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Abstract—The coupled nonlinear Schrodinger equation, which de-
scribes optical propagation in a birefringent Kerr medium, is derived.
It is shown that when the ellipticity angle # = 35°, Manakov’s equation
results. Consequences for switching applications are discussed. In par-
ticular, if & + 35°, shadows form when two pulses of opposite polar-
fzation interact, i.e., the emerging pulses no longer have their original
polarizations. This problem disappears at § = 35°,

[. INTRODUCTION

N a Kerr medium, nonlinear wave evolution is due to

the x % response. The x'*’ response is zero or can be
neglected. Examples include certain LiNbO, and GaAs
waveguides and optical fibers. We focus on a pair of or-
thogonally polarized eigenmodes which are degenerate
when birefringence can be neglected. In a single-mode
optical fiber, these correspond to the only modes which
can propagate. They couple to each other nonlinearly
through the Kerr effect. :

The nature and strength of the coupling depends criti-
cally on the birefringence. In linearly birefringent fibers
[1], the cross coupling between modes is only two thirds
as strong as the self-coupling. There is another coupling
term which at low birefringence leads to ellipse rotation.
In circularly birefringent fibers [2}, the cross coupling is
twice as strong as the self-coupling. These results suggest
that there might be an ideal elliptical birefringence at
which the self- and cross coupling are identical. That is
indeed the case when the ellipticity angle 8 = 35°, as we
will show.

This cross coupling may play an important role in
switching applications. One possible configuration, shown
schematically in Fig. 1, has been proposed by Lattes et
al. [3] and LaGasse et al. [4]. A signal pulse of one po-
larization is divided in two with each portion going down
one arm of a Mach-Zender interferometer. In one of the
arms, a switching pulse may be introduced at the other
polarization. This switching pulse then shifts the phase of
the signal pulse in that arm so that when the signal pulses
in both arms recombine, they interfere destructively rather
than constructively. In its optical fiber implementation [4],
the two arms of the interferometer must be temporally,
rather than spatially, separated in order to avoid the effect
of differing parameter fluctuations in the two arms. One
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Fig. 1. Schematic illustration of a possible Kerr switch configuration, The
signal pulse, shown sotid, travels down the two arms of a Mach-Zender
interferometer. A switching puise, shown dashed, changes the phase of
the signal pulse in the lower arm.

of the signal pulses is temporally delayed, the two signal
pulses go through the same fiber, and the delayed pulse is
advanced before the two pulses are recombined. To con-
veniently advance and delay one of the signal pulses with-
out affecting the other, they should have opposite polar-
izations. The switching pulse must have the opposite
polarization from the signal pulse whose phase it is alter-
ing.

Other switching configurations have been proposed with
varying advantages and drawbacks [5]-[9]. A potential
drawback with the scheme just proposed is that when the
switching pulse moves through the signal pulse, the
switching pulse not only shifts the phase of the signal
pulse, but it can leave behind a shadow—a portion of the

signal pulse which is in the same polarization as the

switching pulse. This shadow is slaved to the signal pulse
and does. not separate from it. Shadows have been ob-
served numerically [10].

Shadows will no longer form when the medium is el-
liptically birefringent so that the self-coupling and cross
coupling are equal. In this case, Manakov [11] has shown
that the coupled nonlinear Schrodinger equation which
governs the wave evolution can be solved using nonlinear
spectral transform methods [12]. As a consequence, so-
litons exist. When a soliton of one polarization interacts
with an arbitrarily shaped pulse of the opposite polariza-
tion, it will undergo a uniform phase shift with some spa-
tial displacement, but will suffer no change in polarization
or shape. As long as the signal pulse is a soliton, the shape
of the switching pulse can be chosen for convenience.

An elliptically birefringent Kerr medium can be ob-
tained, for example, by twisting an appropriately doped
optical fiber preform during the drawing stage [13]-[15].
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The remainder of this paper is organized as follows. In
Section II, we derive in detail the coupled nonlinear
Schrodinger equation. We discuss, in particular, the
physical approximations which are made and the limits in
which they hold. In Section III, we study the Manakov
equation, considering both the application to switches and
possible experiments to study the basic physical phenom-
ena. Section IV contains the conclusions and acknowl-
edgment.

1I. CourLED NONLINEAR SCHRODINGER EQUATION

For simplicity, we will present here a derivation of the
basic equations which assumes plane wave propagation.
This approach allows us to elucidate the basic physical
issues without considering transverse geometric effects.
The method for taking into account the detailed geometry
is well known [16], and these geometric effects do not
change the basic structure of the equations, but merely
alter their coefficients somewhat.

The starting point is Maxwell’s wave equation which
may be written for plane waves

E 19D )
e (1
where E is the electric field, D is the diclectric response,
¢ is the speed of light, and z and ¢ are propagation distance
and time. We stress that both E and D are the observed
fields which are real, not complex.

Our first goal is to relate D to E. We write, as usual,

D=E + 4xP (2)

where P is the polarizability. We shall assume that the
linear response of the medium is anisotropic, so that the
medium is birefringent along the z direction. Hence, con-
sidering only the linear response, P and E are related
through a tensor 7y, such that

Pz, t) = Sl_m w(t —1') - E(z, t')adr' (3)

The nonlinear response will be treated separately. It is a
consequence of causality that P at time £ can only depend
on E at earlier times.

We now consider the Fourier transforms of E, P, and
x. In general, given a quantity X(z, ¢}, we shall define
the transform X(z, @) such that

X(z, ) = Sl X(z, £) e dt, (4)

from which it follows that

(=]

X(z, 1) = 51;; S_m X(z, ) e " deo. (5)

We also define the guantities

xw&@:{ﬂaw’ ©Z% (e

0, w=<0
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and X 7 (z, @) = X(z, w) — X" (2, w). The correspond-
ing guantities X * (z, t) and X~ (z, t) are then defined by
(5). Although X(z, 1) = X* (z, 1) + X "(z, 1) isreal, X’
and X~ are individually complex and conjugate to each
other.

In this paper, we will assume that the nonzero contri-
bution to E and D comes from a small region in w space
surrounding some cartier frequency wg and another smatl
region surrounding its opposite —wyp. The reality of E(z,
1) implies £(z, —w) = E*(z, w). Hence, if E(z, w) is
NONZero near w = wy, it Must be nonzero near w = —uy.
Viewed from this perspective, the standard ‘‘trick’” of
using complex fields and then adding the complex con-
jugate at the end of the calculation is equivalent to simply
considering positive frequency components in the small
region around w = w, and neglecting the negative fre-
quency components which may then be restored at the end
of the calculation.

Since (3) is in the form of an autocorrelation, it may be
rewritten

Pz, w) =71 (w) E'(z, @) (7
At any frequency w, 1" will have two orthonormal eigen-
vectors &, and &, which satisfy the relations
-8 =0, (8)

=68 =1 ¢

Analogous quantities indicating the cigenvectors of e
may be defined. Writing now

%

Pt =Pl + Piéy, (9)
we obtain

PHTEMET, 1’:’2=X2£’42Jr (10)
where x, and x» are the eigenvalues corresponding to é,
and é,. Specifying x; (@), xi(w), & (w), and &(w) 1s
equivalent to specifying y{(w). The linear dispersion re-
lations corresponding to the eigenmodes are given by
1/2

k(w)=—[1 + dri, (w)]

o1

Iw) = % (3 + dri ()] (11)
Equations (7) and (11) are general and do not depend on
the assumption that E* (w) is zero outside a small range
surrounding « = wg frequency.

- We now.use this assumption, and we also suppose that
within this frequency range, we may set &, (@) = & (wp)
and &, (w) = &, (wg) which is equivalent to ignoring linear
mode coupling. It follows from this latter assumption that

Pi(z.t) = S:m xi{t =t YE{(z, ") dr’ (12a)

Py(z, 1) = S_m xo(t = 1") EF (z, t'}ydr'. (12b)
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We now write
P?L(Z, E) = p(Z, I) et-kuz—iwm,
ET(Z, t) — U(Z, I) eik(}:*l'w(li‘ (13)

where kg = k(wy) is determined from the dispersion re-
lation, (11). Because the spectra of P, and E are con-
centrated near w = wy, the spectra of p and U are concen-
trated near @ = 0. In effect, p and U are the envelopes of

! and E; the rapid variation at frequency wy has been
removed. One then finds

10" - . »
p(z, 1) = o gm xi{e + @) Tz, @)e ™ dw.  (14)

Since U is zero outside a small region surrounding w =
0, we may approximate ¥, by its Taylor expansion

(15)

where ¥} (wy) = dx,/dw and x" (w) = d *x,/dw’, both
evaluated at w = wq. Substituting (15) into (14) and eval-
uating the Fourier transform, we cbtain

8U au(z, 1) 1
ot 2

Xi{w + wo) Xu(wo) + X%(Wo)w %X?(wo) w?

8*U(z, 1)
ar*
(16)

where ¥%,, %}, and %7 are all evaluated at @ = wy. If we
let

olz, 1)y = % U(z, 1) + i Xt

DY (z, 1) = Az, 1) e, (17)
we then find
Alz, 1) = 6U(z, 1) + i€ maUg”: ) _ % & %azya(;’ )
(18)
where
Elw) =1+ 4w () (19)

and its derivatives are evaluated at @ = wg. We have thus
determined D7 in terms of E| . We may similarly deter-
mine D7 in terms of £5 . Noting that D" = D{* and Dy
= DI*, we see that the linear portion of D is completely
determined in terms of E.

in (11), we have written the dispersion relation which
corresponds to forward-propagating waves. Since Max-
well’s wave equation, (13, is second order in z, it will also
have backward-propagating solutions which correspond
to choosing a negative sign in (11). It is, however, a con-
sequence of our assumption that the frequency spectrum
of E; is concentrated near w = wy that the wavenumber
spectrum is concentrated near k = kyork = —kg. In other
words, except for a brief transient, an optical pulse con-
sists entirely of forward-going or backward-going waves.
We shall assume that the optical pulse consists of for-
ward-going waves with no loss in generality.

It is now possible to reduce Maxwell’s wave equation
so that it is only first order in z. Substituting the expres-
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sions for £ and D} into Maxwell’s wave equation, one
obtains

6U U
_kDU+21k0 T
a
v) 2
0 0o Wo au
—_ _'+2___ —
2EU+I(C2€ 26)@
(e« "+2 +~1— U, (20)
2¢° s '

In (20}, only second- and lower order time derivatives
have been kept, consistent with the earlier expansion of
A in terms of U where only derivatives up to second order
were kept. The goal is to eliminate the term 3°U/ az*
favor of a term containing only time derivatives. Bccause
U is slowly varying in time and space, we conclude

U oty U
ksU| > ik l 21
k50| >> (ko | > |57 (21)
and similarly,
: QU a*u
|wgU| >> W - > oy (22)

We may thus expand (20) in order of the number of de-
rivatives. At lowest order, this procedure yields
2
ki — =e=0, (23)
which in essence fixes the linear dispersion relation, (11).
At next order, one finds

L aU + i 03%) - Wy oy
I 1 — -
3z Yot © ke ot

(24)

where k' = 0k /dw is evaluated from the dispersion rela-
tion, (11), at @ = w,. At this order, the overall motion of

an optical pulse is determined to be v, = 1/k’. From
(24), we find that to second order
*U 2 8°U
— = (k') —=. 25
622 ( arz ( )
Substituting (235) inte (20), we conclude
au au wp @y
;o + 'kl’ - . " + P 1
"ar T o [4/(0(:2 NI
1 1 2| 8°U
+—=e—— ('Y 1=
Tkl € 2k0( ) } ar?
oU U 1,3
=i — 4+ ik k" (26)

oz a2 ek
where k" = 8%k/8” is evaluated at @ = wp. In similar

fashion, if we let

Viz, 1) = ES (z, 1) g ffoz—fnt (27)
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where [ = {(w) is evaluated at @ = @y, it follows from
(11) that

8V ,aV_il”ﬁf_

LA T 28
P vl — 3tz =0 (28)

where I' = 81 /8w and 1" = 3% /3w’ are evaluated at w =
wg. The terms which contain second derivatives in time
lead to pulse spreading or dispersion.

It is no accident that the coeflicients of the time deriv-
atives just involve derivatives of the dispersion relation.
This result can be made apparent by using a Green’s func-
tion or the Fourier-Laplace transform approach. The
Fourder transform of Maxwell’s wave equation for £
yields

’E}
az*

If we write the Laptace transform in the form

+ k*(w) ET. (29)

=]

El(k, w) = So Ei(z, w)e ™ dz (30)

where Im (k) < 0, we find that (29) becomes

[£*(w) = K’ Ef = B, + ikE, (31)
where £} = 0E(z, w)/dz and Ey = E(z, ) are evaluated
at z = 0. Demanding that our light pulse consist of only

forward-going waves is equivalent to demanding that Ej
= ik(w) £y In this case, (31) becomes

ik~ k()] E} = Ey (32)

Expanding k{w} in a Taylor series about the frequency w
= wy yields
i[(k — k) — k'(w — wo) — 1" (0 — a)|Ef = E.
(33)
Using the definition of U(z, {), one may verify that (33)
is just the Fourier-Laplace transform of (26). This ap-
proach yields the linear wave equation more easily than
the approach previously described where one directly
eliminates BZU/ dz*% in the z domain; however, this ap-
proach does not generalize in any simple way to nonlinear
problems, while the previous approach does.

We turn now to consideration of the nonlinear contri-
bution to the polarizability P. We shall suppose that no
second-order nonlinearity appears, so that the lowest or-
der nonlinearity is third order. We shall also suppose that
the medium is only weakly anisotropic, so that the non-
linear response can be considered isotropic. Leaving aside
second harmonic generation, which only appears in spe-
cial circumstances, both these assumptions apply to op-
tical fibers. The nonlinear polarizability must have the

form
t i I3
Pz, 1) = S dt, S dr S

cdtyx(t -ttt — it — 1)
“[E(z, 1)) » E(z, ;)] E(z, 5}, (34)
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This combination of E vectors is the only combination
which is invariant under rotations and mirror reflections.
From the form of (34), it follows that x{7,, 7o; 73) is
invariant under the interchange 7, < 7,, but not neces-
sarily under the interchanges 7| < 73 and 7; < 7. Since
the spectrum of E is concentrated primarily in small spec-
tral regions surrounding w = wj and w = —uwy, it follows
that P will be concentrated primarily in spectral regions
surrounding w = —3wq, —wq, wy, and 3wy. Assuming, as
is certainly the case in fibers, that if waves propagate at
w = wg they cannot propagate at w = 3wy, we can ignore
the contributions of P at 43w, to' the electric field. Des-
ignating P as the contribution to P concentrated near w
= wy, we find that it consists of all combinations of the
E field containing two + and one — contribution. It fol-
lows that

Pz, 1) = Sf_m dr Sim dr, Sr_m
cdty x{t -, = bt - 1)
- {2\[E+(z, n) - E(z ) E* (z, 53)
+ [Ef (2, 0) - ET(z, )] E™ (g, r3)}.
(35)

In the Fourier domain, (35) becomes

" N R .
Pz, w) = 5 S dead, S dwa % (W, w; 1)
(2w) ¢~ -
2[E(zow) - BTz @) BN (2 @)
+ [E* (2 @) - E* (2 o) B (2, w)}
(36)
where w; = w ~ w; — w;. The first term in (36) is con-
centrated in the spectral region v, = —wy, = w3 = wy.
The second term in (36) is concentrated in the spectral
region w, = wy = ~w; = wy. If we Taylor expand X (w,,

wy; wy) just as when deriving the linear response, but re-
tain only the lowest order contribution, we obtain

_ I
Pz, w) = 5
(z, w) )

CE7(z, w)] E7 (2, wy)
+b[E*(zow) - ET{(z, 0) | E7(z, 033)}
(37)

where a = ¥ (wg, —wp; wy) and b = f(wg, wy; —wy).
Neglecting higher order contributions is equivalent to ne-
glecting the contribution to the nonlinear polarizability of
terms which include the factors U /9, a¥ /3¢, and higher
order envelope derivatives. This assumption is valid in
optical fibers as long as the optical pulses are longer than
several hundred femtoseconds. In the opposite limit, terins
containing envelope derivatives lead to the Raman self-
frequency shift, a physically important phenomenon [17].

S d(x}] S d(.r)’z {2Q[E+(Z, (.IJ[)
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Returning to the time domain yields
P*(z,1) = 2a|E*(z, 1) - E (2, D) E"(z, 1)
+b|ET(z, 1) - EY (2. 1)} E7 (2. 1).
(38)

It should be emphasized that in deriving (38), we have
assumed that the field envelopes vary slowly compared to
the dielectric response time, not the E field itself. When
the dielectric response times are so fast that they may be
regarded as instantaneous, i.e., they are much greater than
wp ', then

(39)

so that & = b and the number of independent Kerr coef-
ficienis is reduced from two to one. To make this point
explicit, we return to (35) and note that if x{(7,, 72; 73)
— 0 so rapidly that the variation of E can be neglected,
then

I f f
P+(Z, t) = S dt] S df'z S

cdty x(t =, 1 — 6y 1 - 1y)

: {Z[E*(z, - E (2] E (=1

+|[ET(z, 1) - ET(z. 1)] E (g, t)}.
(40)

5((‘-’-’07 Wy, CL’0) = ¥ (wp, wo; _0-’0) = )'((0, 0; 0)

Noting that

!t / !
S dtig dtzg dty x (2 — 1, 1t~ Lt~ 1)

= x(0,0;0) (41)

and comparing (40} to (38), we arrive at (39). In optical
fibers, the nonlinear dielectric response can be viewed as
instantaneous and one does find that 2 = b. The reduction
in the number of independent Kerr coefficients from two
to one when the nonlinear dielectric response becomes in-
stantaneous is implicit in the previous results of Maker
and Terhune [18].

Recalling that the unit vectors é, = &, (wy) and &, =
&, (wp) define the eigenmodes, and using the orthogonal-
ity relations, (8), we find

" =2a[EVE] + EfE;)E{ + b[E{E)(é - &)

+ 2E{Ef (& + &) + ETE; (& - &)]

- |ET(&F - &) + E5 (éF - &7)]. (42)
The term in which a appears does not depend on the ei-
genmode structure, but the term in which » appears does.
Hence, the strength of the nonlinear mode coupling will
depend on the eigenmode structure. In general, a Kerr
medium may be elliptically birefringent. Choosing (with
no loss of generality) €, along the major axis of the bire-
fringence ellipse and é, along the minor axis of the bire-
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fringence ellipse, we find that we may write

i é. + iré, ré, — ié, (43)
b = ————, b = = 43
1+r VI +r°
where, letting r = tan (#/2), we have that &, - é, = é, -

é, = cos # and &, - é = sin §. A linearly birefringent
fiber corresponds to r = 0 and & = 0, while a circularly
birefringent fiber corresponds to r = 1 and 8 = 7 /2. In
the former case, one finds é;, = é, and &, = —ié,. This
choice of eigenvectors differs from the usual choice, €, =
é. and & = &, but this difference leads to no change in
the evolution equations. In the latter case, one finds é, =
(é, + iéy)/\/_i and é; = (&, — ié_v)/\/i which is standard.
Noting that £7 = Ej"and E,= E; (42) now becomes

P{ = (2a + bcos 0) |E{ B}
+ (2a + 2b sin’ 0) ‘EHZET
+ b cos 8 sin B(Efr)zEz”
+ 2b cos 6 sin 8] Ef |'ES
+ b cos’ B(E;)ZEI“ + b cos 8 sin G!E{{ZEQ.
(44)
Using the definitions in (13) and (27) for the wave enve-
lopes, we conclude
p = (2a + bcos? 0) |UI'U + (2a + 2b sin® 6) | V['U
+ beos” OV U* exp | ~2i(ky — L) 2]
+ b cos 8 sin 8{ UV exp [i(ke — o) z]
2 2 ,
+ 2ol + V) Vexp [=ilke — 1)2]}.  (45)
We' may now combine (45) which gives the nonlinear
polarizability with (16) which gives the linear polariz-
ability and substitute the result into Maxwell’s wave
equation. We assume that the nonlinear contribution is of
the same order as the dispersive contribution because so-
litfons are obtained when these two contributions balance.
Substituting the total polarizability into Maxwell’s wave

equation and reducing the equation so that it is first order
in z, just as in the strictly linear case, we obtain

au au  t U 2
— + k' — — — k" — + (2a' + b’ cos’
i . i o 3 e (2a cos” 8) |U| U

+ (2a' + 2b' sin® 8) | V|'U + b’ cos® 0V2U*
cexp [ —2i(ke — k) z}
+ b' cos # sin 6{ UM* exp [i(ky — b)) 2]
+ (2|Ul + V) Vexp [—ilke — )z]} = 0
(46)
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where a’ = a /2kgand b’ = b/2ky. In a similar fashion,
it can be shown that
in, Vil %z"%zl;ju(za + 25" sin’ 0) | U’V
+ (2a’ + b’ cos” §) IVI V + b’ cos’ gUV*
- exp [2i(ky — ) 2}
+ b' cos @ sin B{VZU* exp | —ilky — o)z}

+ (U + 2|V U e [ith ~ 2]} =
(47)

where we assume that @ /2ky = a/2lyand b /2ky = b /21,

We now reduce (46) and (47} to normalized form. To
do se, we assume that light is propagating in the anoma-
lous dispersion regime where k" < 0 and {" < Q. We
also assume, as is appropriate for optical fibers, that the
small difference between &” and /” may be neglected and
that k' — I’ = (kg — ly)/wo. Letting

k' = 1" = == D(No), (48)
we define
2 2.2
wZ TCTly
= gy = 2 1y = 0.5687,
P72 P T Dlrore © 7

I P _ 2
s=={r—-=4}, ¥ =—,
iy v £k +

g

u = (2a’ + b’ cos’ S)I/ZU, v =(2a + b'cos’ 9) Py,

_k’——l’t _ wcAn ; RMS?TCI
2|ku! 0 D(y\{))hg Qs - X(} 01
_ 2a' + 2b' sin’ @ b cos® 8

2a” + b'cost @ " 2a' + b'cost 6’

_ b'cos @sin 8
2a’ cos® 6

where v is the FWHM pulse intensity and An = (kg —
Iy) ¢/ wy is the difference between the indexes of refrac-
tion. With these definitions, (46} and (47} become

a2 + (1l + Ble[)u

+ Cv'u* exp ( —iRSE) + D[uzv* exp {(iR6%/2)
+ (2|u|2 + |v’2)v exp (*iRSE/Z)] =0 (49a)

, dv aav+13v
;Y
3t 3s | 2 s’

+ Cu’v* exp (iRSE) + D{v u* exp (—iRSE/2)
+ (|u,i2+2|v[2)uexp(iR6$/2)] = 0. (49b)

The time variable s is not proportional to ¢, absolute
time in the laboratory frame. Its variation at any point £

(Blul" + o)
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is proportional to time measured in the laboratory frame,
but its origin is £ dependent. The origin is chosen so that
if a signal moved at the group velocity intermediate be-
tween that of the two modes, the evolution in £ of its 5
profile would appear to be frozen. Hence, terms propor-
tional to du/ds and dv /ds appear with opposite sign in
(49) to account for the group velocity difference between
the two modes. These terms can, in fact, be removed by
making the transformation

g
H = uexp L—i;& + 1'63]

s
T = v exp —i?E - 1'6SJ (56}

which yields the equations

22 (a) s 8le )

+ CT'm* exp (—iR8E + 4ibs) + D{u'p

- exp (iRSE /2 — 2ids)

+ 2|zl + | o] )7 exp (—iR8E/2 + 2ids)] =
0T 1 90% 2
{ -(,E + 5 F + |

+ Cu*v* exp (iR — 4ibs) + {E o

< exp (—iR6E/2 + 2ids)

+(21al’ + | o) % exp (iRSE/2 — 2i5s5)] = 0.

(51)

Physically, this transformation is equivalent to shifting the
central frequencies of the two modes just far enough apart
that their group velocities become equal. The cost is to
add explicit time-dependent factors into the equation. The
factor 8 is quite sizable in most optical fiber experiments,
the exception being when fibers with unusually low bire-
fringence or pulse durations substantially shorter than a
picosecond are used [1]. Treatments of nonlinear birefrin-
gence that have appeared in the literature in which cos ¢
= | and § = O apply in this limit [19}, [20]. From an
experimental standpoint, it is convenient to use (49) rather
than (51) since the two eigenmodes are uwsually injected
into the fiber with the same central frequency.

In most cases of experimental interest, R6 >> 1. In
these cases, the terms in which exponential factors appear
in (49) are rapidly oscillating and can be neglected. This
assumption corresponds physically to assuming that the
birefringent beat length is small compared to the disper-
sive scale length. Equation (49) now has the extremely
simple form

. du du 1%

la*E 55;+*'a—2+ Iut-f-BiU!) =40

v v 13%
:a—g—éa+5p+ (Blul' + |o])r =0. (52)
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From the definition of B, we find that B = 1 when cos® 8
= 2 sin’ 8, or, in other words, when

6 = 35°. (53)

This result does not depend on the ratio #/a. Since the
terms proportional to du/ds and dv/ds can be trans-
formed away, we find that (52) is just a version of Man-
akov’s equation {11} which is integrable using spectral
transform methods [12]. In particular, solitons of one po-
larization should pass through pulses of the opposite po-
larization without creating shadows.

Before leaving this section, we review the assumptions
which led us to (52). These are as follows.

1} The plane wave approximation. Taking into account
the transverse variation in the fiber will not change the
form of our final equation. It may lead to multiplying the
coeflicient B in (52) by some f dependent factor which
would shift the critical angle slightly.

2) The slowly varying envelope approximation. This
assumption underpins the entire theoretical development.
Most of the subsequent assumptions are only reasonable
in the context of this assumption.

3) No linear mode coupling. In the regime of interest
to us in this paper, linear mode coupling in fibers is ex-
tremely weak compared to the nonlinear coupling.

4) Truncation of the Taylor expansions of k(w) and
x (w, w; w3). We stopped at second order in the former
case and zeroth order in the latter case. From the stand-
point of linear propagation, the first-order term governs
the overall velocity of the optical pulse, while the second-
order term governs its spreading. Both these effects are
readily visible. By contrast, the effect of the third-order
term is not readily visible unless the second-order term is
zero. Since a soliton forms by balancing dispersion with
the zeroth-order nonlinearity, higher order nonlinearity

2A, exp (iA%g/z) lexp ¢, + Q exp (—¢z)]
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verify by substitution that {52) has the single soliton so-
lutions '

u = Ay exp (i47£/2) sech ¢,

p=0 (54)
where

¢ = A, (s — 5, — 6E) (55)
and

u=20

v = A, exp (iA%E/Zj sech ¢, (56)
where

by = Ar(s — 52 + 8E). (57)

The quantities A;, 4,, s(, and s, are all arbitrary param-
eters. Equation (52) has these solutions for ary value of
B. When B = |, one has the following additional result.
Given an initial condition

H = A1 SeCh [Al(s - S])]
v = D{s)

(£8)

at £ = 0 where we assume that D (s) is real and that the
two polarizations pass through each other, then when £ is
large, we will find

u = A exp (IATE/2 + i) sech (¢, — A(). (59)

In other words, the soliton emerges unscathed from the
interaction except for a shift in phase ¥, and a shift in
time A,/A,. In particular, the polarization of the soliton
is unaltered and shadows do not appear.

As an example, we consider two soliton collisions
where the solitons are in opposite polarizations. The so-
Iution to (52) which we seek has the form

most circumstances in optical fibers.

well obeyed in optical fibers.

: 3 (60a)
exp (¢ + ¢2) + exp (¢ — é2) + exp [~ (¢ — da)] + [H] exp [~ (&1 + )]
24, exp (435 /2) [exp ¢ + Dy exp (—¢,)] _ (60b)
2
exp (&1 + &) + exp (91 = ¢2) + exp [~ (61 — d2)] + [ Q| exp [ (41 + 62)]
where
will not be visible unless the pulse duration is quite small. .
5) Birefringent beat length small compared to disper- , = 26+ i(4; - 4)
sive scale length. This assumption is well obeyed under 28 + (4, + 4))
6) Other simplifying assumptions. These include k" = Q, = 20 + l:(A‘ — Az)_ (61)
{"and k' — 1" = (kg — ly)/wo. They are both reasonably 26 — i(4; + 4)
When ¢, = Qand £ << 0, ¢, << O, we find
24,Q iA7E /2
III. MaNAKOV EQUATION H = 1 2P (12 18/2) (62)
. exp (¢:) + || exp (—¢1)
Assuming that B = 1, Manakov [11] has shown how to d when £ >> 0 _—
solve (52) using the spectral transform method [12]. We and when > $2 : )
do not describe this approach here as it 1s rather intricate. 24, exp (idi£/2) (63)

Instead, we concentrate on its consequences. One can

" exp (¢1) + exp (=)
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Hence, we find for the phase shift
Im (Ql ) _ 46/‘12

t e =
e N R L e B
and for the time shift
1 467 + (A, + A,)
As = —1In | — (4, 2)2 . (65)
24, | 487 + (4, — 4

The phase change is largest when A, >> A, in which case
As = 2 /A4, and
45
t = e 66
an i A, (66)
corresponding 0, = 7 — 48/A4,. When A, = A4, = A,
we find

1 A A
As=ﬂln<l+?>, tan'lh:'g (67)
in which case ¢; < 7/2.

It is interesting to consider (60) in the limit 6 = 0. In
this case, the solution is stationary, i.e., |x|* and |o|*
are independent of £. For that reason, this solution has
been referred to as a soliton solution [20], but it is really
a two-soliton (or two-pole) solution.

The result which we have obtained for ¢, in (66) can
be understood from an elementary viewpoint. We suppose
that the pulse in the » polarization has duration sy and
amplitade A, at the point that it interacts with the soliton
in the u polarization. We also suppose that the pulse in
the v polarization is intense enough to dominate the evo-
lution of the x polarization while the two polarizations
interact. Finally, we suppose that the interactton is swift
enough that the pulse in the v polarization does not change
its shape. [t then follows that

av’ll _ 2
il lv]” (& 5) (68)
50 that
AT e 4
V1= S_m ol ds = 5050 (69)

For a soliton, s, = 2 /A4, which yields reasonable agree-
ment with (67). Equation (69) is appropriate for v pulses
whose integrated intensities are large and whose s deriv-
atives are small.

The existence of shadows when B # 1 might appear
surprising given the well-known robustness of single so-
litons when the nonlinear Schrodinger equation is per-
turbed so that is no longer integrable. Under the influence
of non-Hamiltonian perturbations such as attenuation or
the Raman self-frequency shift, the soliton parameters
change secularly. In the first case, the amplitude steadily
diminishes [21], and in the second case, the frequency
steadily diminishes {16]. In both cases, the soliton main-
tains its basic shape. When the perturbation is Hamilton-
ian with no explicit dependence on space or time, the so-

2681

liton is almost unaffected. Its shape, speed, and
wavenumber shift change somewhat, and that is all. From
a fundamental viewpoint, solitons can be regarded as poles
in spectral transform space {12]. It is difficult for pertur-
bations to destroy the poles in spectral transform space so
solitons continue to exist [22]. By contrast, multiple so-
liton structures are not robust because each of the individ-
ual peles which compose it can shift their locations and
strengths, in different ways, leading the structure to break
up. In a similar sense, when the Manakov equation is per-
turbed, individual solitons are robust, but their polariza-

‘tions are not. When they undergo collisions, the polariza-

tion will, in general, change along with the speeds and
amplitudes.

We now consider a set of example parameters which
can be used to experimentally verify the phase shifts which
we have predicted. We consider pulses which are 500 fs
long, which is the largest size that can be conveniently
produced by the sofiton laser [23]. We shall also assume
¢ = 5, corresponding to fairly large birefringence which
will ensure a short interaction length and good control over
the birefringence. At this pulse size, 6 = 5 corresponds
to An = 1.9 x 10”* where we have set Ay = 1.55 um
and D(\g) = 6.5 x 107>, The birefringence is large,
but is substantially smaller than the largest birefringences
available [13], [14]. The soliton period is z; = 7.1 m. If
we demand that As = 20 for a complete interaction to
occur between a soliton in the u polarization and a pulse
in the ¢ polarization, we find

1 As
Az =——z,=9m. (70)
T 6
This estimate of the necessary interaction length is con-
servative; as little as 4.5 m might suffice. Finally, if we
suppose that

v = Ay sech [(s — s,) + 8] (71)
before collision, then we ﬁlnd from (69) that
b = A4/ (72)

so, to obtain a phase shift of =, we conclude A, = 4.0,
corresponding to a pulse containing four solitons. To de-
termine the twist length required to obtain # = 35°, we
must know the strength of the electrooptic tensor. In gen-
eral, we have

o= gr {73)

where « is the birefringent rotation rate and 7 is the me-
chanical rotation rate. For a pure silica fiber with no lincar
birefringence, g = 0.16, but is higher in a fiber which
already has substantial linear birefringence. Noting that

o= -(f)C—OAn sin 8, (74)

we find 7 < 2600 m ', corresponding to a twist 1éngth
z2.3 mm. This value can be obtained by twisting the
fiber as it is drawn in the fabrication process [13]-[15].
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1V. CONCLUSIONS

We have considered nonlingar pulse propagation in el-
liptically birefringent Kerr media, with particular empha-
sis on optical fibers. We have derived a version of the
coupled nonlinear Schrodinger equation, and we have
shown that when the angle of ellipticity 8 = 35°, cross
coupling and self-coupling in the Kerr effect become
equal, and pulse evolution is described by Manakov’'s
equation for sufficiently large birefringence.

An impottant potential application of the Kerr effect is
in switches where a switching pulse in the ¢ polarization
will rotate the phase of a signal pulse in the u polarization.
In general, this use of the Kerr effect generates shadows—
the signal pulse develops a component in the ¢ polariza-
tion. However, when Manakov’s equation applies, shad-
ows no longer develop. If the signal pulse is a soliton, it
undergoes a phase shift and some displacement, but no
change in polarization and no distortion.

It is possible to experimentally study the phenomena
described in this paper by using specially fabricated op-
tical fibers.
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