gives the stimulated

emission lifetime τst of the upper lasing state for the single quantum-well transition,

expressed in terms of the population inversion at threshold ∆Nth (cm−2) and intra-

cavity photon density S (cm−2)

τst =
∆Nth

vggthS
. (4.42)

Since a QCL repeats this intersubband transition periodically with Np cascaded

repetitions of the same structure. The gain expression gth in Eq. (4.41) corresponds

to the gain in a single cascaded period; the total gain in Np periods is gthNp and

the corresponding stimulated emission lifetime of a QCL becomes

τst =
∆Nth

vggthNpS
. (4.43)

4.5 Intersubband Nonradiative Transitions

In addition to the radiative transitions, the design of a QCL requires a thorough

understanding of the nonradiative transitions. Nonradiative transitions include
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electron-polar longitudinal optical (LO) phonon scattering, electron-electron scat-

tering, electron-interface roughness scattering, electron-acoustic phonon scatter-

ing, and electron-impurity scattering. These scattering mechanisms may occur

between two subbands within the conduction band (intersubband) or within a

single subband in the conduction band (intrasubband). If energy separation of

conduction subbands is larger than the LO phonon energy (ELO), then electron-

LO phonon scattering is the dominant scattering mechanism for the intersubband

transitions [140, 141].

For intersubband transitions where the energy separation of the subbands is

less than ELO, emission of LO phonons is energetically forbidden at low tem-

peratures. In this case, nonradiative relaxation is dominated by a combination of

electron-electron scattering, electron-impurity scattering, and electron-LO phonon

scattering of the high energy tail of the subband electron distribution. However,

even when devices are operated at liquid helium temperatures, one cannot assume

that the electron gas temperature is also low. Examination of energy loss rates for

cooling in a single subband suggests that the electron temperature may be any-

where from 50 ∼ 100 K higher than the lattice temperature [142]. Therefore, even

if the subband minima have an energy spacing less than ELO, there are usually

thermally energetic electrons whose energy exceeds ELO.

Electron-electron scattering plays a more important role in intrasubband scat-

tering [143, 144]. As will be discussed in next chapter, coherent transport through

the coupled quantum wells is often prohibited by fast intrasubband electron-

electron scattering. At a high carrier density, strong electron-electron scattering

contributes to the rapid decay of coherence between the injector and active region

states. This coherence is needed for efficient transport. The other scattering mech-

anisms turn out to be less important. Acoustic phonon scattering in particular is

relatively inefficient, especially at low temperatures where the phonon population

is small. Typical acoustic phonon intersubband scattering times are in the 100-ps

range [137, 145].



Chapter 4. QCL theory and modeling 71

Interface roughness scattering plays an insignificant role for intersubband scat-

tering between the radiative levels. Calculation of this mechanism is difficult since

it requires detailed knowledge of the microscopic growth characteristics. Smet

[137] performed calculations of interface roughness scattering and found typical

intersubband scattering times greater than 100 ps in both interwell and intrawell

transitions for defect concentrations of 1010 cm−2. However, the importance of

this mechanism depends strongly on the overlap of the wavefunctions with the

interfaces, as well as on growth characteristics; so, this mechanism cannot be

ignored. Interface roughness plays a significant role in intrasubband scattering,

where it contributes to broadening of the radiative linewidth and to the tunneling

coherence time [112, 146].

In this section, we will review the theory and modeling of the intra- and inter-

subband electron-LO phonon, electron-electron, and electron-interface roughness

scattering. The theories presented in this section are standard and adapted from

the discussions given in [138, 145].

4.5.1 Electron–LO Phonon Scattering

Electron scattering due to LO phonons is an important relaxation mechanism

for electron transport across the active region and injector region in a QCL. In

this section, we give a brief derivation of electron-LO phonon scattering rates in

a polar semiconductor heterostructure. In the derivation, the phonon spectrum

is assumed equal to the equilibrium bulk spectrum, and modifications due to

the heterostructure are ignored. Williams [138] investigated the detailed complex

phonon spectrum for the design of a THz QCL in order to utilize resonant optical

phonon scattering to obtain the population inversion. However, in most mid-

infrared QCLs, where the energy separation is larger than the phonon energy,

the bulk phonon approximation is reasonable and is nearly dispersionless at the

Γ-symmetry point when the corresponding phonon energy ELO is ∼ 34 meV in

InGaAs and ∼ 36 meV in GaAs [107].
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The scattering rate for an electron initially in state |i,ki〉 (subband i, in-plane

wavevector ki) to the final state |f,kf〉 through an interaction potential H ′ due

to an LO phonon is evaluated using Fermi’s Golden rule [145],

Wi→f (ki,kf ) =
2π

~

∣∣∣
〈
f,kf

∣∣∣H ′
e−ph

∣∣∣i,ki

〉∣∣∣
2

δ[Ef (kf )− Ei(ki)± ~ωLO], (4.44)

where ~ωLO is the electron-LO phonon energy and H ′
e−ph is the electron-LO phonon

interaction Hamiltonian. The quantity H ′
e−ph may be expressed as [145]

H ′
e−ph =

∑
q

{
α(q)

[
exp(iq · r)bq + exp(−iq · r)b†q

]}
, (4.45)

where α(q) is the electron-LO phonon interaction strength and bq, b†q are the

creation, annihilation operators for a phonon in mode q. The Fröhlich interaction

strength for electron-LO phonon scattering is given by [147]

∣∣∣α(q)
∣∣∣
2

=
~ωLO

2

e2

q2

(
1

ε∞
− 1

εdc

)
, (4.46)

where εdc and ε∞ are the static and high-frequency permittivities, respectively.

The q−2 dependence reduces the scattering rate for large momentum transfers,

effectively reducing the scattering between subbands with large energy separations.

The matrix element for electron-LO phonon transition is given by [138]

∣∣∣
〈
f,kf

∣∣∣H ′
e−ph

∣∣∣i,ki〉
∣∣∣
2

=
e2~ωLO

2V

(
1

ε∞
− 1

εdc

)
1

q2
z + q2

‖
|Ai→f |2

× δki,kf∓q‖(nωLO
+ 1/2∓ 1/2), (4.47)

where q‖ and qz are the components of the phonon wavevector that are perpen-

dicular (in-plane) and parallel to the growth axis (z-axis), respectively, nωLO
is the

Bose-Einstein phonon occupation number, and the upper and lower signs corre-

spond to phonon absorption and emission, respectively. The delta function ensures
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Figure 4.1: (a) Schematic illustration of the intersubband LO-phonon scat-
tering process. (b) The in-plane momentum between the initial wavevector ki

and final wavevector kf is conserved by the phonon wavevector q‖.

conservation of the in-plane momentum, and the form factor

Ai→f (qz) =

∫ ∞

−∞
dz ψ∗f (z)ψi(z) exp(±iqzz) (4.48)

is related to the qz-momentum uncertainty that is due to the spatially localized

envelope wavefunctions ψi(z) and ψf (z).

This expression can then be integrated over the phonon modes q and final

states kf to yield the scattering rate W (ki) from an initial wavevector. Assuming

parabolic subband dispersion, the final states lie on a circle with a radius kf that

is determined by conservation of energy, so that

k2
f = k2

i +
2m∗[Ef (0)− Ei(0)∓ ~ωLO]

~2
. (4.49)

Energy conservation and the in-plane momentum conservation rule allows us to

write the phonon wavevector q‖ in terms of ki and kf

q2
‖ = |ki − kf |2 = k2

i + k2
f − 2kikf cos θ, (4.50)

where the angle θ is the angle between the in-plane wavevectors ki and kf , as is

schematically illustrated in Fig. 4.1. After summation over the phonon modes q,
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Eq. (4.44) can be integrated over the final states kf to yield the total scattering

rate from an initial wavevector ki,

W abs
i→f (ki) =

m∗e2ωLO

8π~2

(
1

ε∞
− 1

εdc

)
nωLO

∫ 2π

0

dθ Bi→f (q‖), (4.51a)

W em
i→f (ki) =

m∗e2ωLO

8π~2

(
1

ε∞
− 1

εdc

)
(nωLO

+ 1)

∫ 2π

0

dθ Bi→f (q‖), (4.51b)

where superscripts abs and em denote absorption and emission, respectively, and

Bi→f is given by

Bi→f =

∫ ∞

∞
dz

∫ ∞

∞
dz′ψ∗f (z)ψi(z)ψ∗i (z

′)ψf (z
′)

1

q‖
exp(−q‖|z − z′|). (4.52)

The total scattering time between subbands si→f can then be obtained by aver-

aging over all possible initial states in the subband to yield [148]

1

si→f

=

∫∞
0

dEkfi(Ek)[1− ff (Ek ∓ ~ωLO)]Wi→f (Ek)∫∞
0

dEkfi[Ek]
, (4.53)

where Ek = ~2k2
‖/2m

∗ is the in-plane kinetic energy in the initial subband, fi(Ek)

is the Fermi distribution in the initial state, and ff (Ek) is the Fermi distribution

in the final state.

4.5.2 Electron-Electron Scattering

While an electron-electron scattering event can change the energy of an individ-

ual electron, no energy is removed from the global electron system. Rather, the

overall distribution is thermalized. Electron-electron scattering is expected to be

important for intersubband transitions between closely spaced subbands at low

temperatures where LO phonon scattering is suppressed. Experimentally, it has

proven difficult to measure intersubband relaxation times between two subbands

when the energy spacing is less than the LO phonon energy ELO. These relax-

ation times are generally attributed to electron-electron intersubband scattering.
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Figure 4.2: (a) Schematic illustration of some of the seven intersubband
electron-electron scattering processes that are possible between two levels.
There are many more possibilities since up to four levels can be involved.

In fact, the electron-electron scattering process is complex and since four elec-

tronic states are involved, including two initial and two final states, a variety of

electron-electron scattering processes exist [149–153].

In Fig. 4.2 and Fig. 4.3, we illustrate a few of the possible scenarios for intersub-

band electron-electron scattering and all of the scenarios for intrasubband electron-

electron scattering, respectively. Among them, |2〉|2〉 → |2〉|1〉 and |2〉|1〉 → |1〉|1〉
processes are Auger-type scattering, which are important in long wavelength semi-

conductor lasers such as in a THz QCL, as the energy separation decreases this

scattering.
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Figure 4.3: (a) Schematic illustration of the intrasubband electron-electron
scattering processes.

Accurate calculation of electron-electron scattering rates in quantum well sys-

tems is a complicated many-body problem. Electron-electron interactions are me-

diated by the Coulomb potential, which is screened by the surrounding electron

system. In low-density systems, where screening can be ignored, Fermi’s Golden

Rule is the most common method for calculating scattering rates. Because of

the mathematical complexity of describing screening in a multi-subband system

at a finite temperature, a simplified single-subband screening model is typically

used. For intersubband transitions, the difference between a single-subband static

screening model and a full dynamic, finite temperature, multi-subband dielectric

function model is insignificant [138]. Calculations using both the simplified and

complete models show that for moderate densities (< 5×1011 cm−2), there is little

difference between the intersubband rates calculated with and without screening

[154].
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Let us consider an electron that is initially in state |i,ki〉 that scatters due to

an interaction with another electron that is initially in state |j,kj〉, so that the

final states of the electrons are |f,kf〉 and |g,kg〉, respectively. The unscreened

matrix element for this event is [145]

H ′
i,j→f,g(ki,kj,kf ,kg) =

2πe2

S‖ε
Ai,j→f,g(q‖)δ(kf + kg − ki − kj), (4.54)

where

q‖ = |ki − kf |, (4.55)

and the form factor is

Ai,j→f,g(q‖) =

∫ ∞

−∞
dz

∫ ∞

−∞
dz′ψi(z)ψ∗f (z)ψj(z

′)ψ∗g(z
′)exp(−q‖|z − z′|). (4.56)

Then the total electron-electron scattering rate is given by [145]

Wi,j→f,g(ki) =
e4

2π~ε2

∫
d2kj

∫
d2kf

∫
d2kg

|Ai,j→f,g(q‖)|2
q2
‖

fj,kj
(1− fg,kg)(1− ff,kf

)

× δ[Ef (kf ) + Eg(kg)− Ei(ki)− Ej(kj)] δ(kf + kg − ki − kj).

(4.57)

If we consider the effect of screening with the simplified model, then q2
‖ in Eq. (4.57)

is replaced by ε2
sc(q‖, T )q2

‖, where ε2
sc(q‖, T ) represents the correction due to the di-

electric constant that results from screening. The total electron-electron scattering

time si,j→f,g can be obtained by averaging over all possible initial states in the sub-

band
1

si,j→f,g

=

∫∞
0

dEi
kfi(E

i
k)Wi,j→f,g(E

i
k)∫∞

0
dEi

kfi[Ei
k]

. (4.58)

4.5.3 Electron-Interface Roughness Scattering

Since semiconductor heterojunctions and quantum wells are composed of mate-

rials with different bandgaps, interfaces between these materials possess varying

degrees of roughness. Ideally, the interfaces should be abrupt. In reality, there
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  ∆  

AlGaAs GaAs AlGaAs

Figure 4.4: A sketch of a GaAs/AlGaAs quantum well showing the variation
of the well thickness, which is the source of interface roughness. The dotted
lines represent ideal interfaces.

is a fluctuation in the material thicknesses at the interfaces, which causes charge

carriers to scatter. In Fig. 4.4, the interface roughness between GaAs and AlGaAs

is presented as a variation of well thickness. The ideal interfaces are shown as

dotted lines in the figure.

Electron scattering induced by the interface roughness can be calculated using

the theory of Ando [146, 155, 156]. We assume that the roughness height ∆(r) at

the in-plane position r = (x, y) has a correlation function

〈∆(r)∆(r′)〉 = ∆2exp

(
−|r− r′|2

Λ2

)
, (4.59)

where ∆ is the mean height of roughness and Λ is the correlation length. The

scattering element of an electron initially at state |i,ki〉 to the final state |f,kf〉
is given by [146]

〈i,ki|H ′
e−ifr|f,kf〉 =

∫
d2rAi→f∆(r)exp(iq · r) (4.60)

with

Ai→f = V0

∑
m

ψ∗f (zm)ψi(zm), (4.61)

where V0 is the conduction band offset, and ψi(zm), ψf (zm) are the wavefunctions

of the states |i〉 and |f〉 at the interface m. Then the scattering rate due to
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interface-roughness is given by [146]

Wi→f (ki) =
m∗∆2Λ2

2~3
V 2

0

∫ π

0

dθ
∑
m

|ψ∗f (zm)ψi(zm)|2 exp(−q2
‖Λ

2/4), (4.62)

where θ = cos−1(ki · kf/|ki||kf |) is the scattering angle. The total scattering time

between subbands si→f can then be obtained by averaging over all possible initial

states in the subband

1

si→f

=

∫∞
0

dEkfi(Ek)[1− ff (Ek)]Wi→f (Ek)∫∞
0

dEkfi[Ek]
. (4.63)

Scattering due to interface roughness depends largely on the interface parame-

ters ∆ and Λ. These parameters depend on the quality and environment of growth.

The product ∆Λ has been estimated to be ∼1 nm2 by comparing calculation and

experiment for GaInAs/AlInAs and GaAs/AlGaAs interfaces [112, 146, 156–158].

4.6 Resonant Tunneling Transport

Resonant tunneling is an important transport mechanism in quantum cascade

structures. In most QCL designs, resonant tunneling is employed to inject the

electrons into the active regions and also to extract the electrons from the ac-

tive regions. The role of coherent and incoherent transport in quantum cascade

structures has become an active experimental and theoretical area of research

[31, 159–161].

In this section, we will describe a density matrix model for resonant tunneling

in a two-level system as shown in Fig. 4.5(a). Here the basic structure is repeated,

and, in neighboring periods, state |1〉 is coupled to state |2〉 with a tight-binding

coupling −∆0/2. As schematically shown in Fig. 4.5(a), these localized states are

eigenstates of single quantum wells only, and are not eigenstates of the coupled

well system. If we diagonalize the Hamiltonian, we would obtain symmetric and

antisymmetric eigenstates separated by an anti-crossing gap ∆0. However, the
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Figure 4.5: Schematic illustration and the corresponding Hamiltonian for (a)
the tight-binding resonant tunneling model with an interaction −∆0/2 and (b)
the analogous two-level model with a dipole interaction −µE(t).

use of localized states as our basis provides a physical picture where dephasing

processes interrupt coherent tunneling and effectively localize the wavefunctions.

The structure is periodic, so that electrons in |2〉 relax back into |1〉 with time

T1. This model for resonant tunneling is almost directly analogous to the optical

Bloch equations for a two-level system in the presence of an electromagnetic field.

The schematic for such an analogous two-level system is shown in Fig. 4.5(b).

Using the standard density matrix formalism, the wavefunction for an electron

in the ensemble is given by

|ψ(t)〉 =
∑

ci(t)|i〉, (4.64)

and the density matrix ρ for a mixed state is defined by the ensemble average

ρij = 〈cic
∗
j〉. (4.65)

The diagonal elements ρii correspond to the state populations, and the off-diagonal

elements ρij represent the degree of coherence between basis states. The time

evolution of ρ is described by the equation of motion

d

dt
ρ = − i

~
[H, ρ], (4.66)
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where H is the Hamiltonian of the total system, as shown in Fig. 4.5(a). We

obtain the following set of coupled equations that describes both the population

difference ρ11 − ρ22 and the off-diagonal element ρ21

d

dt
(ρ11 − ρ22) =

i∆0

~
(ρ21 − ρ∗21)−

(ρ11 − ρ22)− (ρ11 − ρ22)0

T1

, (4.67a)

d

dt
ρ21 =

i∆0

2~
(ρ11 − ρ22)− iE21

~
ρ21 − ρ21

T2

, (4.67b)

where we note ρ21 = ρ∗12. In Eq. (4.67b), the variable E21 denotes the detuning

of E2 and E1 from resonance, where E2 is the energy of |2〉, E1 is the energy

of |1〉, and (ρ11 − ρ22)0 = 1 is the population difference at equilibrium. Two

phenomenological terms have been added. In Eq. (4.67a), the last term allows the

population to relax to its equilibrium value with time T1; in Eq. (4.67b), the last

term represents the relaxation of phase coherence with time T2 due to scattering.

In steady state, we can solve for the elements of the density matrix and obtain

an expression for the current density through the barrier

J =
eNρ22

T1

=
eN

2

(∆0/~)T2

1 + (E21/~)2T 2
2 + (∆0/~)2T1T2

, (4.68)

where N is the total electron sheet density of the two levels. This expression,

which is equivalent to the one reported by Kazarinov and Suris [1] and Sirtori et

al. [162], describes the resonant current versus detuning bias E21 as a Lorentzian

with a full width half maximum of

∆E21,FWHM =
2~
T2

[
1 +

(
∆0

~

)2

T1T2

]1/2

. (4.69)

The maximum current is obtained at resonance for E21 = 0, where

Jmax =
eN

2

(∆0/~)2T2

1 + (∆0/~)2T1T2

. (4.70)

The tight-binding model provides a picture in which the localized wavepacket

oscillates between wells with a frequency ωRabi = ∆0/~ and with a damping rate



Chapter 4. QCL theory and modeling 82

of approximately T−1
2 , where the wavepacket is subject to scattering with a rate

T−1
1 every time it is in state |2〉. Examination of the expression Eq. (4.70) reveals

that there are two regimes of operation. In the limit (∆0/~)2T1T2 À 1, we obtain

coherent tunneling in which the current density J is given by

J =
eN

2T1

. (4.71)

In this case, a wavepacket oscillates between states many times before relaxing, and

thus the relaxation rate T−1
1 and not ωRabi is the transport bottleneck. Therefore,

the population in steady-state will be distributed equally between |1〉 and |2〉.

The incoherent limit is reached when (∆0/~)2T1T2 ¿ 1, in which the current

density is given by

J =
eN

2

(
∆0

~

)2

T2 =
eN

2
ωRabi (ωRabiT2) . (4.72)

For the incoherent case, the current is limited by ωRabi and the coherence decay

rate T−1
2 . In other words, only a small fraction of the electrons in the ensemble

successfully tunnel through the barrier without interruption, and those that do

tunnel through scatter before tunneling back. Thus tunneling transport can be

considered one-way — from |1〉 → |2〉 — and a steady state population difference

will develop between the two states. The level broadening due to scattering is

larger than the anti-crossing gap, and no distinct doublet will be observed. Thus,

the states can be considered localized.



Chapter 5

Carrier Transport

5.1 Introduction

In order to estimate the performance of a QCL, it is important to calculate the

carrier transport rate. Moreover, understanding the basic physics of carrier trans-

port through a QCL structure can contribute to the design of improved lasers. In

general, carrier transport through a QCL is a complicated process as electrons may

move due to both coherent and incoherent mechanisms [31, 160–163]. A number of

scattering processes, as well as tunneling at resonance and out of resonance make

the carrier distribution hard to predict without a detailed calculation. Generally,

in a typical QCL structure, carriers move within an injector region and within an

active region principally by scattering, while carriers move between the injector

and active regions principally by tunneling.

Scattering mechanisms include electron-LO phonon scattering, electron-electron

scattering, electron-acoustic phonon scattering, electron-interface roughness scat-

tering, and electron-impurity scattering. For the usual energy spacing between

the subbands in a QCL, electron scattering due to interaction with LO phonons

is the dominant scattering mechanism in the intersubband transitions [140, 141].

However, electron-electron scattering may become significant if the subbands have

83
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an energy spacing that is much smaller than the LO phonon resonance energy

[144]. Electron-electron scattering is also the dominant scattering mechanism in

transitions that occur within a single subband [143, 144].

Recent pump-probe experiments performed on QCLs [31, 111] found evidence

of coherent transport during the gain recovery of the laser, i.e., in the carrier

injection from the injector into the active region. Woerner et al. [111] observed

pronounced Rabi oscillations before the steady-state population in the upper lasing

level recovered, which implies a strong coherence of the upper lasing level with the

injector ground level and a long coherence time during which the electrons oscillate

between these two levels. They found that the Rabi oscillations diminish when

the temperature or the carrier density increases, which they attributed to the

decay of the coherence between the upper lasing level and the injector ground

level at an increased temperature or carrier density. A theoretical study that

carefully accounts for the coherent as well as the incoherent processes is necessary

to understand the physics of the phenomena observed by Woerner et al. [111]

and to predict the carrier transport in QCLs. The strength of the coherent and

incoherent processes depends strongly on the operating conditions. So, one must

calculate these processes over the range of operating conditions that will appear

in practice.

In this chapter, we will discuss a model of the carrier transport in QCLs.

We will also introduce a model to calculate the coherence time between any two

levels. The model to calculate the coherence time is an integral part of the model

to calculate the carrier transport as the coherence time will affect the carrier

transport due to coherent mechanism. In particular, we will implement the carrier

transport calculation model for the QCL structure of Sirtori et al. [3]. A similar

structure has been used by Woerner et al. [111] for their pump-probe experiments.

We will calculate time-resolved carrier densities at each of the levels so that a clear

illustration of the effects of the underlying physical processes can be obtained. We

will show how carriers are distributed at different energy levels when a bias electric

field is applied across the laser and how current increases significantly when the
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applied electric field brings the levels in the injector and active regions close to

resonance. We will show that coherence between the injector and the active region

levels decays more rapidly as the temperature increases, which reduces the carrier

transfer due to tunneling. We will also show that coherence decays at a rapid

rate at an increased carrier density, thereby reducing the rate of carrier transfer

between the injector and active regions.

The remainder of this chapter is organized as follows: Sec. 5.2 describes the

carrier transport model. A model for the calculation of the coherence time is also

described and the scattering time between any two levels is defined. In Sec. 5.3,

the carrier transport is studied as the applied electric field varies. We present the

effects of varying the temperature on carrier transport in Sec. 5.4, while the effects

of varying the doping density are discussed in Sec. 5.5. Section 5.6 summarizes

the work on carrier transport of QCLs presented and discussed in this chapter.

5.2 Theoretical Model

A number of different approaches have been used in the literature to calculate car-

rier transport through QCLs [144, 159, 164–169]. We write the density equations

in a way that correctly includes both incoherent scattering and coherent tunneling

mechanisms in the model. To include the carrier transport due to tunneling, a

level in the active region is coherently coupled to any level of the preceding and

following injector regions. Similarly, any level in the injector region is coherently

coupled to any level in the preceding and following active regions. In Fig. 5.1, we

show an example how the carrier density equations are formulated in our model.

The density equations can be written as
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Figure 5.1: Schematic illustration of the carrier transport model. We show
how the carrier density in a level in the active region is related to the other
levels in the system. The blue straight arrows represent incoherent scattering
mechanisms. The red wavy arrows indicate coherent carrier transport. We use
double arrows for both incoherent and incoherent mechanisms to signify that
the carrier transport can be in either direction.

dnA,x

dt
=

∑

x′ 6=x

nA,x′

sx
′
x

+
∑
y−

nI,y−
sy−x

+
∑
y+
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∑
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∑
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∑
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∑
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∆0,y−x

2~
∑

x

(Cy−x − C∗
y−x) + i
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∑

x
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), (5.1b)
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=
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+

sy
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∑
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+
∑
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−
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x
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∆0,xy+

2~
∑

x

(Cxy+ − C∗
xy+

), (5.1c)

dCxy+

dt
= i

∆0,xy+

2~
(nI,y+ − nA,x)− Cxy+

T2,xy+

− i
Exy+

~
Cxy+ , (5.1d)

dCy−x

dt
= i

∆0,y−x

2~
(nA,x − nI,y−)− Cy−x

T2,y−x

− i
Ey−x

~
Cy−x. (5.1e)
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In the formulation of the density Eq. (5.1), we take an active region and two injec-

tor regions preceding and following the active region. In Eq. (5.1), the quantity n

is the carrier density in the levels of the active and injector regions. Subscripts A

and I denote active and injector regions, respectively. Indices x and y indicate the

levels in the active and injector regions, respectively. Subscripts − and + indicate

a quantity in the injector region that precedes and follows the active region, re-

spectively. The quantity Cxy denotes the coherence between levels x and y. The

parameter sxy denotes the scattering time between levels x and y. The parameter

∆0,xy denotes the energy splitting at resonance between levels x and y involved in

tunneling, while Exy is the detuning of the energy of level x (Ex) and the energy

of level y (Ey) from resonance. The parameter T2,xy is the coherence time between

levels x and y.

If two energy levels of two neighboring quantum wells that are separated by a

potential barrier are coherently coupled, the electron wave-packets can propagate

or tunnel through the barrier from one energy level to another [2, 170]. Before

achieving steady-state values, electron wave-packets make Rabi oscillations be-

tween the levels [162]. This coherent transport depends on the strength of the

coherence, how long the coherence exists, and the detuning of the levels from reso-

nance. The strength of the coherence depends on the energy splitting of the levels

at resonance, which in turn depends on the thickness and the height of the barrier

between neighboring quantum wells [162, 171]. The greater the thickness of the

barrier or the higher the height of the barrier, the weaker the coherence between

the levels becomes. The barrier thickness is a design parameter, while the bar-

rier height depends on the choice of the material system. Since in QCLs electron

tunneling is most important from the injector ground level to the upper lasing

level, and those two levels are in two neighboring quantum wells separated by

the injection barrier, the selection of the thickness of the barrier has a significant

role in determining the tunneling transport rate. The time it takes to destroy the

coherence between two levels is often called the coherence time. While propagat-

ing, electronic wave-packets lose phase coherence mainly due to scattering by LO
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phonons, coulombic potential from other electrons in the subband, and interface

roughness in the well and barrier materials. These scattering times depend on

the quantum mechanical design, quality of the interfaces during the growth of the

heterostructure, carrier density, and temperature. As a consequence, so does the

coherence time. The detuning of the levels from resonance depends on the applied

electric field. When there is no detuning, i.e. the electric field brings the levels in

the injector and active regions to the same energy so that they are in resonance,

then the carrier transport is maximized.

5.2.1 Coherence Time T2,xy

The coherence between any two levels x and y decays in a time T2,xy, as the prop-

agating electronic wave-packets lose phase coherence mainly due to intrasubband

scattering. The scattering mechanisms that dominate the coherence decay are

electron-electron scattering, electron-LO phonon scattering, and electron-interface

roughness scattering [111, 112]. So, the coherence time T2,xy between levels x and

y can be written as

1

T2,xy

=
1

T electron
2,xy

+
1

T phonon
2,xy

+
1

T roughness
2,xy

, (5.2)

where T electron
2,xy , T phonon

2,xy , and T roughness
2,xy are the contributions to the coherence time

T2,xy by scattering due to electrons, LO phonons, and interface roughness, respec-

tively.

The scattering of an electron in subband x due to an electron or an LO phonon

is uncorrelated with the scattering of an electron in subband y due to an electron

or an LO phonon. Therefore, intrasubband electron-electron and electron-LO

phonon transitions in levels x and y separately contribute to the loss of phase

coherence and the rates add linearly. In our model, we consider the dominant

intrasubband electron-electron transitions, i.e., x, x → x, x and y, y → y, y, and

we neglect the less significant intrasubband electron-electron scattering, such as
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x, y → x, y, in order to reduce the computational burden. However, we have

seen that the results do not change by a noticeable amount when x, y → x, y

electron-electron scattering is included in the model. Therefore, the contribution

of electron-electron scattering to the coherence time can be written as

1

T electron
2,xy

=
1

selectron
x,x→x,x

+
1

selectron
y,y→y,y

, (5.3)

where selectron
x,x→x,x is the scattering lifetime due to x, x → x, x electron-electron transi-

tions. For electron-LO phonon scattering, an electron may scatter by emitting an

LO phonon or by absorbing an LO phonon. Though electron scattering due to LO

phonon absorption is not significant in intersubband transitions, it is as significant

as scattering due to LO phonon emission in intrasubband transitions [148]. Hence,

scattering due to both LO phonon emission and LO phonon absorption in both x

and y levels should be included to calculate T2,xy. Therefore, we write

1

T phonon
2,xy

=
1

sphonon,abs
x→x

+
1

sphonon,em
x→x

+
1

sphonon,abs
y→y

+
1

sphonon,em
y→y

, (5.4)

where sphonon
x→x is the scattering lifetime due to x → x electron-LO phonon tran-

sitions, and the superscripts “abs” and “em” denote absorption and emission,

respectively. The intrasubband scattering due to interface-roughness in levels x

and y is correlated. Non-uniformity in a surface between two alternating materi-

als causes a change in the energy of all the electrons that have a finite probability

of existence near that interface. Therefore, the intrasubband scattering rate in

level x and the intrasubband scattering rate in level y due to interface roughness

cannot be linearly added when calculating the coherence time. Instead, we write

[112, 146]

1

T roughness
2,xy

=
1

sroughness
x→x

+
1

sroughness
y→y

− 2
1√

sroughness
x→x sroughness

y→y

, (5.5)
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where sroughness
x→x is the scattering lifetime due to x → x electron-interface roughness

transitions.

5.2.2 Scattering Time sxy

We next define the scattering time sxy used in our model. As previously stated,

electron-LO phonon intersubband scattering is the dominant intersubband scat-

tering mechanism. However, electron-electron scattering plays a role when the

level energies are sufficiently close to one another that LO phonon transitions are

forbidden except for the electrons in the high energy tails at a high temperature.

Though intrasubband transitions due to interface roughness may be significant,

intersubband electron-interface roughness transition rates are orders of magnitude

smaller than LO phonon transition rates or even electron-electron transition rates

[156]. Therefore, in our model described in Eq. (5.1), we calculate the scattering

time of an electron between levels x and y by

1

sxy

=
1

sphonon
xy

+
1

selectron
xy

. (5.6)

where sphonon
xy and selectron

xy are the scattering lifetimes of an electron between levels

x and y due to electron-LO phonon and electron-electron interactions, respectively.

The contribution of the electron-LO phonon scattering to the transition rate from

level x to level y in Eq. (5.1), where x 6= y is given by

1

sphonon
xy

=
1

sphonon
x→y

. (5.7)

Both emission and absorption of LO phonons contribute to 1/sphonon
x→y , and both

depend on the relative energies of levels x and y. To determine the contribution

of electron-electron scattering to the transition rate from level x to level y in

Eq. (5.1), one must sum the contributions from all the possible transitions in

which one electron leaves level x, decreasing the population there by one electron,

and then one must sum the contribution when one electron arrives in level y,



Chapter 5. Carrier transport 91

increasing the population there by one electron. Hence, we find

1

selectron
xy

=
∑

x′ 6=y,y′ 6=x

1

selectron
x,x

′→y,y
′
. (5.8)

We calculate the time-resolved solutions of Eq. (5.1) so that transient carrier trans-

port phenomena can be better visualized and the underlying physics can be ex-

plained. Initially, we put all the carriers of a period in the injector levels of that

period. Therefore, when we start, all the active region levels are empty. With

time, the carrier density in each level changes. As the scattering and coherence

times depend on the carrier density, we recalculate these parameters as the carriers

evolve until the carriers reach their steady-state values.

5.3 Carrier Transport with Electric Field

In this section, we will calculate the carrier density in the levels of the injector

and active regions when an external applied electric field is varied. In Fig. 5.2, we

present the conduction band energy diagram and the modulus-squared wavefunc-

tions of the QCL structure with an applied electric field of (a) 40 kV/cm, (b) 50

kV/cm, (c) 60 kV/cm, and (d) 70 kV/cm. In each case, levels 1–3 are in the active

region and levels 4–8 are in the injector region. The energy splitting at resonance

between the injector and the lasing levels is given in Table 5.1. With an applied

electric field of 40 kV/cm, the injector and active region levels are not properly

aligned to allow coherent carrier transport between them. The energy of the upper

lasing level (level 3) in the active region differs significantly from the energy of the

injector ground level (level 4) and the lower two levels in the active region are also

out of resonance with the following injector levels. With an applied electric field of

50 kV/cm, the injector and active region levels are better aligned to allow carrier

transport by tunneling. Though the upper lasing level is not at resonance with

the injector ground level, the detuning is small. The same is true for the lower

two levels of the active region and the following injector levels. When an electric
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Figure 5.2: Conduction band diagram and modulus-squared wavefunctions of
the QCL of Sirtori et al. [3]. The applied electric field is (a) 40 kV/cm, (b) 50
kV/cm, (c) 60 kV/cm, and (d) 70 kV/cm.

field of 60 kV/cm is applied, the injector and active region levels are almost in

resonance with respect to each other, allowing for coherent carrier transport. With

this bias electric field, the energy spacing between the injector ground and active

region upper lasing level (8.5 meV) is close to the resonant energy splitting (8

meV). The lower levels of the active region are also nearly in resonance with the

following injector levels. The energy separation between levels 3 and 4 increases

when the electric field further increases to 70 kV/cm in Fig. 5.2(d).

We have calculated the time evolution of the carrier density at each level of the

QCL when the applied electric field is varied. We present the time evolution of the

carrier density with an electric field of (a) 40 kV/cm, (b) 50 kV/cm, (c) 60 kV/cm,

and (d) 70 kV/cm in Fig. 5.3. In Fig. 5.3(a), due to a large detuning between the

levels of the injector and the active region with an electric field of 40 kV/cm,
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x, y ∆0 x, y ∆0 x, y ∆0

(meV) (meV) (meV)
1, 4− 1 2, 4− 1 3, 4− 8
1, 5− 1 2, 5− 1 3, 5− 5
1, 6− 1 2, 6− 1 3, 6− 8
1, 7− 1 2, 7− 1 3, 7− 9
1, 8− 3 2, 8− 3 3, 8− 11
1, 4+ 3 2, 4+ 11 3, 4+ 5
1, 5+ 5 2, 5+ 7 3, 5+ 4
1, 6+ 6 2, 6+ 9 3, 6+ 2
1, 7+ 10 2, 7+ 10 3, 7+ 2
1, 8+ 14 2, 8+ 9 3, 8+ 2

Table 5.1: Resonance energy splitting between the injector and active region
levels.
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Figure 5.3: Time evolution of carrier density at different levels in the QCL
structure of Sirtori et al. [3]. The applied electric field is (a) 40 kV/cm, (b) 50
kV/cm, (c) 60 kV/cm, and (d) 70 kV/cm. The total carrier density per period
is 2× 1011 cm−2.
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carrier injection into the active region and extraction from the active region are

affected. We do not observe pronounced Rabi oscillations in the evolution of the

carrier densities. We note that electrons accumulate at level 4 due to inefficient

tunneling at level 3. At the same time, level 2 in the active region and levels 6, 7,

and 8 in the injector scatter electrons to the lower energy levels in their respective

regions at a greater rate than the electron tunneling rate between injector and

active regions, mainly by emitting LO phonon. Therefore, the steady-state carrier

density of these levels is lower than the carrier density of levels 3 and 4. With an

electric field of 50 kV/cm applied to the laser, a large fraction of the carrier transfer

is due to tunneling because the detuning between the corresponding levels in the

injector and active region levels is small. Therefore, in Fig. 5.3(b), we note the

increased presence of Rabi oscillations in the time evolution of the carrier densities.

Level 6 is far from resonance with any of the active region levels; so, very few Rabi

oscillations are visible in the time evolution of n6. The carrier density in level 3,

n3, is much higher than when the electric field is 40 kV/cm and is close to n4.

This particular QCL reaches threshold when 48 kV/cm is applied to it. With an

electric field of 60 kV/cm applied to the QCL, the injector and active region levels

are almost at resonance. Carrier transfer due to tunneling increases significantly.

As a consequence, pronounced Rabi oscillations are visible in the time evolution

of n3 and n4, n1 and n7, and n2 and n8. The carrier density in the corresponding

active and injector region levels are almost equal, i.e., n3 ≈ n4, n1 ≈ n7, and

n2 ≈ n8. With an electric field of 70 kV/cm in Fig. 5.3(d), Rabi oscillations in the

time evolution of the carrier densities diminish. We note that n4 and n1 increase

and n3 decrease again due to inefficient electron injection and extraction.

In Fig. 5.4, we plot the current density through the QCL as a function of the

applied electric field. We see that little current flows when the electric field is

< 40 kV/cm. However, as the electric field increases further, the current density

increases significantly. The increase occurs at the point that the injector ground

and active region upper lasing levels begin to align, leading to a rapid increase in

the carrier tunneling between the injector and active regions.
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Figure 5.4: Current density through the QCL as a function of the applied
electric field. The total carrier density per period is 2× 1011 cm−2.

5.4 Effects of Temperature

Generally, the performance of a QCL becomes worse as the temperature rises.

In work to date, this performance degradation has been mainly attributed to

the scattering of electrons from the injector and the upper lasing levels to levels

that are not localized within the conduction band [144]. Therefore, the number

of electrons that take part in the radiative process decreases. A portion of the

degradation has also been attributed to electron back-scattering from the injector

levels to the lower lasing level, thus reducing the population inversion [144]. This

work did not take into account the breakdown of coherence between the injector

and active region levels when the temperature rises. This coherence breakdown

leads to a decrease in the tunneling rate between the injector and active region

levels.

We find that the increased rate of the decay of the coherence between injector

and active region levels significantly contributes to the performance drop at higher

temperature. The rate of electron scattering depends on the temperature. In par-

ticular, the rate of intrasubband scattering of electrons due to LO phonons and

electrons increases significantly when the temperature increases. The increased
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rate of electron scattering at an increased temperature destroys the phase coher-

ence of the propagating electrons that is needed for tunneling. In this section, we

will study the change in the carrier transport with temperature. We will show

that carrier transport between the injector and active regions decreases when the

temperature increases.
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Figure 5.5: Time evolution of carrier density at different levels in the QCL of
Sirtori et al. [3]. The applied electric field is 60 kV/cm, and the total carrier
density per period is 2 × 1011 cm−2. The temperature is (a) T = 100 K, (b)
T = 200 K, (c) T = 300 K, and (d) T = 400 K.

We present the time evolution of the carrier density at each level of the QCL

structure with a temperature of (a) 100 K, (b) 200 K, (c) 300 K, and (d) 400 K

in Fig. 5.5. The total number of carriers (Nd) in each period is 2× 1011 cm−2 and

the QCL is biased with an electric field of 60 kV/cm in each case. In Fig. 5.5(a),

when T = 100 K, the carriers oscillate between the levels before settling down

to a steady-state value due to significant coherent carrier transport and a slow

decay of the coherence between the injector and active region levels. In this case,
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carrier injection into the active region and extraction from the active region are

efficient. We note that the upper lasing level has nearly equal carrier density

as in the injector ground level, i.e., n3 ≈ n4. We also note that n3 and n4 are

much greater than the carrier densities of other levels. Therefore, backscattering

is less than at higher temperatures. As the temperature increases further, the

coherence time between the injector and active region levels diminishes. Therefore,

fewer oscillations are visible in Figs. 5.5(b)–5.5(d) and the density n3 decreases.

Even when the corresponding levels in the injector and active regions are close

to resonance, coherent transport decreases as the temperature rises. We note

that n4 drops as electrons back-scatter to the upper energy levels, thereby further

decreasing n3. Therefore, the densities n1, n2, n6, n7, and n8 increase when the

temperature increases.

In Fig. 5.6, we show the steady-state carrier density at each level in the injector

and active region as the temperature varies. The densities n3 and n4 decrease with

temperature, while, n1, n2, n6, n7, and n8 increase as temperature increases. These

density changes are due to the decrease of the coherent carrier transport at a higher

temperature and increase of backscattering of electrons from level 3 and level 4

to the higher energy levels in the injector and the lower active region levels of the

previous period.

We plot the values of the coherence time between the injector ground level

and the upper lasing level (T2,34) vs. temperature in Fig. 5.7 for three different

total carrier densities per period. The coherence time monotonically decreases

with temperature. However, the rate of decrease is larger at temperatures that

are less than 200 K. At temperatures that are greater than 400 K, we find that

the temperature effects saturate. The coherence time also strongly depends on the

total number of carriers in a period (Nd). The coherence time is 0.54 ps at 100

K with 1 × 1011 cm−2 carriers in one period, while it is only 0.18 ps at the same

temperature with 4× 1011 cm−2 carriers in one period.
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Figure 5.6: Carrier density at different levels vs. temperature. The ap-
plied electric field is 60 kV/cm, and the total carrier density per period is
2× 1011 cm−2.
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Figure 5.7: Coherence time between the upper lasing level (level 3) and the
injector ground level (level 4) vs. temperature. The applied electric field is 60
kV/cm and total carrier density per period is 2× 1011 cm−2.

5.5 Effects of Doping Density

Next, we study the effects of doping density (Nd) on the coherence between levels

and on the carrier transport. We assume that the total carrier density in a QCL

period equals the total doping density in that period. We show the time evolution

of the carrier density at each level in the injector and active region with (a) Nd =

1 × 1011 cm−2, (b) Nd = 4 × 1011 cm−2, (c) Nd = 7 × 1011 cm−2, and (d) Nd =
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10 × 1011 cm−2 in Fig. 5.8. In all cases, the temperature is fixed at 200 K and

the applied electric field is 60 kV/cm. Since the total carrier density per period

increases, the carrier density at each level increases from Fig. 5.8(a) to 5.8(d).

However, we note that the number of Rabi oscillations in the time evolution of the

carrier density decreases as the total carrier density per period increases, which is

due to a decrease in the coherence times. Rabi oscillations are more pronounced

in the time evolution of the carrier densities in the injector and active region levels

with Nd = 1 × 1011 cm−2 than in other cases. Carriers move easily from the

injector into the active region. Therefore, the carrier densities in levels 3 and 4

are approximately equal. However, as the carrier density per period increases,

Rabi oscillations diminish and coherent current transport ultimately ceases. As a

result, the difference between n3 and n4 becomes wider as shown in Figs. 5.8(c)

and 5.8(d).

In Fig. 5.9, we show the upper lasing level carrier density (n3) vs. the to-

tal number of carriers in one period for three different temperatures. The slope

dn3/dNd decreases as Nd increases. We also note the temperature dependence. At

a fixed value of Nd, the density n3 is smaller at a higher temperature. Also, the

decrease of dn3/dNd as Nd increases is greater at a higher temperature.

The phenomena observed in Figs. 5.8 and 5.9 are due to the change in the

coherence time between the injector and active region levels. Due to its significance

for the carrier transport, we focus on the coherence time between the injector

ground level and active region upper lasing level. We denote this time as T2,34.

The calculated values of T2,34 at three different temperatures are plotted as a

function of Nd in Fig. 5.10. We see that T2,34 decreases as Nd increases. The rate

of decrease of T2,34 is higher at a smaller temperature. Also at a fixed Nd, the

time T2,34 is greater at a smaller temperature. Therefore, we find that at a higher

temperature and a higher carrier density, coherent carrier transport is significantly

diminished.
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Figure 5.8: Time evolution of the carrier density at different levels in the QCL
of Sirtori et al. [3]. The applied electric field is 60 kV/cm, and the electron
temperature is 200 K. The total carrier density per period is (a) Nd = 1 ×
1011 cm−2, (b) Nd = 4 × 1011 cm−2, (c) Nd = 7 × 1011 cm−2, and (d) Nd =
10× 1011 cm−2.

2 4 6 8 10
0

1

2

3

4

Nd (×1011 cm−2)

n
3

(×
1
0
1
1

cm
−

2
)

 

 

T = 100 K

T = 200 K

T = 300 K

Figure 5.9: Upper lasing level (level 3) carrier density (n3) vs. total carrier
density per period (Nd) at different temperatures. The applied electric field is
60 kV/cm.
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Figure 5.10: Coherence time between the upper lasing level (level 3) and the
injector ground level (level 4) vs. total carrier density per period. The applied
electric field is 60 kV/cm.

5.6 Conclusion

We have developed a model to calculate the carrier transport of QCLs that includes

both coherent tunneling and incoherent scattering mechanisms. In particular,

we calculated the coherence times between injector and active region levels and

included its effect in the carrier transport calculation. We extensively investigated

the carrier transport in the QCL structure of Sirotori et al. [3] as the operating

conditions change. We showed the dependence of carrier transport on applied

electric field, on temperature, and on carrier density. We found that resonant or

non-resonant tunneling mechanisms increases the current significantly when the

applied electric field aligns the injector levels with the appropriate active region

levels. However, the coherent tunneling contribution of carrier transport is reduced

when the temperature increases or the carrier density in the levels increases due

to the rapid decay of phase coherence of the propagating electrons.

In this analysis, we have assumed that the lattice and the electrons of the

QCL have the same temperature. In practice, the lattice and the electrons will

have different temperatures with electron temperature always greater than the

lattice temperature. Electron temperature can be significantly higher than the
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lattice temperature for continuous wave and high-power operation of the laser.

Therefore, the phenomena discussed in this chapter should be observed at a lower

lattice temperature. The values of the coherence time estimated in this work are

somewhat over-estimated. We have calculated the coherence time by including

all possible electron-LO phonon scattering, electron-interface roughness scatter-

ing, and dominant x, x → x, x and y, y → y, y electron-electron scattering. There

are other scattering mechanisms such as x, y → x, y electron-electron scattering,

electron-acoustic phonon scattering, and electron-impurity scattering that if in-

cluded in the model would slightly decrease the calculated coherence times.



Chapter 6

QCL Structures for SIT

Modelocking

6.1 Introduction

A QCL structure that can modelock using the SIT effect differs from conventional

QCL structures. The most distinctive difference is the introduction of periods that

will produce loss rather than producing gain. In this chapter, we will discuss the

design issues that must be addressed to create an SIT modelocked QCL. We will

present realistic QCL designs with interleaved gain and absorbing periods that

satisfy the requirements for SIT modelocking. We will also present the calculated

stability limits of ḡ and ā for a modelocked QCL structure and the curves within

the stability region that correspond to different ratios of the gain to absorbing

periods. The QCL theory and the modeling concepts described in Chapter 4 have

been used to design and characterize these QCL structures. The models for the

calculation of carrier transport and coherence time developed in Chapter 5 have

been used to determine carrier densities at the resonant levels and the coherence

time between the resonant levels of the gain and absorbing periods.
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The remainder of this chapter is organized as follows: Sec. 6.2 discusses the

principal issues that should be considered in the design of an SIT modelocked

QCL structure. In Sec. 6.3, we will present two QCL structures, one emitting

at ∼ 8 µm and the other emitting at ∼ 12 µm, that have interleaved gain and

absorbing periods, and we will show that these structures satisfy the requirements

for SIT modelocking. In Sec. 6.4, we will discuss the ratio of the gain to absorbing

periods that is required for the laser to operate stably. Section 6.5 concludes this

chapter.

6.2 Design Issues

The design of an SIT modelocked QCL is different from that of a standard QCL

as it will have absorbing periods in addition to the gain periods; absorbing and

gain periods have to appear in a ratio that falls between limits that must be

calculated; and the values of the coherence time T2, the gain recovery time T1, and

the lifetimes of the two resonant levels in the gain and absorbing periods affect the

stability limits on the gain and absorption per unit length and the corresponding

ratio of the number of gain and absorbing periods.

The gain periods in SIT modelocked QCLs are conventional QCL structures.

They are meant to produce gain, so that electrons are injected into the upper

resonant level. On the contrary, the absorbing periods are meant to produce

coherent absorption, so that the electrons are injected into the lower resonant

level. Therefore, the relation between an injector and an active region in the

absorbing periods is different from that in the gain periods, as the injector ground

level should have nearly the same energy as the lower resonant level in the active

region, rather than the upper resonant level. Since the electrons are injected into

the lower resonant level in the absorbing periods, the upper resonant level may

approach the conduction band edge and induce leakage of the carriers into the

continuum or delocalized energy levels. One must design a structure that avoids
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this leakage. In the absorbing periods, electrons stay in the upper resonant level

for half a Rabi oscillation period after being radiatively scattered from the lower

resonant level. The leakage of any electrons during that time will reduce the

coherent emission by the absorbing periods into the trailing edge of the pulse that

is required for SIT [122]. Thus, a design objective is to ensure that the upper

resonant level is below the energy of the conduction band edge by at least several

times kbT . Additionally, electrons may tunnel or scatter from the upper resonant

level into the following injector region if there are energy levels in the following

injector that couple well to the upper resonant level and whose energies are close

to the energy of the upper resonant level. Therefore, the following injector region

should be designed in a way that it acts as a Bragg reflector for the upper resonant

level [172], so that electrons from the upper resonant level do not tunnel or scatter

into the following injector region.

The radiative transition energy in the gain periods, ~ωg, must be close to

the radiative transition energy in the absorbing periods, ~ωa. SIT is a resonant

phenomenon. The pulses will be damped if they are comparable in duration to

the coherence times T2g or T2a due to the decay of the polarization of the electrons

in the resonant levels. Therefore, it is preferable for the coherence times to be

as large as possible. The gain and absorption coefficients obtained from the gain

and absorbing periods also depend directly on T2g and T2a, respectively. Therefore,

large values of T2g and T2a will reduce the requirement on input current to produce

the same amount of gain or absorption. The gain recovery time T1 should be such

that it is greater than the pulse duration and the coherence time but much shorter

than the cavity round-trip time Trt. A value of T1 that is comparable to the cavity

round-trip time will affect the stability, since, in that case, the gain does not have

enough time to recover when the pulses bounce back from the edges and travel

in the opposite direction. On the other hand, if the value of T1 is comparable

to the pulse duration, pulses cannot form as the pulse edges experience much

higher gain due to the recovery of gain within its duration. This effect will lead

to a long tail, which may then produce continuous waves and multiple pulses.
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The upper resonant level in the gain period should have as long a lifetime as

possible, while the lower resonant level should have as short a lifetime as possible,

so that the population inversion is as large as possible. Additionally, a long upper

resonant level lifetime will increase the number of the carriers that contribute to the

radiation, which will reduce the required input current. The population inversion

in the absorbing periods will always be close to −1 as electrons are injected into

the lower resonant level. Nonetheless, the lower resonant level should have a long

lifetime so that the current requirement is reduced.

Absorbing periods should have a dipole moment twice as large as the dipole

moment in the gain periods. However, this requirement is not stringent. From the

analysis in Chapter 3, we note that modelocking can be obtained when the ratio

of the dipole moments in the absorbing periods and gain periods are as small as

1.2 and as large as ∼ 5. However, a dipole moment ratio of more than 2 would be

difficult to obtain while maintaining a large gain. When the dipole moment ratio

is less than 2, the equilibrium pulses are broader than when the ratio is two. When

the ratio is close to the limiting value of 1.2, the equilibrium pulses are broader

by more than a factor two than when the dipole moment ratio is 2.

6.3 QCL Structures

In this section, we present and discuss the design of two QCL structures that fulfill

the SIT modelocking requirements at two different wavelengths, i.e., at 8 and 12

µm. Similar structures can be designed over a broad range of mid-IR wavelengths.

We use the In0.52Al0.48As and In0.53Ga0.47As material systems for barriers and

wells, respectively, and the composition is lattice-matched to InP. To date, this

material system is the most common for mid-IR QCLs. However, modelocking

structures operating at less than 8 µm will be difficult to design using this material

system. Since electrons are injected into the lower energy level in the absorbing

periods, the upper energy level is close enough to the conduction band edge when
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the wavelength is below 8 µm to lead to a large increase in the carrier loss due

to scattering to the continuum-like states. To design a modelocking structure at

shorter wavelengths, it should be possible to use a strain-balanced InAlAs/InGaAs

or Sb-based material systems that increases the conduction band offset between

the wells and barriers.

The gain periods in our designs are typical QCL periods. We design a three-

quantum-well active region for the gain periods that has a diagonal transition,

which lowers the dipole moment relative to designs that have a vertical transition.

This choice simplifies the design of the absorbing periods. Population inversion is

achieved by confining the wavefunctions of the resonant levels in separate quantum

wells and depopulating the lower resonant level through phonon relaxation to

another level that is located below this lower resonant level. While the dipole

moment in the gain periods is not high, the upper resonant level lifetime is larger

than in the case of vertical transitions so that the gain remains high.

The design of the absorbing periods is different from the design of the gain

periods. The combined requirements of carrier injection into and extraction from

the lower resonant level and a dipole moment twice that of the gain periods makes

it challenging to design the absorbing periods. To achieve a large dipole moment,

the transition should be between two excited states that are extended over a

number of wells. The carrier lifetime is made high by reducing scattering through

phonon relaxation and reducing the carrier tunneling from the lower resonant level

into the succeeding injector levels. The injector regions have different designs

when the electrons are tunneling into a gain or absorbing active region due to the

different quantum electronic structures of gain and absorbing active regions.

The QCL structure in Fig. 6.1(a) emits light at 12 µm. We present a QCL

structure with one gain period and one absorbing period. Many such gain and

absorbing periods will be used in an actual structure. The ratio of the number

of gain to absorbing periods will be calculated later in this chapter. In the gain

periods, electrons are injected into level 3g, and the gain transition is between
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Figure 6.1: Conduction band diagram and modulus-squared wavefunctions
for one gain and one absorbing period of the (a) 12 µm, (b) 8 µm modelocking
QCL structures. The sequence of layer dimensions is (in Å, starting from left):
(a) 37, 36, 10, 35, 10, 34, 11, 34, 12, 35, 39, 37, 12, 62, 14, 58, 28, 42, 12, 40,
13, 37, 15, 34, 19, 34, 34, 45, 11, 65, 6, 69; (b) 42, 34, 9, 33, 12, 30, 13, 28,
16, 28, 41, 27, 18, 62, 14, 58, 28, 42, 12, 40, 13, 37, 13, 34, 16, 34, 34, 9, 31,
50, 5, 84. The numbers in bold type indicate In0.52Al0.48As barrier layers and
in roman type indicate In0.53Ga0.47As well layers. Red wavy arrows indicate
radiative transitions.
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levels 3g and 2g. The dipole moment between the resonant levels is given by

µg/e = 1.81 nm, where e is the charge of an electron. Level 3g has a lifetime of

∼ 2 ps. Level 1g is positioned approximately at phonon resonance with level 2g.

Level 2g has a lifetime of ∼ 0.5 ps, so that the population inversion is high. The

radiative transition energy between levels 3g and 2g is 101 meV. In the absorbing

periods, levels 4a and 5a are resonant with the levels 3g and 2g in the gain periods,

i.e., the transition energy between levels 4a and 5a is 101 meV. In the absorbing

period, the electrons are injected into the lower resonant level 4a. The dipole

moment between levels 4a and 5a is µa/e = 3.65 nm and level 5a has a lifetime of

∼ 0.83 ps.

When an appropriate bias is applied across the QCL structure of Fig. 6.1(a),

the injector ground level that precedes the active region of the gain period aligns

with 3g, and the injector ground level that precedes the active region of absorbing

period aligns with 4a. In this case, the gain periods will have a good population

inversion as level 3g has a lifetime much greater than the lifetime of level 2g, and

the absorbing period will have a population inversion ∼ −1 since level 5a can

always be considered empty. When the optical pulse propagates, the population

in level 3g radiatively scatters to level 2g. Level 2g depopulates quickly to level

1g through interaction with LO phonons, and then the electrons are extracted

from the active region by the following injector region. Since the gain recovery

time will be much shorter compared to the cavity round-trip time, population

inversion will be restored before the optical pulse arrives after bouncing back from

the cavity edges, except in a very short region of the cavity near the edges. In

absorbing periods, electrons stay in level 4a after being injected by the preceding

injector range. When an optical pulse propagates through the absorbing periods,

electrons from level 4a scatter to level 5a by absorbing photons. If the light pulse

has sufficient energy to make a Rabi oscillation shorter than the coherence time

of the levels, then the population from level 5a returns to level 4a in one Rabi

oscillation time by re-emitting photon energy coherently.

We present another QCL structure that will produce light at ∼ 8 µm in
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Fig. 6.1(b). In the gain period, the electrons are injected into level 3g and the

radiative transition takes place between levels 3g and 2g. Levels 3g and 2g have

a transition energy of 150 meV and a dipole moment, µg/e, of 1.55 nm. Level 3g

has a lifetime of ∼ 3 ps, while level 2g has a lifetime of ∼ 0.5 ps. The absorbing

periods of this structure have four levels. The radiative transition takes place be-

tween levels 3a and 4a and levels 3a and 4a are in resonance with levels 3g and 2g

of the gain periods. In the absorbing periods, electrons are injected into level 3a,

and level 4a is empty when there is no radiative scattering from level 3a. With the

application of bias that brings the injector ground levels in the injectors preceding

both the gain and absorbing periods close to levels 3g and 3a of gain and absorbing

periods, respectively, the gain periods have a high population inversion due to a

very long lifetime of level 3g compared to the lifetime of level 2g and the absorbing

periods will have approximately a population inversion of ∼ −1 as electrons are

injected into level 3a, and level 4a can be considered empty at steady-state.

Strictly speaking, there is not a single gain recovery time T1 for the gain or

absorbing periods. The gain recovery time is defined for a two-level system and it

is assumed that both levels relax at the same rate after they are perturbed, so that

there is only one time constant. Figure 6.1 shows that both gain and absorbing

periods have a complicated level structure; the levels all have different relaxation

times. Moreover, the two resonant levels will not relax at the same rate after

being perturbed. Despite this complexity, however, detailed calculations of the

relaxation times of the different levels in the structure, as described in Chapter 5,

show that all the relaxation times are on the order of ∼ 1 ps.

6.4 Ratio of Gain to Absorbing Periods

We have implemented the carrier transport model and the coherence time model

developed in chapter 5 to the structure that emits light at ∼ 8 µm. From the

calculated values of the carrier densities in the resonant levels and the coherenece
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times between the resonant levels of the gain and absorbing periods, we have

calculated the ratio of the gain per unit length that is produced by one gain period

to the absorption per unit length that is produced by one absorbing period. Using

this result, we may calculate the ratio of the number of gain to absorbing periods

Rga that corresponds to a given ratio of gain to absorption per unit length. Once

that is determined, we may find the limits on the ratio of gain to absorbing periods

that will lead to stable structures for SIT modelocking.

From the equations for g and a given in Chapter 3, the ratio of gain to absorp-

tion is given by
g

a
=

NgΓgµ
2
gT2g

NaΓaµ2
aT2a

. (6.1)

In Eq. (6.1), Ng and Na are the total carrier densities in the gain and absorbing

periods, respectively. To calculate the ratio of the gain from one gain period g′

to absorption from one absorbing period a′, we have to replace Ng and Na by

N ′
g and N ′

a, respectively, where N ′
g is the carrier density in one gain period, i.e.,

a summation of the carrier densities in two gain resonant levels, and N ′
a is the

carrier density in one absorption period, i.e. a summation of the carrier densities

in two absorbing resonant levels. We can assume that the optical mode overlap

factor for the gain and absorbing periods are approximately equal, i.e., Γg ≈ Γa.

Therefore, we may write
g′

a′
=

N ′
gµ

2
gT2g

N ′
aµ

2
aT2a

. (6.2)

After calculating the values of the quantities in Eq. (6.2) using the models

developed in Chapter 4 and in Chapter 5, we find that for the ∼ 8 µm QCL,

g′/a′ ≈ 4.9. The operating point of the QCL, and hence its stability, depends on

g/a, which may be varied by changing the ratio of the number of gain periods

to the number of absorbing periods Rga. In Fig. 6.2, we plot the stability curves

for the ∼ 8 µm QCL and different lines within the stable operating limits that

correspond to different choices of Rga.
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ḡ

ā
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Figure 6.2: Stability limits of ḡ vs. ā for the ∼ 8 µm QCL. If the laser is
operated with ā above the upper red solid curve, the pulse damps, and if the
laser is operated with ā below the lower red solid curve, continuous waves grow.
The blue dashed lines show the operating lines of the QCL with different gain
to absorbing period ratios.

6.5 Conclusion

In this chapter, we describe QCL structures that satisfy the condition to achieve

SIT modelocking. Absorbing periods are different from gain periods. Achieving

the required population inversion in the absorbing periods is simple, but mini-

mizing excited loss from the upper resonant level is challenging. The gain and

absorption obtained from the gain and absorbing periods depend on the design,

input current, and the ratio of the number of gain and absorbing periods. Once

the basic period is designed, appropriate numbers of gain and absorbing periods

can be determined by using the theory of Chapter 5.



Chapter 7

Backward-Propagating Waves

and Lumped Mirror Losses

7.1 Introduction

Up to this point, we have used the Maxwell-Bloch equations, applied to a simple

two-level system [122, 123], to model the light propagation in both the gain and ab-

sorbing periods, ignoring all spatial inhomogeneity. In particular, the large lumped

mirror losses were averaged over the propagation and no backward-propagating

waves were considered. We only considered the waves that propagate in a single

direction as shown in Fig. 7.1(a). A uni-directional propagation model for the

evolution of modelocked pulses is a standard approach in the literature and has

been extensively used [27]. However, when continuous waves experience gain, the

forward- and backward-propagating waves can interfere nonlinearly and produce

standing waves, due to the small values of gain recovery time T1. As a result,

Wang et al. [28] and Gordon et al. [29] observed spatial hole burning in conven-

tional QCLs with an input current set above threshold.

In this chapter, we will discuss a model for SIT modelocking of a QCL in which

the waves propagate in both directions and the mirror losses are not averaged over
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Figure 7.1: Schematic illustration of (a) Uni-directional propagation and (b)
Bi-directional propagation.

the cavity length, but instead are lumped at the edges as shown in Fig. 7.1(b).

We will show that backward-propagating waves do not affect the stability of SIT

modelocking. However, SIT modelocking is only stable when backward-going con-

tinuous waves are suppressed and hence cannot interact with forward-going waves.

By contrast, the lumped losses at the mirrors do affect the stability due to the in-

complete gain recovery that the pulses experience after reflecting from the mirrors,

coincident with their loss of energy at the mirrors.

7.2 Theoretical Models

When the electric field propagates in only one direction, so that there is no in-

terference, and we ignore spatial inhomogeneity, the dynamics in a QCL having

absorbing periods in addition to gain periods can be described by the Maxwell-

Bloch equations in the two-level approximation [119],

n

c

∂E

∂t
+

∂E

∂z
= −i

∑
x=a,g

kNxΓxµx

2ε0n2
ηx − 1

2
luE, (7.1a)

∂ηg,a

∂t
=

iµg,a

2~
∆g,aE − ηg,a

T2g,a

, (7.1b)

∂∆g,a

∂t
=

iµg,a

~
ηg,aE

∗ − iµg,a

~
η∗g,aE +

∆g,a0 −∆g,a

T1g,a

, (7.1c)

where the subscripts g and a refer to quantities in the gain and absorbing peri-

ods, respectively. The independent variables z and t are length along the light-

propagation axis of the QCL and time. The dependent variables E, η and ∆ denote
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the envelopes of the electric field, gain polarization, and gain inversion. The pa-

rameters ∆g0 ' 1.0 and ∆a0 ' −1.0 denote the equilibrium inversion away from

the modelocked pulse. The parameters n and c denote the index of refraction and

the speed of light. The parameters N and Γ denote the effective electron density

and the optical mode overlap factor with the active region of the laser structure.

The parameters k, ε0, and ~ denote the wavenumber, the vacuum dielectric per-

mittivity, and Planck’s constant. The parameter lu denotes the average linear loss

including mirror loss.

If we take into account counter-propagating waves and lumped mirror losses,

then the dynamics of a QCL that has both gain and absorbing periods can be

described by

n

c

∂E±
∂t

+
∂E±
∂z

= −i
∑
x=a,g

kNg,aΓg,aµg,a

2ε0n2
ηg,a± − 1

2
lbE±, (7.2a)

∂ηg,a±
∂t

= i
µg,a

2~
(∆g,aE± + ∆±

2g,aE∓)− ηg,a±
T2g,a

, (7.2b)

∂∆g,a

∂t
= i

µg,a

~
(ηg,a+E∗

+ + ηg,a−E∗
− + c.c.) +

∆g,a0 −∆g,a

T1g,a

, (7.2c)

∂∆±
2g,a

∂t
= ± i

µg,a

~
(E∗

+η− − η∗+E−)− ∆±
2g,a

T1g,a

, (7.2d)

where the variables, constants, and subscripts are the same as in the Eqs. (7.1a)–

(7.1c) for uni-directional propagation except that ∆2g,a refers to the inversion

grating. The quantities with + (–) subscripts represent waves traveling in the

positive (negative) z-direction. The linear loss lb in Eq. (7.2a) only includes the loss

in the medium. Mirror losses are taken into account by the boundary conditions.

QCLs have cleaved facets, and the reflection coefficients at the edges depend on

the refractive index difference between the laser medium and air, i.e., r− = r+ =

(n−1)/(n+1), where r− and r+ are the reflection coefficients at the two interfaces.

The notation closely follows that of Wang et al. [28] and Gordon et al. [29], with

the difference that we have an absorbing as well as a gain medium.
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Actually, in Eq. (7.2d), the recovery time T1 should be replaced by the grating

lifetime TG which is defined by [29]

1

TG

=
1

T1

+ 4k2D. (7.3)

The parameter TG determines the strength of spatial hole burning. The parameter

TG can therefore range from zero when there is no spatial hole burning to T1 when

spatial hole burning is strongest. The diffusion coefficient D can be estimated

from the Einstein relation D = µkBT/q, where µ is the electron mobility, kB is

the Boltzmann’s constant, T is the temperature, and q is the electron charge.

Even using an upper value for the electron mobility of 7000 (cm2/s)/V and k =

2.25× 104 cm−1, which corresponds to a vacuum wavelength of 8.38 µm, 4k2D ≈
0.09 THz at 77 K and 4k2D ≈ 0.4 THz at 300 K, both significantly smaller than

T−1
1 ≈ 0.6 THz at 77 K and T−1

1 ≈ 2 THz at 300 K. Thus the contribution of carrier

diffusion in Eq. (7.3) is insignificant. Hence, it can be assumed that TG ≈ T1. Due

to the fast gain recovery in QCLs, carrier diffusion does not eliminate spatial hole

burning, in contrast to what occurs in diode lasers [173, 174].

As has been discussed in Chapter 3, the gain per unit length (g) from the gain

periods of the QCL and the absorption per unit length (a) from the absorbing

periods are given by

g =
kNgΓgµ

2
gT2g

2ε0n2~
, a =

kNaΓaµ
2
aT2a

2ε0n2~
. (7.4)

We present the results in terms of normalized gain (ḡ) and absorption (ā) coefficients.

Gain and absorption coefficients are normalized by average loss per unit length,

which is lu when we solve Eq. (7.1) and is lb − ln r−/L − ln r+/L when we solve

Eq. (7.2). Here, we use L to denote the cavity length.
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7.3 Simulation Results

We have presented an extensive computational analysis of SIT modelocking using

Eq. (7.1) in Chapter 3. Here, we analyze SIT modelocking by computationally

solving Eq. (7.2) and comparing the results to those of Chapter 3. We assume

that a resonant pulse of hyperbolic-secant shape and a π pulse in the gain medium

is injected into the QCL structure from an external source. We note that since

continuous waves must be suppressed, this laser will not self-start. Our com-

putational results show that stable modelocked solutions exist when we consider

backward-propagating waves and lumped mirror losses at the edges. An initially

broad pulse becomes narrower and evolves toward a fixed intensity profile after

each round trip. We show the pulse evolution in a 3-mm-long QCL cavity in

Fig. 7.2. In this example, we set ḡ = 3.5 and ā = 2.8. An initial pulse of 100 fs

duration (FWHM/1.763) narrows down to ∼ 65 fs. The pulse narrowing when we

solve Eq. (7.2) is less than when we solve Eq. (7.1). With the same parameters

and initial conditions as in Fig. 7.2, the stable pulse duration is only ∼ 43.5 fs,

when solving Eq. (7.1).
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Figure 7.2: Modelocked pulse evolution when backward-propagating waves
and lumped mirror losses are considered. We set T1g = T1a ≡ T1, T2g = T2a ≡
T2, and T1/T2 = 10 with T2 = 100 fs.
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Figure 7.3: Stability limits of normalized gain (ḡ) versus normalized absorp-
tion (ā) coefficients. We set T1g = T1a ≡ T1, T2g = T2a ≡ T2, and T1/T2 = 10
with T2 = 100 fs. The upper curves are the upper limiting values of ā. The
bottom black line is the limiting values for continuous wave (cw) growth in both
cases.

Figure 7.3 compares the stability limits of ḡ and ā for SIT modelocking when

we solve Eq. (7.1) and when we solve Eq. (7.2). The bottom black solid line

shows the lower stability limit in both cases. This boundary is set by the growth

of continuous waves. If the lasers are operated with parameters set below this

boundary, continuous waves are unstable, and multiple pulses may form due to

the Risken-Nummedal-Graham-Haken effect [33, 34]. The upper lines show the

upper stability limits of ā and are set by the losses. If the laser is operated

with parameters set above these lines, pulses damp. The upper limiting values

of ā are smaller when we solve Eq. (7.2) than when we solve Eq. (7.1) due to

the lumped mirror losses and the delay in the gain recovery when pulses reflect

from the mirrors. Pulses lose a significant amount of energy (∼50%) at the QCL

mirrors before bouncing back for another passage through the laser. Ideally, the

absorption should decrease and the gain should increase in order for the pulse

to grow to a sustainable intensity. However, just the opposite occurs. When the

pulses bounce back from the cavity edges, the inversion ∆g,a will not have regained

its equilibrium value before the pulse passes through again. When QCLs operate

below the lower stability limit in ā, continuous waves are unstable, so that multiple
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pulses are created and interfere each other, and we observe spatial hole burning

in some parameter regimes. However, if QCLs operate with ā above the lower

stability limit, continuous wave growth is suppressed by the absorbing layers, and

no spatial hole burning is observed.
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Figure 7.4: Stability limits for different T1/T2 values with r− = 1 and r+ = 1.
Solid lines show solutions of Eq. (1), while dashed lines show solutions of Eq. (2).

In Fig. 7.4, we show the effect of the gain recovery time on the upper stability

limit in ā. We set r− = r+ = 1 so that we can observe the change in stability

that is due only to the delay in the gain recovery. We assume T1g = T1a ≡ T1

and T2g = T2a ≡ T2. As expected, the upper limit for ā is lower when we solve

Eq. (7.2), than it is when we solve Eq. (7.1), even though there are no mirror

losses. When we solve Eq. (7.1), the upper stability limit in ā increases, whereas

it decreases when we solve Eq. (7.2). However, when T1/T2 = 10 with T2 = 100 fs,

the gain recovery time T1 is only 1 ps, which is a typical value obtained in QCLs,

and is very short compared to the cavity round-trip time of ∼ 50 ps. Therefore,

the population inversion can recover its equilibrium value before the pulse passes

through after reflecting from the mirrors, except in a small region near the edges of

the QCL. The instantaneous population inversions for both the gain and absorbing

media are drawn in Fig. 7.5 at different points in the cavity when the pulse bounces

back from the right edge. Figure 7.5 shows that when T1/T2 become large, i.e.,
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T1/T2 = 100 with T2 = 100 fs, the population inversion at the left edge has not

recovered even when the pulse reaches the right edge.
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Figure 7.5: Population inversion in the cavity. The solid lines are for T1/T2 =
10 and the dashed lines are for T1/T2 = 100.

7.4 Conclusion

In this chapter, we have shown that SIT modelocking is stable in QCLs when we

take into account realistic, lumped mirror losses and backward-propagating waves.

However, the stable parameter regime is reduced. Incomplete gain recovery at the

QCL edges when the pulses pass through after reflecting from the mirrors, along

with mirror losses, is largely responsible for this reduction. Since continuous waves

are suppressed in the stable operating regime, spatial hole burning does not appear

in this regime. It does appear when ā is below the stable operating limit.



Chapter 8

Saturable Nonlinearity and

Chromatic Dispersion

8.1 Introduction

Paiella et al. [35] observed self-focusing due to a strong intensity-dependent re-

fractive index in QCLs. In addition, Wang et al. [28] and Gordon et al. [29] found

evidence for an intensity-dependent loss in QCLs. They found that the loss satu-

rates when QCLs are operated with an input current that is above threshold. As

the intensity of the light inside the laser increases, the intensity-dependent portion

of the refractive index, n2, adds to the intensity-independent portion of the refrac-

tive index, n0. The total refractive index of the core increases. Therefore, the

overlap of the lateral optical mode with the core increases, and the overlap with

the lossy cladding decreases, as schematically shown in Fig. 8.1(a). As a result,

the loss decreases. In practice, the change of the refractive index with intensity

can be positive or negative, depending on the wavelength. When the sign of n2 is

negative, then the loss will increase because the overlap of the lateral optical mode

with the lossy cladding will increase, as schematically shown in Fig. 8.1(b). There-

fore, an optical pulse may experience saturable loss or saturable gain, depending

on the wavelength of the laser transition.
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Figure 8.1: Refractive index profile and resulting intensity distribution of the
fundamental waveguide mode along the lateral direction of a conventional QCL
waveguide in case of (a) saturable loss and (b) saturable gain. The intensity
profile changes due to the strong index nonlinearity of the active region. (a) If
the intensity increases, the index near the center of the waveguide increases and
the mode is more tightly confined. (b) If the intensity decreases, the index near
the center of the waveguide decreases and the mode is more weakly confined.

Chromatic dispersion is also present in QCLs. Choi et al. [175] found for

a particular QCL a dispersion coefficient β2 ∼ −4.6 ps2/m at the 5 µm gain

transition. Therefore, a pulse may broaden during propagation inside the laser

structure.

In the work on SIT modelocking of QCLs that we have discussed so far, we

have not considered the effects of saturable nonlinearity and chromatic dispersion.

The intensity dependence of the refractive index when the pulse propagates in the

laser structure has been neglected, and therefore, the loss has always been inde-

pendent of the intensity in the analysis. Since the stability of the SIT modelocking

depends on the values of the gain and absorption coefficients relative to loss, the

modulation of loss by the intensity will affect the stability of the SIT modelock-

ing. Since SIT modelocking generates, in principle, pulses on the order of only

100 fs, chromatic dispersion, which spreads the pulses will also affect the stability.

Therefore, it is essential to investigate the effects of saturable nonlinearity and

chromatic dispersion in order to determine the practicality of SIT modelocking.

In this chapter, we find that SIT modelocking is achieved in the presence of

the saturable loss or the saturable gain, but only when the saturable loss and the
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saturable gain are below critical values. The limiting values of the saturable loss

are significantly lower in magnitude than the limiting values of the saturable gain.

The intensity and duration of the modelocked pulse depend on the amount of the

saturable loss or saturable gain, in addition to the gain and absorption coefficients.

SIT modelocking is stable when the chromatic dispersion is normal or anoma-

lous, in contrast to conventional passively modelocked systems that can be mod-

eled by the complex Ginzburg-Landau equation [27]. In fact, as we will show, the

pulse intensity as a function of time is the same regardless of the sign of the chro-

matic dispersion in SIT modelocking. The pulse intensity decreases and the pulse

duration increases when the absolute value of the dispersion coefficient increases.

Beyond a critical value that depends on the magnitude of the gain and absorption

coefficients, the pulses become unstable. They either break up into multiple pulses

due to the growth of continuous waves, or they damp away.

When saturable nonlinearity and chromatic dispersion are simultaneously present,

as would be expected to occur in practice, the stability limit for the saturable loss

increases, becoming less stringent, while the stability limit for the saturable gain

remains almost unchanged. We will show that realistic values for the saturable

nonlinearity and chromatic dispersion are within the range where SIT modelocked

pulses are expected to be stable.

The remainder of this chapter is organized as follows: Sec. 8.2 discusses the

theoretical model of the pulse dynamics in QCLs that have interleaved gain and

absorbing periods, when the saturable nonlinearity and chromatic dispersion are

present in the laser medium. In Sec. 8.3, we show the effects of the saturable

loss or the saturable gain on SIT modelocking. In Sec. 8.4, we show the effects

of the chromatic dispersion on SIT modelocking. In Sec. 8.5, we show the effects

on the SIT modelocking when both the nonlinearity and chromatic dispersion are

present. Finally, in Sec. 8.6, we summarize the results and draw conclusions.
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8.2 Theoretical Model

In the presence of saturable nonlinearity and chromatic dispersion, the Maxwell-

Bloch equations presented in Chapter 3 that describe the gain dynamics of a QCL

having both the gain and absorbing periods change to

n

c

∂E
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= −∂E

∂z
− i

kNgΓgµg

2ε0n2
ηg − i

kNaΓaµa
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2
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2
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, (8.1e)

where the subscripts g and a in Eq. (1) refer to the gain and absorbing periods,

respectively. The independent variables z and t denote length along the light-

propagation axis of the QCL and time. The dependent variables E, ηg, ∆g, ηa,

and ∆a denote the envelope of the electric field, the polarization and inversion in

the gain medium, and the polarization and inversion in the absorbing medium.

The parameters ∆g0 and ∆a0 denote the equilibrium inversion away from the

modelocked pulse. The parameters µg and µa denote the dipole moments. The

parameters N and Γ denote the electron density and the mode overlap factor. The

parameters n, c, k, ε0, and ~ denote the index of refraction, the speed of light, the

wavenumber in the active region, the vacuum dielectric permittivity, and Planck’s

constant. The parameter β2 is the dispersion coefficient. The parameter l(|E|2)
denotes the loss that depends on the light intensity.

The Maxwell-Bloch equations (8.1) are the same as the Maxwell-Bloch equa-

tions given in Chapter 3 except that in Eq. (8.1a), we include the effect of chro-

matic dispersion, and we allow l to depend on the field intensity. We may write
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the intensity dependent loss as

l(|E|2) = l0 − γ|E|2, (8.2)

where l0 is the linear loss and γ is the saturable nonlinearity coefficient. According

to Eq. 8.2, the loss will saturate when γ > 0 and the gain will saturate when γ < 0.

The sign of γ depends directly on the sign of n2, which in turn depends on the

wavelength of the laser transition [123]. Gordon et al. [29] found that γ depends

sensitively on the width of the QCL active region. As the width of the active

region increases, the parameter γ decreases. Gordon et al. found that γ decreases

approximately by a factor of two when the width of the active region increases

from 3 µm to 7.5 µm.

In this work, we have set T2g = T2a = 100 fs and T1g = T1a = 1 ps. We have set

l0 = 10 cm−1 and Lc = 3 mm. All these values are realistic [29]. We set µg/e = 1.8

nm, which corresponds to the design value that we presented in Chapter 6. We

also assume that the gain periods are completely inverted in equilibrium, i.e.,

∆g0 = 1, while the absorbing periods are completely uninverted in equilibrium,

i.e., ∆a0 = −1. The absorbing periods have a dipole moment twice as large as the

dipole moment in the gain periods, i.e., µa/µg = 2.

We will consider initial pulses that are hyperbolic-secant shaped, so that E(t) =

E0 sech(t/τ), where τ = 50 fs, and we choose E0 so that the initial pulse is a π

pulse in the gain periods and a 2π pulse in the absorbing periods. We note that

when τ = 50 fs, the full width half maximum (FWHM) duration is given by

[2 ln(1 +
√

2)]τ ≈ 1.763τ ≈ 88 fs. We recall that the condition to be a π pulse in

the gain medium is (µg/~)
∫∞
−∞ E(t) dt = π, so that E0 = 7.3× 106 V/m.
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Figure 8.2: Modelocked pulse evolution in presence of saturable loss. The
saturable nonlinearity coefficient γ = 10−12 m/V2. We set ḡ = 4 and ā = 5.
The dispersion coefficient (β2) is set to zero.

8.3 Nonlinearity

In this section, we study the case when only saturable loss or saturable gain is

present in the medium by setting β2 = 0 in Eq. (8.1a).

Saturable Loss (γ > 0)

The saturable nonlinearity coefficient γ is positive when the refractive index in-

creases with intensity. Therefore, with γ > 0, the lateral optical mode becomes

better confined in the core, and the loss saturates as the intensity of the pulse

grows, as shown schematically in Fig. 8.1(a). We have found that stable mod-

elocked pulses are obtained when γ < γc, where γc is the critical value of the

coefficient γ. In Fig. 8.2, we show an example of the evolution of an initial

hyperbolic-secant pulse whose initial energy corresponds to a π pulse in the gain

periods. Here, we have set γ = 10−12 m/V2. The gain normalized to the linear

loss and the absorption normalized to the linear loss are set to 4 and 5, respec-

tively. The pulse reaches its stable equilibrium after propagating a distance that

is only a few times the cavity length (Lc). The intensity of the initial pulse grows,
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Figure 8.3: Equilibrium modelocked pulse shapes vs. the saturable nonlinear-
ity coefficient (γ). In each case, the pulse is shown after it has propagated a
distance of 1000Lc. We set ḡ = 4 and ā = 5. The dispersion coefficient (β2) is
set to zero.

and the duration of the initial pulse narrows before the pulse equilibrates. In an

SIT-modelocked laser, the pulse intensity and the pulse duration are determined

by the values of the gain and absorption coefficients relative to the loss [119, 120].

However, in the presence of a saturable loss, pulses are further shaped by the

intensity-dependent loss in addition to the gain and absorption coefficients. A

saturable loss favors more intense, shorter pulses. The additional pulse shaping

depends on the magnitude of γ. In Fig. 8.3, we show the stable modelocked pulses

with different values of γ. The maximum intensity of the pulse increases and

the duration of the pulse decreases as γ increases. However, the laser becomes

unstable when γ > 1.9× 10−12 m/V2 with ḡ = 4 and ā = 5.

In Fig. 8.4, we show the change in the normalized maximum intensity and in the

duration of the stable modelocked pulses when γ changes. We define the duration

as the full width at half maximum (FWHM) divided by 2 ln(1+
√

2) = 1.763. The

maximum intensity of the pulses has been normalized by the maximum intensity

of the pulse with γ = 0. The maximum intensity and the pulse durations have

been calculated after the pulses have propagated a distance of 1000Lc. In each

case, the pulse becomes stable after propagating a distance of less than 100Lc.

We find that the maximum intensity of the pulse increases as γ increases. The
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maximum intensity of the pulse is larger by more than a factor of two when

γ = 1.9×10−12 m/V2 than it is when γ = 0. However, beyond this nonlinearity, i.e.,

γ > 1.9× 10−12 m/V2, the pulse becomes unstable. The pulse duration decreases

as γ increases. We see that the stable pulse has a duration of ∼ 43 fs when γ = 0,

while the stable pulse has a duration of ∼ 28 fs when γ = 1.9× 10−12 m/V2.
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Figure 8.4: The normalized maximum intensity and pulse duration
(FWHM/1.763) of the stable modelocked pulse vs. the saturable nonlinearity
coefficient (γ). We set ḡ = 4 and ā = 5. The dispersion coefficient (β2) is set to
zero.
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Figure 8.5: The critical values of the saturable nonlinearity coefficient (γc) vs.
the normalized absorption coefficient (ā) for two values of the normalized gain
coefficient (ḡ). The dispersion coefficient (β2) is set to zero.
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The critical value of γ, γ = γc, at which there is no stable pulse depends on

the normalized gain and absorption coefficients. In Fig. 8.5, we present γc vs. ā

for two values of ḡ. We find that the values of γc vary significantly when ā and ḡ

change. As ā increases or ḡ decreases, we find that γc increases. By increasing ā

and decreasing ḡ, the critical value of the saturable loss for stable operation can

be significantly increased.
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Figure 8.6: Modelocked pulse evolution in the presence of saturable gain. The
saturable nonlinearity coefficient γ = −10 × 10−12 m/V2. We set ḡ = 4 and
ā = 5. The dispersion coefficient (β2) is set to zero.

Saturable Gain (γ < 0)

The saturable nonlinearity coefficient γ becomes negative when the refractive in-

dex of the core decreases as the light intensity increases. In this case, the overlap of

the lateral mode with the core decreases, while the overlap with the lossy cladding

increases as in Fig. 8.1(b). As a result, the gain will saturate as the light intensity

increases. We show an example of the evolution of a stable modelocked pulse in

Fig. 8.6 when saturable gain is present. As before, we choose an initial π pulse.

In this case, the nonlinear coefficient γ is set to −10 × 10−12 m/V, and we use

ḡ = 4 and ā = 5. We note that the intensity of the initial pulse decreases and

the duration of the initial pulse increases before the pulse equilibrates. Similar

to the case when the saturable loss is present, the pulse intensity and the pulse
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duration are determined by the saturable gain, in addition to the gain and absorp-

tion coefficients. In Fig. 8.7, we plot the stable modelocked pulses with different

amounts of saturable gain. In each case, the pulse is shown after it has propagated

a distance of 1000Lc. Stable modelocked pulses become less intense and broader

as γ becomes more negative. The pulses no longer equilibrate, but instead damp

away when γ . −68× 10−12 m/V2.
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Figure 8.7: Equilibrium modelocked pulse shapes vs. the saturable nonlinear-
ity coefficient (γ). In each case, the pulse is shown after it has propagated a
distance of 1000Lc. We set ḡ = 4 and ā = 5. The dispersion coefficient (β2) is
set to zero.

In Fig. 8.8, we show the change in the normalized maximum intensity and in

the duration (FWHM/1.763) of the stable modelocked pulses as |γ| increases. The

maximum intensity and the pulse duration values have been calculated after the

pulses have propagated a distance of 1000Lc. In each case, the pulse equilibrates

after propagating a distance of less than 100Lc. We see that the maximum intensity

of the pulse at equilibrium decreases as |γ| increases, i.e., when γ becomes more

negative. The maximum intensity of the pulse is lower by approximately a factor

of eight when γ = −68 × 10−12 m/V2 than it is when γ = 0. When γ becomes

more negative, pulses damp away. As |γ| increases, the equilibrium pulse duration

also increases. The stable pulse duration is 43 fs when γ = 0, while the stable

pulse duration is 155 fs when γ = −68× 10−12 m/V2. We note that this value is

more than 30 times larger in magnitude than the corresponding limit for saturable
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loss (1.9 × 10−12 m/V2). Hence the constraint on the saturable gain is far less

stringent than the constraint on the saturable loss.
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Figure 8.8: The normalized equilibrium maximum intensity and pulse dura-
tion (FWHM/1.763) of the stable modelocked pulse vs. the saturable nonlin-
earity coefficient (γ). We set ḡ = 4 and ā = 5. The dispersion coefficient (β2)
is set to zero.
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Figure 8.9: Critical values of the saturable nonlinearity coefficient (γc) vs.
the normalized absorption coefficient (ā) for two values of the normalized gain
coefficient (ḡ). The dispersion coefficient (β2) is set to zero.

In Fig. 8.9, we show the critical values of the saturable nonlinearity coefficient

(γc) vs. the absorption coefficient (ā) for two values of the gain coefficient (ḡ)

when the pulse experiences saturable gain during propagation. When |γ| > |γc|,
the initial pulses do not equilibrate. The magnitude of γc is sharply peaked, first



Chapter 8. Saturable nonlinearity and chromatic dispersion 132

increasing rapidly as ā increases and then decreasing. On either side of the peak,

āpeak(ḡ), different physical mechanisms destabilize the initial pulse. When ā <

āpeak and |γ| > |γc|, continuous waves grow and ultimately lead to the generation

of multiple pulses. When ā > āpeak(ḡ) and |γ| > |γc|, the initial pulse damps away.

8.4 Chromatic Dispersion

In this section, we study the effects of the chromatic dispersion on SIT mode-

locking. We assume that the loss is linear and that it does not depend on the

intensity of the light pulse, i.e., γ = 0. In Fig. 8.10, we show the evolution of a

stable modelocked pulse in the presence of dispersion where the initial pulse is a

π pulse. In this case, the dispersion coefficient |β2| is 5 ps2/m. We use ḡ = 4

and ā = 5. We note that the solutions of Eq. (1) when β2 < 0 are complex con-

jugates of the solutions when β2 > 0 for equal values of |β2|. Hence, the pulse

intensity as a function of time is unaffected by the sign of β2. In Fig. 8.10, we

see that the pulse’s intensity decreases and its duration increases before the pulse

equilibrates, but a modelocked solution exists. Pulse broadening increases as |β2|
increases. In Fig. 8.11, we show the stable modelocked pulses in the presence of
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Figure 8.10: Modelocked pulse evolution in presence of chromatic dispersion.
The dispersion coefficient |β2| = 5 ps2/m. We set ḡ = 4 and ā = 5. The
saturable nonlinearity coefficient (γ) is set to zero.
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different amounts of dispersion. In each case, the pulse has propagated a dis-

tance of 1000Lc. We note that the peak intensity of the stable modelocked pulse

decreases and the duration increases as |β2| increases. There is no modelocked

solution when |β2| > 82 ps2/m. Beyond this critical value of dispersion, the initial

pulse damps away.
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Figure 8.11: Equilibrium modelocked pulse shapes vs. chromatic dispersion
coefficient (|β2|). We set ḡ = 4 and ā = 5. The saturable nonlinearity coefficient
(γ) is set to zero.
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Figure 8.12: The normalized maximum intensity and pulse duration
(FWHM/1.763) at equilibrium vs. the dispersion coefficient (β2). We set ḡ = 4,
ā = 5. The saturable nonlinearity coefficient (γ) is set to zero.

In Fig. 8.12, we draw the change in the normalized maximum intensity and in

the duration (FWHM/1.763) of the stable pulses as the chromatic dispersion is
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varied. The maximum intensity has been normalized by the maximum intensity

of the pulse with |β2| = 0. The maximum intensity and the duration have been

calculated after the pulses have propagated a distance of 1000Lc. In each case,

the pulse becomes stable after propagating a distance of less than 100Lc. We

see that the maximum intensity of the pulse decreases as |β2| increases. The

maximum intensity of the pulse decreases by approximately a factor of 10 when

|β2| = 80 ps2/m compared to when |β2| = 0. The equilibrium pulse duration

when |β2| = 0 is 43 fs, while the equilibrium pulse duration is 432 fs when |β2| =
80 ps2/m.

The critical values of the dispersion coefficients for stable modelocking |β2c|
have been plotted in Fig. 8.13 vs. ā for two different values of ḡ. We see that the

critical value first increases as ā increases up to āpeak(ḡ), and then decreases. The

equilibrium pulse duration is always larger when dispersion is present than when it

is not. Analogous to the case shown in Fig. 8, we find that when ā < āpeak(ḡ) and

|β2| > |β2c|, multiple pulses are generated, and when ā > āpeak(ḡ) and |β2| > |β2c|,
the initial pulse damps away.
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Figure 8.13: The critical values of the dispersion coefficient (|β2c|) vs. the
normalized absorption coefficient (ā) for two values of the normalized gain
coefficient (ḡ). The saturable nonlinearity coefficient (γ) is set to zero.
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8.5 Saturable Nonlinearity and

Chromatic Dispersion

In this section, we will discuss the realistic case in which a saturable nonlinearity

and chromatic dispersion are simultaneously present. We note once more that

the solutions when β2 < 0 are the complex conjugates of those when β2 > 0

and |β2| is unchanged. In Fig. 8.14, we present a contour plot of the maximum

intensity of the equilibrium modelocked pulses as the saturable loss and chromatic

dispersion vary. The unstable region is shown blank. The maximum intensity has

been normalized by the value of the maximum intensity of the stable modelocked

pulse with γ = 0 and β2 = 0. We note that the critical value of the saturable

loss increases significantly when |β2| increases. We also note that the maximum

intensity varies significantly with the change of the saturable loss when |β2| <

4 ps2/m. The maximum intensity decreases as |β2| increases for a fixed value of γ.

When |β2| > 4 ps2/m, the maximum intensity does not vary much as γ changes,

and the normalized maximum intensity is less than 1 even when γ ≈ γc. The

critical value of dispersion coefficient |β2c| increases as γ increases. We show a
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Figure 8.14: Contour plot of the normalized maximum intensity vs. the sat-
urable nonlinearity coefficient (γ > 0) and chromatic dispersion coefficient (β2).
The maximum intensity has been calculated after the pulse has propagated a
distance of 1000Lc. We set ḡ = 4 and ā = 5.
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contour plot for the duration of the modelocked pulse when saturable loss and

dispersion are varied in Fig. 8.15. We note that the duration of the modelocked

pulse increases when |β2| increases for any value of γ. However, the duration of

the modelocked pulse remains approximately the same when γ increases for a fixed

value of |β2|. When dispersion is present, a larger saturable loss can be tolerated.

Conversely, when saturable loss is present, pulse broadening due to dispersion is

diminished. The limits on saturable loss and chromatic dispersion become less

stringent when the other is present.
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Figure 8.15: Contour plot of the duration vs. the saturable nonlinearity
coefficient (γ > 0) and chromatic dispersion coefficient (β2). The duration
has been calculated after the pulse has propagated a distance of 1000Lc. We
set ḡ = 4 and ā = 5.

In Fig. 8.16, we show a contour plot for the maximum intensity of the stable

modelocked pulses when saturable gain and chromatic dispersion are simultane-

ously present. We note that the maximum intensity only changes significantly

as |β2| and γ change when |β2| . 5 ps2/m and γ & −20 × 10−12 m/V2. When

γ . −20 × 10−12 m/V2, the maximum pulse intensity of the modelocked pulse

changes very little as |β2| changes. Similarly, when |β2| & 5 ps2/m, the maximum

intensity of the modelocked pulse is essentially same for any amount of saturable

gain. Critical values of the saturable gain do not vary much when the dispersion

coefficient is varied. The critical value of dispersion coefficient |β2c| decreases as

|γ| increases. In Fig. 8.17, we show a contour plot of the stable modelocked pulse
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Figure 8.16: Contour plot of the normalized maximum intensity vs. the sat-
urable nonlinearity coefficient (γ < 0) and chromatic dispersion coefficient (β2).
The maximum intensity has been calculated after the pulse has propagated a
distance of 1000Lc. We set ḡ = 4 and ā = 5.

duration when both saturable gain and dispersion vary. We note that the pulse

duration increases when the saturable gain increases for any |β2|. Similarly, the

pulse duration increases when |β2| increases for any amount of saturable gain. The

equilibrium duration decreases by well over a factor of 100 before the initial pulse

becomes unstable. However, the equilibrium pulse duration when the saturable

gain is just below the critical value stays approximately the same as |β2| is varied.

8.6 Conclusion

In conclusion, we show that QCLs can be modelocked using the SIT effect in the

presence of a saturable nonlinearity, either saturable loss or saturable gain, and in

the presence of chromatic dispersion, as long as their magnitudes are below crit-

ical limits. However, the modelocked pulse’s equilibrium duration and maximum

intensity are affected. The saturable loss sets a more stringent limit on |γc| than

does the saturable gain. The limits are 1.9 × 10−12 m/V2 and 68 × 10−12 m/V2

with ḡ = 4 and ā = 5, which differ by more than a factor of 30. However, when

chromatic dispersion is present, the limit on |γc| increases significantly in the case
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Figure 8.17: Contour plot of the duration vs. the saturable nonlinearity
coefficient (γ < 0) and chromatic dispersion (β2). The duration has been cal-
culated after the pulse has propagated a distance of 1000Lc. We set ḡ = 4 and
ā = 5.

of saturable loss, while |γc| is relatively unaffected in the case of saturable gain.

The critical limits of saturable nonlinearity and chromatic dispersion also change

significantly when ḡ and ā change.

The saturable nonlinearity calculated by Gordon et al. (∼ 10−11 m/V2) [29] and

the chromatic dispersion calculated by Choi et al. (−4.6 ps2/m) [175] for particular

QCLs are within the stable regime in Fig. 8.14 and in Fig. 8.15. The magnitude

of the saturable nonlinearity coefficient γ depends on the gain linewidth and on

the lateral dimension of the laser core. Thus, one can always reduce γ in principle

to ensure stable operation by properly designing the QCL.
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Conclusions

QCLs cannot be passively modelocked in their conventional parameter regimes.

While active modelocking has been demonstrated using a specially-engineered

QCL structure, passive modelocking has yet to be reported. Actively modelocked

QCLs cannot produce sub-ps pulses. The objective of this dissertation is to demon-

strate a way to modelock QCLs in their usual parameter regime and thus to open

a path to the generation of ultra-short pulses (sub-ps) in the mid-infrared range.

We find that though the usual parameter regimes are not suitable for conventional

passive modelocking, they are suitable to use SIT modelocking. The capability

of band engineering and the possibility of interleaving gain periods and absorbing

periods make QCLs an ideal tool for obtaining SIT modelocking. While mode-

locking using the SIT effect in a laser that has an absorbing medium in addition

to a gain medium was proposed earlier by Kozlov [118], a realistic laser struc-

ture has never previously been proposed. In Kozlov’s hypothetical structure, the

gain and absorbing medium are spatially separate along the length of the laser

cavity. Kozlov assumed that the pulse energy does not change when a pulse tra-

verses through the gain or absorbing medium in a single trip; this configuration

is not realizable. On the contrary, we have designed realistic QCL structures that

have gain and absorbing periods interleaved along the growth axis. Therefore, the

139
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gain and absorbing media interact simultaneously with an optical pulse, and it is

possible to create stable pulses over a broad parameter regime.

We now summarize the major accomplishments of this dissertation:

• We have proposed that QCLs can be modelocked using the SIT effect. We

have explained in detail the physical concept of SIT modelocking in QCLs

that have absorbing periods in addition to the gain periods. We have de-

scribed the set of conditions that a QCL has to satisfy in order to experience

SIT modelocking. Subsequently, we solved Maxwell-Bloch equations that

describe the dynamics in a QCL. We obtained analytical solutions for the

modelocked pulses in special cases when absorbing periods have a dipole

moment twice as large as the dipole moment in the gain periods, the gain

recovery times in both the gain and absorbing periods are infinite, there is no

detuning between the resonant levels of the gain and absorbing periods, and

the initial pulse is a π pulse in the gain medium. We derived the conditions

that are required to obtain stable modelocked pulses. However, to determine

the solutions in more general cases, i.e., when the ratio of the dipole moment

of the absorbing to gain periods is not two, the gain recovery times are finite

and are on the order of a ps, there is a finite detuning between the resonant

levels of the gain and the absorbing periods, and the initial pulse is not a π

pulse in the gain medium, we solved the Maxwell-Bloch equations computa-

tionally. We carried out an extensive study to calculate the stability limits

of the key parameters. We found that there exists a broad stability regime

for the key parameters that we just mentioned and that the parameters of

existing QCLs are well within this regime. Our claim that QCLs are the

ideal tool to achieve modelocking using SIT was established through these

studies.

• We have reviewed QCL theory and modeling concepts. Based on stan-

dard approaches, we have built simulation tools to design QCLs. Elec-

tronic states for the multi-quantum well QCL structures were found using
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the envelope function approximation. We have studied QCLs that consist

of GaAs/AlGaAs and InGaAs/AlInAs material systems lattice-matched or

strain-compensated. The electronic states are used to characterize the QCLs

by calculating key physical quantities, including electron scattering lifetimes,

tunneling rates, dipole moments, and transition energies.

• We have developed a carrier transport model for QCLs. Calculating the

carrier transport rate and understanding the physical phenomena that de-

termine that rate is important in both estimating the device performance

and finding ways to improve the performance. For SIT modelocking, it is

also important to calculate the ratio of gain and absorption coefficients so

that the number of gain and absorbing periods that are required for stable

modelocking can be estimated. We include both incoherent scattering mech-

anisms and coherent tunneling mechanisms in the model. We also take into

account the mutual coherence time between the levels. Calculation of the

mutual coherence time is important. It affects the carrier transport through

tunneling, and it also affects the propagation of a resonant pulse through

the active medium since it determines the decay of the polarization of the

carriers in the two resonant levels. We have studied the effects of different

operating and design parameters on the carrier transport. In particular, we

found that the carrier transport through tunneling decreases at high tem-

perature because the coherence between the levels decays at a faster rate as

the temperature increases.

• Based on the theory of QCLs and using the simulation tool we have devel-

oped, we designed SIT modelocked QCL structures that emit light at two

different wavelength, i.e., at ∼ 8 µm and ∼ 12 µm. Similar structures can be

grown to emit light at different mid-infrared wavelengths. In both designs,

the gain and absorbing periods are resonant and the absorbing periods have

a dipole moment approximately twice as large as the dipole moment in the

gain periods. The electrons are injected into the upper resonant levels in

the gain periods to produce gain; however, they are injected into the lower
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resonant levels in the absorbing periods to absorb continuous waves. Us-

ing the carrier transport model that we developed, we calculated the carrier

densities at the resonant levels of the SIT-modelocking QCLs. These carrier

densities, along with the calculated coherence times between the resonant

levels in the gain and absorbing periods, have been used to calculate the

required ratio of gain to absorbing periods.

• When propagating waves bounce back from the edges of a QCL cavity, they

may interfere and produce standing waves. Since QCLs have a very fast gain

recovery time on the order of a ps, spatial hole burning can be observed in

conventional QCLs that have only gain periods when the input current is

above the lasing threshold. Additionally, when pulses bounce back from the

laser edges and travel in the opposite direction, a portion of the cavity may

not have regained its equilibrium population inversion. The extent of the

gain recovery depends on the gain recovery time. Additionally, a significant

amount of energy is lost at the two edges. Therefore, we have implemented

a propagation model where counter-propagating waves and lumped mirror

losses are taken into account. We studied the modelocked pulse evolution

and calculated the stability limits. We showed that lumped mirror losses and

the incomplete gain recovery when the pulses bounce back from the edges

reduce the upper stability limits of the absorption coefficients for a fixed

gain coefficient. We found that spatial hole burning is not an issue for SIT

modelocking in QCLs when the continuous waves are suppressed; however,

spatial-hole burning is observed in the parameter regime where continuous

waves can grow.

• QCLs have been shown to produce large nonlinearity. Intensity-dependent

loss has been observed to lead to self-focusing and a reduction in the thresh-

old for the Risken-Nummedal-Graham-Haken instability. Since the stabil-

ity of SIT modelocking depends on the values of the gain and absorption

coefficients relative to the value of loss, the stability will change when the

medium has saturable loss or saturable gain. The pulses in a QCL are
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affected by chromatic dispersion. The narrow pulses produced using SIT

modelocking may broaden when they propagate inside a dispersive medium

and may be completely damped. Therefore, we have studied the effects of

the saturable nonlinearity, i.e., saturable gain and saturable loss, and chro-

matic dispersion on SIT modelocking. We studied the pulse evolution under

various conditions and calculated the critical values of the nonlinearity and

dispersion inside of which the pulse evolution is stable. We showed that the

typical nonlinearity and chromatic dispersion that are present in a QCL lie

well within the allowed range of these parameters for stable operation.

In this dissertation, we assumed that the initial pulse is injection-locked from

an external source. As long as the initial pulse has a duration and energy that

lie within the range presented in Chapter 3, modelocking is observed and the

pulse reaches its equilibrium duration, which is ultimately determined by the nor-

malized gain and absorption coefficients. While this approach is sufficient for an

experimental demonstration, an approach that generates the seed pulse from the

modelocked QCL itself will be necessary for practical applications. It is possible

that active modelocking may be used to generate the seed pulse. In that approach

a two-segment QCL should be used with the gain and absorption coefficients mod-

ulated in one segment. Such an approach with only gain periods produces active

mode-locking and has been demonstrated by Wang et al. [13]. However, it is an

open question whether active modelocking can be achieved when absorbing peri-

ods are interleaved with gain periods. A combination of active-SIT modelocking

is worth studying in future.
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