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Interactions of bound multiple solitons in
strongly birefringent fibers
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We report the observation of the interaction of bound multiple solitons generated by orthogonally polarized, high-
amplitude pulses in strongly birefringent fibers. For the birefringence used, the threshold amplitude for the
interaction is higher than that of the onset of second-order solitons on each axis. The characteristics of the
output pulses are in good agreement with the results of a numerical simulation of this interaction. A general
investigation of this effect is carried out at high values of birefringence, and it is found numerically that, even
though the system is nonintegrable, the description of its evolution appears to be reduceable to a finite number
of effective degrees of freedom.
Because of their multiple applications, interactions of
orthogonally polarized solitons in birefringent fibers
have attracted considerable attention. For example,
they are used as a basis for efficient all-optical logic
gates.1 Menyuk has predicted2 that for solitons
polarized along the principal axes of a moderately
birefringent fiber, and above a certain threshold
amplitude that depends on the fiber and pulse
characteristics, the cross-phase modulation (XPM)
can compensate for the walk-off that is due to linear
birefringence. Through XPM, the solitons shift their
center frequencies, and hence their group velocities,
in such a way that they travel as a unit, forming a
bound vector soliton. As the birefringence increases,
the threshold amplitude will be such that the partial
pulses form breathers having two-soliton structures,2
and for high values of birefringence the initial partial
pulses form larger numbers of bound multiple soli-
tons. We define this regime as strong birefringence.
In this Letter we study the characteristics of the
interactions of bound multiple solitons generated by
high-amplitude pulses in strongly birefringent fibers.
We will show that, even though the resulting system
is nonintegrable, some qualitative assessment of the
evolution of the vector solitons can be made.

If LB is the beat length of the birefringent fiber and
Z0 is the soliton period, the condition for moderate
(or higher) birefringence exists when Z0yLB .. 1. In
this case, the normalized equations governing the
propagation of two pulses along the principal axes
of a birefringent fiber are3,4
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where u and v are the pulse envelopes along both
principal polarizations, z is the distance of propaga-
tion, and t is the local time on the pulse. We take the
normalization of t to be tc ­ tyf2 lns1 1

p
2dg, where

t is the FWHM of the pulse intensity. z is normal-
ized by zc ­ s2ypdZ0 ­ 2pctc

2yfl0
2Dsl0dg, where l0

is the carrier wavelength of the optical pulse, Dsl0d
is the fiber dispersion, and c is the speed of light
in vacuum. juj2 and jvj2 represent the power on
the two principal axes and are normalized by Pc ­
l0

3Dsl0dAeffys4p2cn2tc
2d, where Aeff is the effective

core area of the fiber and n2 is the nonlinear-index
coefficient of the fiber. Finally, d is the normal-
ized birefringence defined by d ­ pDntcyfl0

2Dsl0dg,
where Dn is the difference between the indices of re-
fraction on both principal axes. All our numerical
simulations are based on a numerical integration of
Eqs. (1) and (2) using a split-step Fourier-transform
technique, with the input condition

us0, td ­ vs0, td ­
a

p
2

sechstd. (3)

It has been shown numerically2 that, for the in-
put condition of Eq. (3) and for values of d , 1.0,
the threshold amplitude increases with increasing
d. Various analytical approaches have been consid-
ered for this case, and the dependence of the ampli-
tude threshold on d was found to be either linear5 or
nonlinear6 and to match to some extent the numeri-
cal results. However, these approaches do not give
reasonable results for higher values of d when the
system can be considered as containing more than a
single soliton on each polarization axis. Indeed, the
critical value of d that gives a threshold amplitude
corresponding to the onset of second-order solitons is
found by numerical simulation to be approximately
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Fig. 1. Experimental setup: M’s, mirrors; L’s, lenses;
MTS, motorized translation stage; BS, beam splitter;
PBS’s, polarizing beam splitters; Bi, birefringent; ly2’s,
half-wave plates; OSA, optical spectrum analyzer.

dc ­ 1.08. Furthermore, the experimental observa-
tions of the soliton interactions were limited to values
of d , 1.0.1

We carried out an experiment to observe the in-
teractions of high-amplitude solitons for a value of
d . dc. Figure 1 shows the experimental setup. A
passively mode-locked NaCl:OH– color-center laser
generates nearly transform-limited Gaussian pulses
of width t ­ 375 fs, with a center wavelength l0 ­
1.6145 mm. We used a 16-m length of moderately
birefringent fiber having at this wavelength a disper-
sion Dsl0d ­ 5.25 ps km–1 nm–1, an effective core area
Aeff ­ 4.77 3 1027 cm2, and a linear birefringence
Dn ­ 2.40 3 1025, yielding d ­ 1.17. A combination
of a half-wave plate and a pair of polarizing beam
splitters was used to produce two orthogonally polar-
ized pulses of adjustable power ratio, which, in this
experiment, was maintained at 1. A second half-
wave plate was placed at the fiber input to couple the
pulses into the fiber along its principal axes. The po-
larization extinction ratio was kept between 14:1 and
19:1. The two pulses were temporally coincident at
the fiber input, and the timing between them was
controlled by a motorized translation stage that per-
mitted a timing resolution of approximately 0.7 fs.

We performed a numerical simulation to deter-
mine the pulse threshold amplitude for d ­ 1.17.
For these high-amplitude pulses, the spectra have a
complex structure that features multiple peaks and
a complex evolution as the pulses propagate through
the fiber. Therefore the wavelength shift for a given
pulse will be accounted for in our simulations by
the frequency centroid vc,2 defined as the spectral-
intensity-weighted average frequency shift from v0 ­
2pcyl0 on the spectrum. Figures 2(a) and 2(b) show
the variation with the distance of propagation of vcszd
and the peak time location tpszd, respectively, of the
pulse on the fast axis. The values for the slow-axis
pulse are opposite these values. The threshold am-
plitude for the trapping of both solitons is seen to be
a ­ 2.45, below which vcszd reaches a constant value
and tpszd grows without bounds and above which both
vcszd and tpszd oscillate, indicating that the two or-
thogonally polarized pulses are trapped. This value
of a corresponds to a normalized peak amplitude of
1.73 on each axis. Hence, in the absence of birefrin-
gence, a second-order soliton would form.7

The attenuator is adjusted in a way such that the
total normalized peak power is a ­ 2.50. Figure 3
shows the calculated shape, autocorrelation, and
spectrum of the fast-axis pulse at the fiber output
for a ­ 2.50. The pulse is seen to be compressed to
a width of 260 fs and the peak wavelength shift is
8.17 nm. Figure 4 shows the measured autocorrela-
tion trace and spectrum of the fast-axis pulse at the
fiber output. It is seen that, assuming a hyperbolic-
secant shape, the output pulse width is 271 fs, and
the peak wavelength shift is 8.2 nm, in good agree-
ment with the numerical results.

It is seen from Fig. 2 that, as the bound vector
soliton forms, vcszd and tpszd oscillate rapidly with
a spatial frequency that increases with increasing
amplitude, with a low-frequency modulation. In the
case of low birefringence, typically d , 0.6, the low-
frequency modulation has a negligible effect over
a large distance of propagation, and the system
behaves as an independent oscillator. Figure 5(a)

Fig. 2. Numerical results for d ­ 1.17. Dotted–dashed
curves, a ­ 2.40; solid curves, a ­ 2.45; dashed curves,
a ­ 2.50. (a) vcszd, (b) tpszd.

Fig. 3. Numerical results for the fiber output with the
experimental parameters: (a) pulse shape, (b) autocor-
relation trace, (c) spectrum.
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Fig. 4. Experimental results: (a) output autocorrela-
tion trace, (b) output spectrum. The wavelength shift is
measured from the center wavelength of the input pulse
(1614.5 nm).

Fig. 5. Numerical results for vcszd: (a) d ­ 0.50,
a ­ 1.30; (b) d ­ 2.00, a ­ 4.35.

shows the variation of vcszd for d ­ 0.50 and a ­ 1.30.
Kivshar5 gave an analytical account for this motion
by describing the soliton as trapped in a harmonic
oscillator potential resulting from XPM, with a spa-
tial frequency proportional to the pulse intensity.
This approach, which treats single solitons, does not
include two major effects: the dispersive waves gen-
erated by soliton propagation and the presence of a
multiple-soliton structure on each polarization axis.
The former effect explains the very slow modulation
in Fig. 5(a). Indeed, the nonintegrability of Eqs. (1)
and (2) is expected to lead to the continuous gen-
eration of a very small amount of dispersive wave
radiation beyond all orders during the propagation
of an arbitrary input pulse,8 which we believe is re-
sponsible for the observed rise in the amplitude of
the oscillations. In the latter case of bound multiple
solitons, each soliton on a principal axis interacts,
through XPM, with each of the solitons on the other
axis, leading to a complex evolution of the general
structure. If d is of the order of 1.0, each partial
pulse contains two bound solitons; the system can
be described, following Kivshar’s approach, as the
motion of two coupled harmonic oscillators. This ac-
counts for the presence of two spatial frequencies in
Figs. 2. For higher values of birefringence (d $ 2.0),
the rapid spatial oscillation of vcszd is modulated by
more than two frequencies, as is shown in Fig. 5(b),
indicating the presence of a larger number of coupled
oscillators. In fact, it can be shown that in this case
three or more solitonlike structures are generated on
each polarization axis.

This relatively simple motion of the system pa-
rameters seems surprising because, as we pointed
out, Eqs. (1) and (2) are nonintegrable and therefore
can possibly lead to a chaotic evolution of the input
vector pulse. However, these equations can be re-
garded as a Hamiltonian deformation of the nonlinear
Schrödinger equation,9 which is integrable. Solitons
are robust in presence of such deformations,9 and,
as a result, solitonlike structures can form. Even
though the details of the partial pulse structure can-
not be quantified, and the system has a priori an in-
finite number of degrees of freedom that corresponds
to the points on the pulse envelope, the results pre-
sented above indicate that the system still can be
described by a finite number of effective degrees of
freedom over a long but finite length. For example,
when two bound solitons are present on each prin-
cipal axis, having amplitudes above threshold, it is
seen that two effective degrees of freedom can de-
scribe the evolution of the vector soliton. For higher
values of birefringence the number of soliton struc-
tures increases, and so does the number of the effec-
tive degrees of freedom, leading to a complex motion
of the soliton structures.

In conclusion, we observed experimentally the in-
teraction of bound multiple solitons generated by
two orthogonally polarized high-amplitude pulses in
a strongly birefringent fiber. Our results indicate
that, in the presence of strong birefringence, ini-
tial conditions rapidly evolve into solitonlike struc-
tures whose overall motion is governed by a finite
set of effective degrees of freedom over a long but
finite length.
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