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Acoustic effect in passively mode-locked fiber ring lasers
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We present a theory of acoustically induced pulse interaction in a ring fiber laser cavity. In most cases the
acoustic interaction leads to pulse bunching, but in some cases it leads to regular pulse spacing. Our results
compare well with the experimental data.
Passively mode-locked fiber ring lasers are an attrac-
tive source of picosecond and subpicosecond soliton-
like pulses. In these lasers the basic dynamical
balance that leads to passive mode locking of the indi-
vidual pulses is due to a slow saturable gain provided
by erbium-doped optical amplifiers, a fast-saturable
absorption provided by nonlinear polarization rota-
tion and polarization-selective elements, and a fre-
quency filter that is provided by frequency-dependent
cavity resonances combined with the saturable
absorber.1,2 These elements lead to no interpulse
interactions, so that the laser cavity contains many
pulses. One finds that they are free to move about
with respect to one another, leading in most cases
to a rich and complex dynamics.3 However, recent
experiments show that in some cases the pulses are
all regularly spaced, indicating the presence of an in-
terpulse interaction.4,5 Not only is this result physi-
cally interesting but it has implications for potential
applications that require regular pulse spacing.

Grudinin et al.4 have proposed that the interpulse
interaction could be due to acoustic waves stimulated
by the pulses themselves. Because the lifetime of
these waves in an optical fiber is of the order of
100 ns, this proposal is very plausible. In this Letter
we examine this proposal both theoretically and com-
putationally and show that under most circumstances
the acoustic interaction leads to pulse bunching but
under some circumstances it leads to regularly spaced
pulses. Our results are consistent with the experi-
ments. The acoustic interaction between passively
mode-locked pulses in fiber ring lasers in analogous
to the acoustic interaction between solitons in long-
distance communication lines.6,7

Physically, the acoustic waves are created by elec-
trostriction that is due to the large transverse elec-
tric field gradient in single-mode fibers. There are
two groups of acoustic modes, torsional-radial TR2m

and radial R0m, that can be excited by light pulses in
single-mode fibers, but only the latter significantly
perturb the fiber’s refractive index dnstd,6 so only the
latter must be taken into account. Each mode-locked
pulse leaves in its train a perturbation dnstd that is
due to the acoustic wave that lasts approximately
1 ns and repeats every 20 ns because of reflections
from the fiber cladding up to more than 100 ns, so
that mode-locked pulses affect those that come after
them for more than 100 ns.
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If one pulse follows the other at an interval T , then
the first pulse changes the mean frequency of the
other by6
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Consequently this frequency shift results in the tem-
poral shift of pulses relative to one another.

To investigate the acoustic interaction of pulses
in the laser cavity, we assume that N pulses with
equal amplitudes are circulating in the cavity, that
the shape of these pulses is maintained by the laser
itself, and that the pulses interact with one another
only through the acoustic effect. These assumptions
are plausible because the subpicosecond pulses pro-
duced by the fiber ring lasers that we are modeling4

are too short to be shaped by the acoustic interaction,
while there is no interpulse interaction as a result of
the basic dynamics. We thus describe the sequence
of pulses by merely using their temporal positions ti

and deviations from the central laser frequency dVi,
and we find that
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Here l is the pulse wavelength, D is the average dis-
persion of the fiber ring cavity, and z is the propa-
gation distance. The second term on the right-hand
side of Eq. (2b) describes the frequency relaxation
and comes from the frequency filtering in the modi-
fied Ginsburg–Landau equation governing the indi-
vidual pulse shapes inside the laser cavity.2 The
sum in Eq. (2b) is taken over the acoustic response
of all the preceding pulses. We also took into ac-
count that the acoustic wave radiated by the pulse
itself influences the same pulse after one or more
round trips in the laser cavity. In our simulations
we assumed that there are no considerable changes
in the mutual temporal distribution of pulses on
the scale of the acoustic wave lifetime. Other pa-
rameters were D ­ 15 psy(nm km), soliton duration
t(FWHM) ­ 1 ps, and the effective cross section of
the fiber S ­ 50 mm2, and the typical value of b in
Eq. (2b) was estimated to be b ­ 0.01 m21. The evo-
lution of pulse trains inside the cavity was calculated
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for different initial conditions, different numbers of
pulses inside the cavity (N ­ 5–300) and different
cavity lengths.

Our simulations indicate that the most probable
evolution of an arbitrary pulse train in the laser cav-
ity is that after some circulation time in the cavity
the interaction force traps the pulses in bunches. A
typical pulse bunch that can be generated is shown
in Fig. 1. Note that the bunches themselves form
a nearly periodic structure, that the period of this
structure is approximately 200–500 MHz, and that
each bunch is approximately 1.5 ns long and con-
tains 3–10 pulses. The frequency range of the bunch
sequence corresponds to the most efficient interac-
tion of acoustic modes with light pulses.8 Once the
pulses are trapped in bunches, the subsequent evolu-
tion of the pulse train becomes very slow. In our cal-
culations the typical time scale for bunch formation
was 0.05–0.1 s. The generation of such bunches
was experimentally observed in the research reported
Refs. 3–5.

We now determine whether the acoustic interaction
between the mode-locked pulses stabilizes or perturbs
a periodic train of pulses inside the laser cavity. To
do so, we consider a periodic train of N pulses cir-
culating inside a ring laser cavity with period T and
study the stability of such a train to the acoustic in-
teraction as a function of the number of pulses N .
A pulse in the sequence experiences a frequency shift
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where the sum is taken over the preceding pulses
and ti is the deviation of the ith pulse from its
position in the unperturbed periodic train. Re-
calling that there are N pulses in the cavity and
that the ith pulse influences itself for several
round trips in the cavity, we can approximate the
expression for the frequency deviation by writing
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The first sum inside the brackets in the right-hand
part of relation (4) can be neglected because it
leads to an equal change of frequency for all the
pulses and consequently does not affect their mutual
positions. Combining relation (4) and Eqs. (2),
we obtain a second-order linear system of equa-
tions for the pulse deviation from the unperturbed
position. To solve this system of equations for
ti we can represent tk as a sum of harmonics:

tkszd ­
N21X
m­1

tsmdszdexpf2pj sk 2 idmyNg , (5)
where k is the pulse number and m is the harmonic
number. We then obtain linear equations for each
tsmdszd. We look for a solution in the form tsmdszd ,
expslmzd and determine the eigenvalues lm. The
stability requirement is that Reslmd , 0 for all har-
monics. The train of pulses will be unstable even
if Reslmd . 0 for only one harmonic. A typical re-
sult obtained from this analysis is shown in Fig. 2
for a 60-m-long cavity. The dots give the number
of pulses N inside the cavity for which the periodic
pulse train is stable. For the other values of N the
pulse train is unstable. Figure 2 is consistent with
the experimentally obtained data of Refs. 4 and 5.
We checked the results of the linear stability analy-
sis by direct numerical calculations by using Eqs. (2).

Fig. 1. (a) N ­ 20 and (b) N ­ 12 mode-locked pulses
trapped into bunches by the acoustic interaction. Note
that picosecond pulses on the nanosecond time scale look
like delta functions.

Fig. 2. Frequency dependence as a function of N of
stable harmonically mode-locked operation. Dots are
shown only at N values at which the operation is stable,
and regular pulse spacing is observed.
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When N has an unstable value, the long-range in-
teraction destroys the initial periodic sequence of
pulses and eventually traps them in bunches. When
N has a stable value, the pulse trains remain regu-
larly spaced so that there are certain values of N
for which the generation of a regularly spaced pulse
sequence is possible. It should be noted that the ex-
act values of N for which the periodic pulse train is
stable depend on the cavity length. The correspond-
ing frequencies also depend on the cavity length and
lie around the eigenfrequencies or the subharmonics
of eigenfrequencies of the acoustic modes.

In this Letter we have shown that the acousti-
cally induced long-range interaction in a ring fiber
laser cavity can either trap pulses in bunches or lead
to regularly spaced pulse sequences. The results of
our theory coincide with the experimental data. We
should emphasize that the acoustic interaction re-
veals itself only in passively mode-locked lasers and
in most cases is undesirable because it traps pulses
in bunches. On the other hand, the perturbation of
the fiber effective refractive index that is due to the
acoustic vibrations is rather small (10211 –10212), so
the long-range acoustic interaction of light pulses can
be easily eliminated by active mode locking of pulse
trains, by the insertion of subring cavities, or by the
use of internal Fabry–Perot stabilizers.
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