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Polarization decorrelation in single-mode fibers with randomly varying birefringence is studied. We find that
decorrelation length is minimized for a given beat length if the average autocorrelation length of the birefringence
is close to the average beat length. The differential time delay between the polarization modes is found to depend
on the autocorrelation length of the birefringence rather than on the decorrelation length of the polarization modes.

Even the best so-called single-mode communication
fibers are birefringent. The orientation and the
strength of the birefringence shift randomly, scat-
tering light from one local polarization eigenstate
to another. The polarization dispersion that results
will limit the transmission rate in both linear!' and
soliton systems.?2 The key physical parameters that
determine the rate at which light pulses spread in
linear systems! or the rate at which solitons lose en-
ergy in the nonlinear systems® are the polarization
decorrelation length Az, the average beat length Lg,
and the autocorrelation length of the birefringence
fluctuations in the fiber, Agp,. The parameter hg,
which also depends on both Lz and Agy,.,, is the length
scale over which the electric field loses memory of its
initial distribution between the local polarization
eigenstates and can be treated as random. It is pos-
sible to derive analytical formulas that relate Az to
Lp and Agpr in some special cases, including the
diffusion limit studied by Ueda and Kath,® in which
hever << Lp, and the weak-coupling limit studied by
Poole,! in which Lg << Agper.t Neither of these limits
necessarily holds in communication fibers. We will
therefore use simulations to determine Az (Asper, L),
which is the purpose of this Letter.

To carry out this investigation, we must settle on
definite models for the underlying birefringence fluc-
tuations. Here we confront the difficulty that little is
experimentally known about these fluctuations. We
have therefore used two physically reasonably mod-
els and investigated their consequences. In the first
model we permit the birefringence orientation to vary
randomly but keep the strength fixed; in the second
model we permit both to vary. In both cases we find
that the qualitative behavior is similar and that Az
is minimized when Ag,., = Lp. Explicitly the spatial
dependence of the electric field E(r, w, 2) is given by
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where B; and B; are real constants, « is fiber loss,
and z is the distance along the fiber. Substitution
of E(r, w, 2) = exp(—az/2 + i(B, + B2)/2)U(r, w, 2)
into Eq. (1) yields
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where x = (81 — B2)/2. The beat length is given by
Lg =27/(B1 — B2). The coupling constant y is taken
to be real because the fiber is assumed to be linearly
birefringent. In our calculations both x and y are
random variables. In the first model we assume that

x=>bcos 8,
y=bsin @, 3)

where b is constant. Hence the strength of the bire-
fringence remains the same, while the orientation of
the birefringence axes varies randomly. Instead of
a sudden twisting of the orientation axes, we assume
that the rate of change of the angle 0 is a white-noise
process,’® i.e.,

L 5,
(g(2)) =0,
(g(2)g(z + u) =Té(), 4)

where I" is a constant and &(u) is the Dirac delta
function. It follows from the central-limit theorem
that the distribution of g(z) does not matter much.
When g(z) is Gaussian distributed, then 8(z) is a
Wiener process, and the distribution function of 0 is
given by

£0) = 1 i exp|i_£0+2—n77)2i|, (5)

[27T(z — 20)]? &= 2T (z — zg)

where we assume 8 = 0 at z = z,. Given any distri-
bution of g(z), f(#) is well approximated by Eq. (5) at
long distances. The ensemble average of the coeffi-
cients x and y is given by

(x(2)) = b{cos 0(2)) = b exp[-T'(z — 20)/2], (6)
(y(2)) = b(sin 6(2)) = 0. )
Hence the random variation of the coefficients falls

off with a characteristic length given by 2/I". The
strength of the birefringence is (x* + y?) = b2, as
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expected. In the second model both x and y vary
independently according to the following Langevin
equations:

= —ax + g(2),

dx
dz
dy
— T e— +

iz ay + h(z), ®
where o is a constant and both g(z) and A(z) are
white-noise processes with zero mean and the same

distribution. The first two moments of the coeffi-
cients x are

(x(2)) =0, 9
(x2(2)) = ((x?) — T/2a)exp[—2a(z — 2p)] + T/2e,
(10)

where we assume (x(z)) = 0. If we choose (x(?) =
I'/2a, then x(z) is a stationary process. The auto-
correlation function of x(z) is then given by

(x(z + w)x(2)) = (xo2)exp(—au). (11

Hence x(z) and similarly y(z) have a finite autocor-
relation length given by 1/a. The average birefrin-
gence is (x% + y2) =T'/a.

Equation (2) is solved with Egs. (3) and (4) or
Eq. (8). We measure the polarization decorrela-
tion length Ag, using the ensemble average of the
Stokes parameter {(s,(2)) =(|U : é;(2)|? — |U - &,(2)|?),
where |U| = 1. There are two physically sensi-
ble choices of the orthogonal unit vectors é;(z) and
é:(z). We may choose them to equal &;(2y) and éx(z,),
the polarization eigenstates at the beginning of the
simulations, or we may choose them to equal the local
polarization eigenstates. We start our simulations
with U(z,) = é,(2¢), so that (s;(2)) = 1, and we de-
fine hz so that it equals the length at which (s;(z¢))
falls to 1/e of its initial value. When Agpe/Lp << 1,
we find that the electric field tends to average over
the birefringence fluctuations, and use of the initial
polarization eigenstates for &;(z) and é,(z) yields a
larger value for hg. When hgy./Lg >=> 1, we find
that the electric field tends to follow the local axes,
at least to some extent, and use of the local polar-
ization eigenstates yields a larger value for hg. It
is the larger value that is physically meaningful be-
cause hg corresponds to loss of memory of the initial
state, so that the Stokes parameter (s;(z)) should
tend to zero, regardless of what eigenstates are used.
We carry out our ensemble average by repeating our
integration of Eq. (2) 1000 times, using different ran-
domly generated inputs for g(z) in our first model
or for g(z) and h(z) in our second model and then
averaging our results. We typically use uniform
distributions for these functions for computational
convenience, but we have verified that the use of a
Gaussian distribution leads to no detectable differ-
ence. The physical requirements for this ensemble
average to correspond to an average over a length of
optical fiber are discussed in Ref. 4.

In Fig. 1 we plot the variation of (s;(z)) versus
distance for Agpr = Lp in the first model. We
find that, when measured with respect to the local
polarization eigenaxes, (s;(z)) decays exponentially
with a length scale that is the same as that of the
random variations. We can show analytically that
this result holds for all values of Agp../Ls. When
measured with respect to the initial eigenaxes, (s,(2))
oscillates as it decays to zero. The decorrelation
length Agfixea is found to be 0.54Lp. In Fig. 2 we
plot the decorrelation length of (s;(z)) for different
values of Agpe./Lp in the first model. The open
circles represent measurements with respect to the
local eigenaxes, whereas the crosses represent mea-
surements with respect to the initial axes. The dot-
ted curve shows the results from the diffusion limit.?
When measured with respect to the local eigenaxes,
the decorrelation length Agiocat = Afivee. We find
that, when measured with respect to the initial eigen-
axes, hggivea approaches the wvalues given by
the diffusion limit when Ag,. << Lp and ap-
proaches 0.5hgp.. when Agpe > Lz. We also
find that hE = max(hE,local, hE,fixed) has its
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Fig. 1. Variation of the Stokes parameter (s;(2)) versus
distance for Agper = Lp in the first model when measured
with respect to the local polarization eigenaxes (solid
curve) and with respect to the initial eigenaxes (dashed
curve).
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Fig. 2. Decorrelation length of (s;(z)) and the polariza-
tion-mode dispersion versus Agpe./Lp for the first model.
The open circles represent the decorrelation length mea-
sured with respect to the local polarization eigenaxes, and
the crosses represent measurement with respect to the
initial axes. The dotted curve is the decorrelation length
from the diffusion limit. The dotted—dashed curve is the
relative differential time delay between the polarization
modes from theoretical calculations, and the open squares
are the results from numerical simulations.
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Fig. 3. Decorrelation length of {(si(z)) and the polari-
zation-mode dispersion versus Agne/Lp for the second
model. The notation is the same as that used in Fig. 2.

minimum when Age = Lz. In Fig.3 we
plot the decorrelation length of (si(2)) versus
hsver/Le for the second model. The results are
similar to those of the first model shown in Fig. 2;
thus the inclusion of the variation of the birefrin-
gence strength has little effect on the decorrelation
length hg.

Finally, we calculate the effect of polarization dis-
persion in both models by calculating (72), the dif-
ferential time delay between the polarization modes.
For both models it can be shown by use of the ap-
proach discussed by Foschini and Poole® that

(7%) = 8k hsiber 12/ hsiver + €Xp(—2/hgiver) — 11, (12)

where k' = dk/dw. We shall present the complete
calculation elsewhere. In the first model, (k%) = k2
because the magnitude of the birefringence does not
depend on distance. The differential time of flight is
independent of the frame of its measurement. From
Eq. (12), (%) depends only on Agper and Lp but not
hg. We note that Agjoca1 = Aiver in both models. We
assume that the pulse is nearly monochromatic, so
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that the propagation constant varies linearly with
frequency, i.e., (£’?) « (k2), At large distances, (72) =~
heverz/Lp%.  In Figs. 2 and 3 we plot the relative dif-
ferential time delay between the polarization modes
for the first and the second models, respectively,
after 100Lg. The dotted—dashed curves represent
the results from Eq. (12), and the open squares rep-
resent results from numerical simulations. We find
that the simulated results agree well with the calcu-
lated results.

In conclusion, using two physically reasonable mod-
els, we show that the decorrelation length g of the
electric fields has its minimum when Ag,, = Lp.
However, the polarization-mode dispersion is found
to depend only on the ratio of the autocorrelation
length of the birefringence and the beat length; it
does not depend on the decorrelation length of the
electric fields.
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