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Non-Gaussian corrections to the Gordon–Haus
distribution resulting from soliton interactions
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In a soliton transmission system, spontaneous emission noise owing to optical amplifiers leads to timing jitter that
is usually assumed to be Gaussian distributed. It is shown that the mutual interaction of solitons in neighboring
time slots can lead to non-Gaussian tails on the distribution function and to a substantial increase in the bit-error
rate. It is argued that the approach used here will also be of use in the study of non-return-to-zero systems.
In modern-day optical fiber communication systems,
one aspires to achieve bit-error rates that are lower
than 10212. Theoretical calculations to date, both
analytical and computational, of the bit-error rate
rely on the suspect assumption that the quantities of
interest, for example, the temporal location of solitons
in a soliton system, will be Gaussian distributed in
the presence of noise. With this assumption, one
merely needs to know the standard deviation of the
quantity of interest to determine the bit-error rate.

In this Letter I will calculate the probability dis-
tribution function for the soliton temporal location in
a filtered soliton system, and I will show that the
tails of the distribution function are non-Gaussian,
substantially affecting the bit-error rate without sig-
nificantly changing the standard deviation. The sys-
tem studied here is of current experimental interest1;
however, the basic purpose of this Letter is not to ex-
plain the details of the experiments but to illustrate
with a simple yet realistic example the importance
of non-Gaussian tails and to show how to calculate
the actual distribution function. For this reason I
will take into account only the contribution of spon-
taneous emission that leads to Gordon–Haus jitter,2
leaving aside for the present the contributions that
are due to acoustic and polarization effects, although
these are quite important in the experiments.1

The basic physical mechanism that leads to non-
Gaussian tails is the mutual interaction between
solitons in neighboring time slots.3 This interac-
tion is typically small, but when by chance two
solitons in neighboring time slots are displaced
toward each other by roughly half the tempo-
ral distance to the time-slot boundary, then the
mutual interaction becomes significant and the
solitons are pulled closer to the time-slot bound-
ary. Schematically the probability that a single
isolated soliton is displaced by a time qGH from
the center of the slot as a result of the Gordon–
Haus effect is proportional to exps2qGH

2y2sGH
2d; I

will give below an explicit expression for the Gor-
don–Haus standard deviation sGH. It follows that
the probability that two solitons in neighboring time
slots are both displaced by an amount 6qGH in the
absence of the mutual interaction is proportional
to exps2qGH

2ysGH
2d, which is considerably smaller
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than exps2qGH
2y2sGH

2d when qGHysGH .. 1. How-
ever, if both solitons are actually displaced by an
amount 6qM owing to the mutual interaction, where
qM .

p
2qGH, then the probability distribution func-

tion will be enhanced at the temporal offset q ­ 6qM .
From a fundamental viewpoint, a single isolated

soliton is a natural mode of the optical fiber4; thus
its response to amplified spontaneous emission noise
will be essentially linear, and its temporal offset will
be Gaussian distributed. However, interacting soli-
tons are not individually pure modes, and it is here
that the nonlinearity of the optical fiber transmission
channel makes itself felt.

The stochastic differential equations that describe
two filtered solitons with the same phase in neigh-
boring time slots may be written as5

q̈1 ­ 2g Ùq1 1 aS1 1 4 expf2sq2 2 q1dg ,
q̈2 ­ 2g Ùq2 1 aS2 2 4 expf2sq2 2 q1dg , (1)

where I am using normalized soliton units and as-
suming that the solitons have unity amplitude. The
overdots indicate derivatives with respect to z, the
normalized distance along the fiber. The quantity g
gives the effect of the filter, S1 and S2 are Gaussian-
distributed independent white-noise sources with
zero mean and unity variance, and a is the noise
figure. The expression that I use for the mutual
interaction was first derived by Gordon.3 In the
experiments to date, the solitons are highly phase co-
herent when injected into the fiber and remain phase
coherent for the lengths of the experiments.6 The
phase difference between neighboring solitons can
be chosen by the experimentalist, with zero phase
difference being the worst case since the mutual
interaction is largest. Moreover, the sliding filters
that were used in recent experiments1 lead to a con-
stantly rotating phase difference that tends to reduce
the mutual interaction. This effect is an important
factor in the success of sliding filters, but it seri-
ously complicates the calculations. In the interest
of keeping the discussion simple and illustrative, I
therefore neglect it.

The approach that I use to determine the probabil-
ity distribution function is a variant of the method
of characteristics or the path-integral method.7 The
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random process generated by Eqs. (1) is a Markov
process in the variables Q ­ sq1, Ùq1, q2, Ùq2d. In-
deed, for distances gz .. 1, the reduced process
qszd ­ fq1szd, q2szdg is a Markov process, which is
a significant simplification. This reduction is not
possible in the unfiltered system; thus the filtered
system is actually easier to analyze. One can now
in principle proceed as follows: In the absence of the
mutual interaction, the probability distribution func-
tion fGHsqd is known. There are different paths over
which q ! qGH as z ! zf , where zf is the final z value,
corresponding to different realizations of S1 and S2.
When the mutual interaction is present, the modified
q value qM sqGH, P d does not depend uniquely on qGH

but also on the path P by which qGH is reached. The
probability distribution function fM sqM d is given by

fM sqM d ­
Z

dqGH

Z
dP fGHsqGHd

3 dfqM 2 qM sqGH, P dg , (2)

where the integral s dP . . . implies an appropriately
weighted integral over all possible paths.7 A
discretization of Eq. (2) leads to a computationally
intensive yet tractable and accurate calculation of
the distribution function and ultimately of the bit-
error rate. A complete discussion of this issue
is left for the future.

Here instead I use a maximum-likelihood approach
that is less accurate but reduces the problem to one
that can be solved in a few minutes on a workstation.
There is one path Pmax leading to qGH that is most
likely to occur. Since any path that is reasonably
likely to occur will be fairly close to this path, it
is reasonable to eliminate the integral s dP . . . in
Eq. (2) by using only Pmax with each qGH, defining
a unique relationship qM sqGHd ­ qM sqGH, Pmaxd. The
most likely way to achieve a separation qsep ­ q2 2 q1

is for each soliton to be displaced by an equal amount
in opposite directions, so that Eqs. (1) become

q̈ ­ 2g Ùq 1 aSmax 1 4 expf22sql 2 qdg , (3)

where q is the displacement of either q1 and q2 from
the center of the time slot, ql is the time-slot bound-
ary, and Smax is the contribution of the noise source
along Pmax. When the displacement of q including
the effect of the mutual interaction, qM , is less thanp

2 times the displacement of q excluding the effect
of the mutual interaction, qGH, then the contribution
to the distribution function fM sqM d is dominated by
fGHsqM d. By contrast, when qM .

p
2qGH, then the

contribution to the distribution function is dominated
by fGH

2fqGHsqM dg, where qGHsqM d is obtained by in-
verting qM sqGH, Pmaxd. Thus one may approximate
fM sqM d by the expression

fM sqM d .

1
2

fGHsqM d 1
1
2

fGH
2fqGHsqMdgZ `

2`

dqM
0

Ω
1
2

fGHsqM
0d 1

1
2

fGH
2fqGHsqM

0dg
æ .

(4)

To determine Pmax, I first note that the probability
distribution function in the absence of the mutual
interactions is given by
fGHsqGHd ­
g

a
p

2pz
exps2g2qGH

2y2a2zd , (5)

when gz .. 1. Since the random process that gen-
erates fGH is a Markov process, it follows that

fGHsq, z; qf , zf d ­
g2

2pa2z1/2szf 2 zd1/2

3 exp
Ω

2
g2

2a2

∑
q2

z
1

sqf 2 qd2

zf 2 z

∏æ
,

(6)

where fGHsq, z; qf , zf d is the joint probability distribu-
tion function for the soliton’s arriving at time q after
a distance z and then arriving at time qf after a dis-
tance zf . Completing the square for q, one finds that

fGHsq, z; qf , zf d ­
g2

2pa2z1/2szf 2 zd1/2

3 exp
∑

2
g2

2a2

zf

zszf 2 zd

µ
q 2

z
zf

qf

∂ 2

2
g2

2a2zf
qf

2

∏
.

(7)

Hence one finds that q ­ zqfyzf along Pmax, which
implies that Ùq ­ qfyzf and q̈ ­ 0 along Pmax. Using
Eq. (3) and noting that, in the absence of the mutual
interaction, q̈ ­ 2g Ùq 1 aSmax, I conclude that Smax ­
gqfyazf . Using this value of Smax in Eq. (3) permits
one to compute qM sqGH, Pmaxd.

I now consider a specific set of parameters, g ­ 0.4,
ql ­ 5.5, and zf ­ 250, that correspond closely to cur-
rent experimental values at 10 Gbitsys over 35 Mm.1
I also set a ­ 1022, which is a bit higher than the
theoretically predicted value, but I neglect the acous-
tic and polarization effects that enhance the jitter.
Figure 1 shows the solution of Eq. (3) for qM szd at spe-
cial values of qf ­ qGHszf d. The function qM szd grows
nearly linearly in all cases until qM . 2.5, at which
point it increases rapidly. In the range qf ­ 0–1,
qM szf d hardly differs from qf , but beyond qf ­ 1
the deviations become significant. Figure 2 shows
qGHsqM d, which is obtained by inverting qM sqGH, Pmaxd
at z ­ zf . Beyond qM . 2.5 the curve flattens, and

Fig. 1. Solution for qM szd determined from Eq. (3) at
some special values of qf ; qGHszf d.
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Fig. 2. Solution for qGHszf d as a function of qM szf d. I
calculated this function by first finding qM sqf d at zf and
then inverting, after recalling that qGHszf d ­ qf .

Fig. 3. Comparison of the probability distribution func-
tions fGH and fM . A significant increase in fM relative
to fGH is visible beyond qM ­ 2.5.

Fig. 4. Comparison of the escape distribution functions
EGH and EM . These functions are directly related to the
bit-error rate.

one finds that qGH ­ qMy
p

2 when qM ­ 2.55. Be-
yond this value a large enhancement of the probabil-
ity distribution function is expected. Using relation
(4) to plot fM sqM d, one finds that a significant tail is
visible beyond qM . 2.5, as shown in Fig. 3. I next
define the escape distribution function:

EM sqM d ­ 2
Z `

qM

fM sqM
0ddqM

0 , (8)

which gives the probability that jqj . qM and is
shown in Fig. 4. Assuming that there is an error
when jqj . qerror, EM sqerrord equals the bit-error rate.
For the parameters of Ref. 1, qerror ­ 4.5. In the
example considered here, EM s4.5d is in excess of
10212, which is measurable, whereas the assumption
that the probability distribution function is Gaussian
yields a number that is too small to measure.

In summary, I have shown that the mutual inter-
action of solitons in neighboring time slots can lead to
non-Gaussian tails in the distribution of the soliton
jitter and to a substantial increase in the bit-error
rate. Although the physical mechanism being con-
sidered here is specific to solitons, the basic physical
idea is not. Optical fibers are nonlinear channels,
and there is no reason that Gaussian noise should
lead to a Gaussian distribution of the quantities of in-
terest. Indeed, one intuitively expects the deviations
from a Gaussian distribution to become important for
those rare events in which the noise-induced changes
in the physical quantities of interest are large—just
the sorts of events that are likely to cause errors.
Thus I anticipate that non-Gaussian tails are of im-
portance in non-return-to-zero systems as well as in
soliton systems.
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