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Beam steering by Y? trapping
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We show numerically the mutual dragging and locking together of intense fundamental and second-harmonic
light beams propagating in second-order nonlinear media, and we discuss the potential applications of such

effects for the steering of beams by spatial phase modulation of the input signals.

America

All-optical, parametric interactions of intense light sig-
nals in materials with second-order nonlinearities offer
a rich variety of new opportunities for controlling light
by light. One important example is the formation of
solitons (more properly, solitonlike waves).!”® Both
(1 + 1) solitons (i.e., one transverse dimension and
one propagation dimension) and higher-dimensional
confinement exist in bulk crystals and in planar wave-
guides made of y® media. Temporal solitons appear
to be more difficult to form with currently available
experimental conditions, but (2 + 1) and (1 + 1)
bright spatial solitons haves already been observed by
Torruellas et al.” and by Schiek et al.® in second-
harmonic generation configurations in bulk KTP
crystal and in a planar LiNbOs waveguide, respec-
tively. The x® solitons form through the mutual
trapping of the parametrically interacting waves,
and the dynamics of their formation exhibits the
unique features of highly nonlinear waves. One
fascinating example is the mutual dragging of two
intense fundamental and second-harmonic beams. In
such a process, two beams whose low-power counter-
parts would propagate in different directions interact
through the y® medium. Consequently the beams
stick to each other and are mutually trapped, so they
propagate in a common direction with the beams stuck
(or locked) together. This is in some sense similar
to the so-called soliton trapping that occurs in y©®
media,’ even though both the fundamental and the
second-harmonic waves are required for formation of a
single soliton in y® media, in contrast to y® soliton
trapping in which case two solitons can trap each
other and form a single bound state. To differentiate
between the two cases we propose the term beam
locking for the mutual dragging and trapping of beams
in y® media. Our goals here are to investigate the
dynamics of such a process and to show that it has
potential applications for the steering of beams by
spatial phase modulation of the input waves.°

We consider continuous-wave light beams travel-
ing in a medium with a large x® nonlinearity,
and we study both (1 + 1) and (2 + 1) trapping.
In the slowly varying envelope approximation the
beam evolution can be described by the normalized
equations®*
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where a; and as are the amplitudes of the fundamen-
tal and the second-harmonic waves, r = —1, and 6 is
a unitary vector along the walk-off axis. The parame-
ters a, B, and & are given by the ratios of the coher-
ence length (I, = = /|Ak|), the diffraction length (I; =
kn2/2), and the walk-off length (I, = n/p). Here k
is the wave vector at both frequencies, Ak = 2k — ko
is the wave-vector mismatch, p is the walk-off angle,
and 7 is the beam width. One has a = —141/l49,
§ = *2l41/l,, and B = sgn(Ak)27l41/l.. The trans-
verse coordinates are given in units of 7, and we set for
the propagation coordinate z/l;; = 2¢. For relevant
experimental conditions, say, /. ~ 2.5 mm, p ~ 1°, and
n ~ 15 um, which yield a diffraction length /; ~ 1 mm,
one obtains @« = —0.5, § ~ =1, and B8 ~ *3. Here
we set a = —0.5, which is representative of most
situations.

We make use of three conserved quantities of the
beam evolution: the total power flow, the total trans-
verse beam momentum, and the Hamiltonian, which
are given by
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with A; = a1 and A; = ag exp(—iB¢&). Solitonlike
wave propagation described by Eqgs. (1) occurs for a
variety of input conditions, with different wave-vector
mismatches and linear walk-off.*

Analytical solutions of the (1 + 1) version of Egs. (1)
with nonzero transverse velocity can be found. At
a = —0.5, solutions with the form a;(¢, r.) = U;(é —
vr )expli(k;é — pjri)] exist when 6 = 0, with v = ruy,
ko = 2k1 + B, and we = 2u1. Those solutions are
a two-parameter family because w; is arbitrary and
the wave intensity defines a one-parameter family
through «,.>® Away from o = —0.5 the existence
of a two-parameter family is suggested by Menyuk’s
robustness hypothesis of solitons.* We emphasize that
for those solutions one has us = 2u, at the input face
of the y® medium. However, we show that nonzero-
velocity solitons can be excited by different conditions,
in particular, by the mutual dragging of the interacting
beams.

To elucidate how the wave interaction yields beam
dragging, we examine the evolution of the energy cen-
troid o(¢) = [r {la1|> + |lag|?}dr.. One can readily
show that

df;éf_) = J - 81,(6)5 — e J2(8), 5)

with € = 2a¢ + 1. At phase matching one has
a = —0.5, and the last term vanishes. Otherwise it
is very small (for the above-mentioned experimental
conditions, € ~ 5 X 107%). Hence the first two terms
capture the main physics of the beam evolution.
The second term shows that, for a fixed value of
the walk-off parameter &, the location of the energy
centroid is governed by the second-harmonic power
flow, which is not a conserved quantity. That shows
how the evolution of the energy centroid is sensitive
to the dynamics of the soliton excitation in terms of
the input signals, such as intensities and beam shapes
at both frequencies and relative phases between both
waves, and also in terms of the magnitude and the
sign of the wave-vector mismatch. The first term
shows that one may modify the location of the energy
centroid by controlling the transverse momentum
of the input beams. Writing the fields in the form
a = U exp(i¢), with U and ¢ being real quantities, one
obtains J = (1/2) [{2U:%2V, ¢y + Us2V, ¢po}dr,. Thus
different values of J may be obtained by spatial
phase modulation of the input beams. That can be
accomplished by a spatial light modulator placed at
the entrance face of the y? medium. Here we restrict
ourselves to the simplest case, given by a phase-front
tilt, which corresponds to input beams entering the
x? medium at slightly different directions.

To investigate the dynamics of the beam dragging
and to show that mutual trapping exists with differ-
ent conditions and phase-front tilts, we conducted a
series of numerical experiments by solving Eqgs. (1)
with a split-step Fourier approach. We chose as the
input signal a; = AU(r )exp(iux - r,) and ay =
BU(r,)exp(ivx - r,), where U(r,) is the transverse
profile of the input beams, A and B are their ampli-
tudes, and p and v are the angles of the phase-front
tilt. Notice that beam dragging as predicted by Eq. (5)
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is useful to our present purposes only when a soliton-
like wave emerges carrying most of the input energy,
so that the phase tilts of the input beams amount to
moderate values. We begin by analyzing (1 + 1) trap-
ping, and we set U(r,) = sech?(r,). For 8 = —3, with
A=3/y/2,B =3, and v = 2u, such an input excites an
exact solution of Eqgs. (1). First we illustrate the ef-
fects predicted by the second term of Eq. (5) by analyz-
ing the soliton formation with linear walk-off and
input beams with no phase-front tilt. Figure 1 shows
the fundamental beam at ¢ = 20 for different values
of the phase mismatch with fixed input intensities
and linear walk-off. In agreement with Eq. (5), the
plot shows that mutual beam dragging depends sensi-
tively on the phase mismatch because so do the excited
solitons.*~¢

In a second set of numerical experiments we investi-
gate the beam evolution with different values of the
angles u and » in a configuration with negligible walk-
off (i.e., 6 = 0). Figure 2 shows the outcome at both
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Fig. 1. Steering by (1 + 1) trapping: excitation of a spa-
tial soliton with fixed linear walk-off and input intensities,
for different values of the phase mismatch. The plot shows
the fundamental beam at ¢ = 20. The second harmonic
propagates stuck together with the fundamental, and it has

not been plotted. In all cases § =1, A=4, and B = 4.
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Fig. 2. Steering by (1 + 1) trapping: fundamental beam
at ¢ = 20 of a spatial soliton excited by input beams with
transverse phase modulation. (a) 8 = —3, A =4, B = 4;
(b)yB=3,A=5,B=3.
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Fig. 3. Steering by (2 + 1) trapping: fundamental beam
at £ = 10 of a trapped state excited with Gaussian beams
with transverse phase modulation. (a) 8 = —3, A = 3,
B=5;b)p=3,A=5,B=3.

signs of the phase mismatch. The plots show how the
beams drag and trap each other, so that for moderate
initial angular deviations they stick together and a
soliton with nonzero transverse velocity is excited.
Large values of » with u = 0 prevent the formation of
a soliton by making the interaction length between the
beams too short. The excitation conditions have been
chosen in such a way that they fall close to a minimum
of the Hamiltonian. Because the stationary, zero-
velocity solutions occur at the minimum of HH for a
given I, this choice minimizes the amount of radiation
generated. The same procedure can be followed with
any shapes of the input beams.

In a third set of numerical experiments we analyze
(2 + 1) trapping. We examine Gaussian input beams,
so that U(r,) = exp(—r,2). We chose the beam am-
plitudes in such a way that the Hamiltonian is close
to its minimum value for Gaussian beams. Figure 3
is representative of the beam evolution with different
values of u and v. It shows a slice of the fundamen-
tal beam after propagating 20 diffraction lengths. The
plot shows results similar to those for (1 + 1) trap-
ping, but the dynamics of the beam evolution is dif-
ferent in both cases. In particular, for x4 = 0, mutual
trapping is possible with larger values of v in (1 + 1)
than in (2 + 1). Regarding the experimental impli-
cations of our results, we notice that different propa-

gation directions in the y® medium might correspond
also to significantly different values of the linear phase
mismatch between the interacting waves, except when
either noncritical or quasi-phase matching occurs.

In conclusion, we have investigated the trapping
of fundamental and second-harmonic beams propa-
gating in second-order nonlinear media. We have ob-
served numerically the dragging and locking together
of intense beams whose low-power counterparts would
propagate in different directions, and we have dis-
cussed briefly the implications of such effects for the
steering of beams by spatial phase modulation of the
input signals.
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