

Optical Scattering-Induced Noise in RF-Photonic Systems

by Olukayode Okusaga

This work was funded by the Coalition Warfare Program

UMBC Fiber-Length Dependent Noise

R

• Multiple phenomena induce noise in fiber

• We will focus on optical scattering

BC

The dominant phenomenon depends on the system

Reflected light used to characterize scattering effects

Optical Measurements: Experimental Setup

UMBC Stimulated Brillouin Scattering

6 km Fiber Spool

7

UMBC High-Resolution Coherent Measurements

Brillouin Scattering Spectra

Rayleigh Scattering Spectra

6 km Fiber Spool

Rayleigh Power Dependence

- Reflected spectrum shows :
 - Rayleigh at low power levels
 - Brillouin at high power levels
- Both forms of scattering affect transmitted spectrum

Incident Light
Reflected Light

Transmitted Spectra

6 km Fiber Spool

Rayleigh Regime

UMBC

15

Brillouin Regime

UMBC

16

OEO Phase Noise

Brillouin Scattering Spectra

UMBC

18

Brillouin Scattering Spectra

Rayleigh Scattering Spectra

UMBC

No Frequency Modulation

Rayleigh Scattering Spectra

 At low power levels, close-in noise is dominated by Rayleigh scattering

BC

- At high power levels, Brillouin scattering dominates
- Double-Brillouin scattering leads to increased noise above 13 dBm
- This noise converts to RF frequencies after photodetection