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Polarization Mode Dispersion, Decorrelation,
and Diffusion in Optical Fibers with
Randomly Varying Birefringence

P. K. A. Wai and C. R. Menyuk

Abstract— Polarization mode dispersion and the polarization
decorrelation and diffusion lengths are calculated in fibers with
randomly varying birefringence. Two different physical models
in which the birefringence orientation varies arbitrarily are
studied and are shown to yield nearly identical results. These
models are appropriate for communication fibers. We show
that both the length scales for polarization mode dispersion
and polarization decorrelation measured with respect to the
local axes of birefringence are equal to the fiber autocorrelation
length. We also show that the coupled nenlinear Schrodinger
equation which describes wave evolution over long length along
a communication fiber can be reduced to the Manakov equation.
The appropriate averaging length for the linear polarization
mode dispersion is just the fiber autocorrelation length but the
appropriate averaging length for the nonlinear terms is the
diffusion length in the azimuthal direction along the Poincaré
sphere which can be different. The implications for the nonlinear
evolution are discussed.

1. INTRODUCTION

OLARIZATION mode dispersion plays an important role

in modern-day, long-distance communication systems that
depend upon erbium-doped fiber amplifiers rather than re-
peaters to compensate for loss. Just like signal distortion due
to chromatic dispersion and nonlinearity accumulate along the
length of a communication link, so does the signal distortion
due to polarization mode dispersion. Physically, polarization
mode dispersion has its origin in the birefringence that is
present in any optical fiber. While this birefringence is small
in absolute terms in communication fibers, with values of
An/n ~ 1077, the corresponding beat length Lp is only
about 10 m—far smaller than the dispersive or nonlinear
scale lengths which are typically hundreds of kilometers or
more—so that the birefringence should be considered large.
This large birefringence would be devastating in communi-
cation systems but for the fact that the orientation of the
birefringence is randomly varying on a length scale that is
on the order of 100 m.
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The rapid variation of the birefringence orientation tends
to make the effect of the birefringence average out to zero.
The residual effect leads to pulse spreading, referred to as
polarization mode dispersion. This effect has been the object
of extensive experimental and theoretical study [1]-[14]. In
early work, Poole and Wagner [1] showed that over a finite
length of fiber, in the absence of polarization-dependent loss,
there are two orthogonal polarization states that map into two
other orthogonal polarization states, independent of frequency
to first order. Mathematically, the frequency-derivative of the
2 x 2 propagation matrix is Hermitian; it follows that its
eigenvectors are orthogonal and correspond to the principal
states, while its eigenvalues are real and the difference between
them corresponds to the differential delay time 74. Shortly
thereafter, this theoretical result was experimentally verified
[2], [3]. Poole [4] derived the expectation for the differential
delay time, when averaged over an ensemble of fibers, using a
model in which he assumed that the fiber has nearly fixed axes
of birefringence, varying only slightly but very rapidly, leading
to coupling of the orthogonal eigenmodes. This model is
similar to one proposed originally by Kaminow [15] which has
been used to investigate polarization-holding in polarization-
preserving fiber and which has been shown experimentally
to be very useful in that context [16], [17]. Despite its lack
of obvious physical relevance to communication fibers in
which the orientation of the birefringence can vary arbitrarily,
experiments are in good agreement with the predicted behavior
[6]-[8]. Moreover, a later prediction based on the same model
that the values of 74 are distributed according to a three-
dimensional Maxwellian is also in good agreement with the
experiments [7], [8]. In recent work, we provided a theoretical
explanation for the success of this model By showing that
models in which the birefringence orientation varies randomly
are related to Poole’s model by a simple mathematical trans-
formation, so that the distribution of the differential delay.time
will be the same [13]. Indeed, we showed that any sufficiently
random model will have the same behavior. We also proved
an ergodic theorem, demonstrating the relevance of ensemble-
averaged results to a single, long length of optical fiber. We
then considered two specific physical models [14]. In the
first model, we allowed the birefringence orientation to vary
randomly while keeping the birefringence strength fixed; in
the second model, we allowed both the birefringence strength
and orientation to vary in accordance with a bi-Maxwellian
distribution. We carried out Monte Carlo simulations of the
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field evolution, and we showed in both cases that we obtain
the same variation of 74 with distance as in Poole’s model.

Some time ago, Foschini and Poole [10] revisited the
problem of calculating the expected differential time delay
analytically for Poole’s model using an approach based on
the theory of stochastic differential equations. They were thus
able to obtain Poole’s earlier result, as well as a number of
other results, in a very straightforward way. In this paper, we
show that a similar approach can be applied to our physical
models. We calculate the expectation of 74 for both models,
and we show that the results are consistent with our earlier
simulations. The approach used by Foschini and Poole and
by ourselves makes use of a master equation for the expected
quantities. This equation which is simply given by Foschini
and Poole with appropriate references to the mathematics
literature is usually introduced with a language that physicists
and engineers often find somewhat obscure [18]. This master
equation can, however, be derived quite simply at the level of
rigor common in the physics and engineering literature, and
we include such a derivation in Appendix.

Despite yielding identical expressions for the distribution
of 74, there is an important distinction between Poole’s model
and our models in which the birefringence orientation varies
randomly. In Poole’s model the fiber autocorrelation length
haber is infinite, where the fiber autocorrelation is the length
over which an ensemble of fibers, all of which initially have
the same orientation of the axes of birefringence, loses memory
of this initial orientation. By contrast, in the physical models
that we considered, not only is hgper finite, but simulations
have previously shown that it equals hg 1ocal, the length
scale over which the field measured with respect to the local
axes of birefringence, loses memory of its orientation with
respect to those axes [14]. In this paper, we will obtain this
result analytically for our first physical model in which the
birefringence strength is fixed. In work by ourselves [19] and
others [20], it has been shown that when the coupled non-
linear Schrodinger equation that describes pulse propagation
in optical fibers for both NRZ (nonreturn-to-zero) and soliton
communication signals is averaged over the length scale of
the large but rapidly and randomly varying birefringence,
Manakov’s equation results. The physical meaning of the
averaged fields has been somewhat obscure. In this article,
we discuss the meaning of the averaged fields. Furthermore,
in the simulations to date, it has been the practice to simply
scramble the fields at fixed intervals, while treating their
evolution inside the intervals deterministically. We show that
this practice is not strictly correct in part because there are
two scrambling lengths. The length over which the linear
terms average is given by the fiber autocorrelation length
which is also the polarization decorrelation length measured
with respect to the local axes of birefringence. This length
also roughly equals the diffusion length in the equatorial
direction along the Poincaré sphere measured with respect to
the local axes of birefringence. The length over which the
nonlinear terms average is given by the diffusion length in
the azimuthal direction the Poincaré sphere. We previously
defined the polarization decorrelation length hAg so that, given
an ensemble of fibers whose birefringence is randomly varying

and Stokes parameters whose initial values are set so that
(S1,89,83) = (1,0,0), hg is the length over which (S1)
falls to 1/e [14]. We also previously defined the polarization
diffusion lengths d; as the lengths over which the variances
of the S; rise to 1/e of their asymptotic value of 1/3 [21].
Physically, the polarization decorrelation length and the first
two diffusion lengths d; and d are related to the length scale
in which the field loses memory of its polarization orientation,
while dz is related to the length scale on which the field
loses memory of the ratio of the major and minor axes of
the polarization ellipse. On the Poincaré sphere, di and dp
correspond to equatorial diffusion, while d3 corresponds to
azimuthal diffusion. ~

The remainder of this paper is organized as follows. In
Section II, we present the two physical models that we will
study. We use the master equation that is derived in Appendix
to calculate (72) the expectation of 72 for both models.
In Section III, we calculate the polarization decorrelation
length and the diffusion lengths with respect to both the local
polarization eigenaxes and the initial eigenaxes for the first
physical model in which the birefringence strength is fixed.
We show that Ag iocal = Pfiber. In Section IV, we derive the
equation of motion for nonlinear pulse propagation in optical
fibers. Section V contains the conclusions.

II. DIFFERENTIAL DELAY TIME

In the plane wave approximation, which is an excellent
approximation for optical fibers, the light evolution can be
described by two complex field amplitudes E;(z) and Ey(2),
where z is distance along the optical fiber. (See, for example,
the discussion in [13].) Writing E = (E1, E5)?, we find that
the evolution E is governed by the equation

dE
- =

where defining the standard Pauli matrices

(Lo {01
=\l 1) T\ o)
_ (0 =) _(1 0
2= o) T\o -1

we may write

iKE (1)

@

K = kol + K101 + Koo + K303. 3

Assuming that there is no polarization-dependent loss, then kg
may be complex, but all the x; must be real. We eliminate ko
from (1) by making the transformation

A =Eexp ':—i /Z ko(2') dz'] “4)
0

and we note that communication fibers are nearly linearly
birefringent so that we may set k2 = 0. We now rewrite (1)
in two alternative forms:

% = i(bcosfoz + bsinfor) A

=i(zos +yo1)A

(5a)
(5b)
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the first of which will be useful for the model in which the
birefringence strength is fixed and the orientation is allowed
to vary and the second of which will be useful for the model
in which both vary. The quantity A = 2b is the birefringence
strength and 6 is the orientation angle.

In the first model, we assume that the rate of change of the
birefringence orientation is driven by a white noise process
g90(2) [14],

de

= = 9l2) ©

where
{90(2)) =0 (90(2)g6(2")) = 058(z = 2). (D)

To determine the relationship between o2 and the fiber auto-
correlation length hgper, We calculate the fiber autocorrelation
function {(cos[f(z) — 6(0)]), and we find

{cos[o(z) = 6(O)))

L)
:1—<—/d 42" go( >ge<z>>
= exp (—%gz) )

which implies that 092 = 2/hfiper. In the second model, we
assume that z and y are independent Langevin processes

dz
— = —az + g.(2),
4 ’ ©
T —ay + gy(2)
where
(9:(2)) = (gy(2)) =0,  (g2(2)gy(2)) =0, (10)

(92(2)92(2")) = <gy(z)gy(3/)> = ‘725(2 - 7).

To relate « and o2 to the fiber parameters, we first note that
(9) integrates to

z(z) = z(0) exp(—az) + /Oz dz' g.(#')exp[—a(z — 2')],

4(2) = 4(0) exp(~0z) + fo "2 g,() exploz — ).
(11

Calculating the fiber autocorrelation function (z(0)z(z) +
v(0)u(z)) = [22(0) + 42(0)] x exp(—az), we conclude that
@ = 1/hgper. Demanding that (z%(2) + y2(2)) — (b) as
z — oo where (b?) is the expected square birefringence
strength, we find that 02 = (b%)/hgper. From a physical
standpoint, it is not required that the §-correlated variables
really change instantaneously, it is only required that they
change rapidly compared to the beat length which is the next
smallest length scale in the problem. Simulations show that as
long as the variables that we consider here to be §-correlated
change on a length scale that is small compared to the¢ beat
length, the results do not depend on the exact length scale [14].

It is now useful to switch to the Poincaré representation of
the field in which, rather than following the evolution of the

JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 14, NO. 2, FEBRUARY 1996

fields A1(z) and A3(z), one follows the evolution of the three
Stokes parameters S1 = Ay A} — AgAj, S = A1 AL+ AxA
and S3 = —i(A1 A5 — A2 A}). These variables are the natural
ones to use when calculating the polarization decorrelation
length, the diffusion lengths, and the differential delay time
[14], [21]. The equations of motion (5) imply that the Stokes
parameters obey the equation,

— =W(z2,w) xS

£ (12)

where w is the frequency, S(z,w) = (51, S2,55) (z,w) is
the Stokes vector, and W(z,w) = (2z,2y,0)" represents
the local birefringence. The strength of the birefringence is
[W| = A [14]. Equation (12) describes the spatial evolu-
tion of the Stokes vector at a fixed frequency. In order to
calculate the differential delay time, we must first find the
frequency evolution of the Stokes vector at a fixed position.
The corresponding equation is
08

— =Q(z,w) xS

Ow (13)

where §3(z,w) is the dispersion vector. Equation (13) is. the
defining relation for £(z,w). The magnitude of the dispersion
vector is the average differential time delay, i.e., [8]

(r5) = (0 + Q% + Q3). (14

From (12) and (13), we obtain the dynamical equation for the
dispersion vector §2(z,w) [8], [10]

0Q(z,w)  OW(z,w)

oz Ow
We can determine (73) from (14) and (15) directly, but the
calculation is simpler if we choose the frame of reference in

which the birefringenceNvector is in the 4-direction. For the
first model, we define 2 = R(2)Q where

+ W(z,w) X (z,w). (15)

cosf sing 0
R(z) = | —sinf cosd 0O (16)
0 0 1
With these definitions, we obtain
o Ql @2 Qb/~
o | = |~ Jge + | =200 (17
Q3 0 26822

where b’ = 9b/0w. Since the magnitude of a vector is invariant
under a rotation, so that |Q| = |, we may use (17) instead
of (15) to calculate (72). Equation (17) is what is referred
to in the mathematic literatires as a stochastic differential
equation because gy is randomly varying [18]. According to
the mathematical theory of these equations, any sufficiently
smooth, real function (£2) of the process Q obeys the
equation

8{(¢)

5, — \G¥)
where the so-called generator G is a second order differential
operator. We give a simple derivation of this result in the

18)
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‘ Appendix, and we show that G is given by

2 . 82

291@2~—~-

d
G—lag{Qz i + 02—
90109,

2 o0z " a0z
4 in}
o o,
.9
o2 o, 2 e, 2
a0, 3392 %00

in our cases. [See (Al14) and (A16).] Applying (18) and (19)
to 73 defined in (14), we obtain the following:

- —

(19)

6<Td> — 4b/<Ql>

9% 20

To determine (Ql), we apply (18) and (19) to fll and we find
(9({21) _ 1 2/6) /

9 - —509(91) + 2b . 2n

Solving (20) and (21), we conclude
(1i(2)) = 2hGpec A [exp(—2/hsiver) + 2/ hsiver — 1] (22)

where we have used the initial condition (73(0)) = 0.

In the second model given by (9) and (10), the birefringence
A is a function of both frequency and distance. We assume that
the orientation of the birefringence axis # is only a function of
z and that the frequency variation of the birefringence strength
is separate from the z-variation so that b(w,z) = k(w)b(z),
where k(w) is a deterministic function of frequency. These
assumptions are physically reasonable for communication sig-
nals in optical fibers. It then follows that f(w, z) = k(w)f(z)
where f(w, z) stands for any one of the functions z, y, g, or
gy We again rotate (15) using the rotation matrix R(z). After
the rotation, we combine (9) and (15) to obtain the following
matrix equation:

9 4y oy oW
2 9 —z0 —2kb2
o |22 2 Yia 1 c03 L3
—|% =5 o 0 (fh) + | 2kb0,
z x b b2 ~0 gy “x/hﬁber
Y 0 b2 _y/hﬁber
(23)

Using (A14), the generator for the random process (Q,az, y)
is given by

_1a°
= 3%
., 82 52 82 82
o) Sy o SRR+ Ry -
X{ o T am T e T g
" N 2 _ 2
20— — 20— L2,
M08, L hro0, 2 0y
.82 Y
20— 20— 0,
+ 2y 16958(21 T R TN
) 8
+ 2152 }
6, a9,
17, 1o} x 0 y O
— 2kB -2 + 2k __r ¥ 9
’ BQ 298, 893 .hﬁber Oz hﬁber 8?/

(24)

From (18) and (24), the equations determining (72(z)) are as
follows:

(9(7'3) — ivta
ab) 1 152
5 = o (B4 + 2k (B?). (25)

We assume that the average birefringence (A2) = 4k2(b?) is
independent of z. Solving (25), we obtain

(TdZ(Z» = Zhglber(A/Z)[exp (_z/hﬁber) + z/hﬁber - 1]
(26)

In both of the models presented here, the differential time
delay has the same functional form found by Poole [4]
and by Foschini and Poole [10] using the weak coupling
model. However, their model assumes that the birefringence
orientation is nearly constant so that Agp.. is infinite. Using
simulations, we have already shown for both models that
hE local, the polarization decorrelation length measured with
respect to the local axes of birefringence, is equal to the fiber
autocorrelation length hgpe, [14]. In Section III of this paper,
we will obtain this result once again for the first model. It can
also be shown that the parameters appearing in the expression
for (73(z)) in [4] (1/2h) and [10] (1/02) are equal to hz jocal
in the weak coupling model. Recently, using an approach
similar to that of [4], we showed [13] that when the variation
length of df/dz is much shorter than the beat length which
in turn is much shorter than the variation length of 6, b, and
the field, we again obtain expression (26) for the polarization
mode dispersion.

Since the same expression for polarization mode dispersion
appears using several very different physical models, we
conjecture that the polarization mode dispersion of a fiber
with randomly varying birefringence will always have the form
given by (26). Furthermore, the characteristic length scale that
appears in (72(2)) will be hg 1ocal-

III. POLARIZATION DECORRELATION AND DIFFUSION

Because of the rapidly and randomly varying birefringence,
even if the input polarization is along one of the local
eigenaxes, the polarization states of the electric field at large
distances will become uniformly distributed on the Poincaré
sphere so that (S;) — 0 and (S?) — 1/3. In [14], we define
the polarization decorrelation length hg so that it equals the
length at which (S1(z)) falls to 1/e of its initial value. We
start our simulations setting (S1,.S2,S3)(z0) = (1,0,0). In
[21], we define the diffusion length d; as the distance at which
the variance of S; rises to 1/e of its asymptotic value of 1/3.
The polarization decorrelation length and the diffusion lengths
for the first model in which the birefringence is fixed can be
calculated from (12) using the same master equations (18),
that we used to calculate {r42(z)). It is not possible to usc
the master equation to calculate the polarization decorrelation
length and the diffusion lengths for the second model in
which the birefringence strength varies because one obtains an
infinite series of cumulants. However, previous results based
on Monte Carlo simulations show that the two models produce
nearly identical results [14], [21].
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There are two physically sensible ways to choose the
reference axes for the Stokes vector. We may choose them
to equal the polarization eigenstates at the initial point of the
fiber, or we may choose them to equal the local polarization
eigenstates. As in Section I, we carry out our calculations
using the local polarization eigenaxes. Using (6), (12), and
(16), we find

5 Sy 0

a (%) [-5 —ob3s

ls =1 o |2T L 25, @7
9 1 0

where S(z,w) = R(z)S(z,w) is the Stokes vector measured
with respect to local polarization eigenaxes. From (A14), we
find that the generator that corresponds to the process {S 6}
is given by

1
G = 50‘3
v 52 e 02 52 " . 52
X2 + 82— + == — 2515 ———
{ 2952 T Tlagz e 785,05,
~ 2 ~ 2 ~ ~
+ 285, 9 — — 25 8~ —Sl—i—SQ‘i}
80051 00085, 851 852
2] 0
— 2b83—— + 2bS 28
365 285‘3 (28)

Using (18) and (28), we can calculate the ensemble averages
of functions of {S 6}. For example, to determine the fiber
autocorrelation length that we have already calculated directly
in (8), we apply (18) to = = bcos[f(z) — 8(0)], and we obtain

d 1
o) = — 505 a(2)).
Solving (29) yields (8).

The evolution of the ensemble-averaged Stokes parameters
measured in the local reference frame (S5;(2)), i = 1,2,3 is
described by the following equations:

29

d 1

dz<Sl> = —509(51)

d = 1 -

a(sﬁ = —503(52) — 2b(S3), (30

3 (5= 2m(8n).

If we assume the input polarization is along one of the
local eigenaxes, i.e., (81,82,85)(z = 0) = (1,0,0), then
(S1(2)) = exp(—0jz/2), and (S5(2)) = (S3(2)) = 0. The
polarization decorrelation length measured with respect to the
local axes is therefore given by hgiocat = 2/03 = hiibers
which agrees with the results obtained using Monte Carlo
simulations [14].

To determine the evolution of the ensemble-averaged Stokes
parameters measured in a fixed reference frame, we can either
construct a generator for (12) directly or make use of (28) and
the transformation S = R~1S which can be written explicitly
as,

S; = Sycosf — 8o sind,
Sy = 5’1 sin@—l—gzcosﬁ,
S = S5

(€)Y
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Because the imput is aligned with the initial polarization
eigenaxes, one can show that (Sa(z)) = (S3(z)) = 0. The
equations governing the evolution of (S1(z)) are

d &
E(Sl> = 2b<S3 ikl 9),

£ (Srsind) = ~o3((51) + 2(Sz5in0)) — 2S5 sin),

%(33 sin 8) = 2b(S; sin §) — %q%(éa sinf). (32)
Equation (32) is a third-order ordinary differential equation.
It can be solved and analytically the results agree with the
simulations results reported in [14]. The explicit analytical
expressions for the solutions of (32) are not particularly
illustrative, but simple expressions for the polarization decor-
relation length can be obtained when the fiber autocorrelation
length is much shorter than the beat length L or when the
fiber autocorrelation length is much longer than the beat length.
When hgper < Lp, one can show that

b? :

(S1(2)) = exp (—4—52). (33)

Ty
The polarization decorrelation length measured with respect
to the fixed axes hg fixed = =12 %/ 272 hgper is inversely pro-
portional to the hﬁber, which agrees with our simulations [14]
and the results in [22]. In the other limit when haper > Lp,
we find

(S1(2)) = exp(-032)

and Ag fixed = Paiber/2 = R local/2. The polarization decor-
relation length with respect to the fixed axes is only half the
polarization decorrelation length with respect to the local axes
which again is observed in simulations [14].

Next, we determine the evolution of the variances of the
Stokes parameters. Using (18) and (28), (S;”(2)), i = 1,2,3,
are given by the following ‘set of equations:

—oB (50~ (53)),
4 (52 = 03((5%) - (83)) - 0(:50),

d o o~
E(S;‘f) = 4b(5,S5s),

(34)

d G2\ _
(3 =

(35)
——(S’ 5‘ ) = Zb(<§2> - (S’Z)) - —10'25' S
dz 278 2 3 2 6028

where we recall that (S? + S5 + S%) = 1. Equation (35) is
easily integrated, and the results are consistent with what has
been earlier obtained from Monte Carlo simulations [21]. In
the limit when the fiber autocorrelation length is much shorter

. than the beat length, haper < Lp, We obtain the following:

2
242—2,2) +3 e\xp(—Qng)} ,

0
b
2+ exp (—24 > - 3exp( 2022}} .

2

3%

T%

r 2
1—exp<— 4b2 >}

L T

(82y = Z |2+ exp (—

(32) ~ (36)

(53) =

Wik O O =
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From (36), we find that the evolution of ($7) and (S2)
depends on two very different length scales, hﬁber/4 and
L2 /127( hﬁber When hﬁber/4 < z < I2 /127(' hgber,
(Sl) = (53) ~ 1/2 and (S3) ~ 0. Physically, the electric
field in the local axes becomes uniformly distributed on the
equator of the Poincaré sphere because of the rapid fluctuation
of the fiber birefringence, while remaining confined to the
equator. When z 3> L%/127%hgper, (S?) = 1/3, i = 1,2,3,
which means that the electric field is uniformly distributed on
the surface of the Poincaré sphere. The distance at which the
electric field is equatorially randomized is much shorter than in
the azimuthal direction. When the fiber autocorrelation length
is much longer than the beat length, hgpe, > Lz, we find

[ 3

1+ 2exp(——§agz)} ,
r 3

_1 — exp (—503z>],

[ 3

_1 - exp(—iagz)] .

Both the equatorial and azimuthal diffusion lengths are the
same, so that the randomization of the field on the Poincaré
sphere is uniform.

The evolution of the variance of the Stokes parameters in the
fixed frame can be determined using the following relations:

4

(51

B!

—~
Uy
N
S~
Q
CWlE Wl W

(37

<X
2

= l1- 8+ (61 eww - 28Snw),

S

MI}-—‘MU—-

[1- 52— (S’f - 5'22) cos 20 + 28, S5 sin 24].

The equation governing (S7 cos 26), (53 cos26), and (S1 5,
sin 26) are

%(S}z c0s26) = o3 ( — 3(57 cos 26) + (53 cos 26)
- 4(5'15‘2 sin 2«9)),
%(53 cos26) = o (<5’12 cos 26) — 3(582 cos 20)
+ 4(S1 5> sin 26))
— 4b(52.55 cos 26),
diz(ﬁls”}g sin 26) = o3 (- 2(5? cos 26) + 2(S2 cos 26)
— 4(815, 5in 26))
— 2b(5; S5 sin 26),
%(5*153 sin 26) = 2b(S5; S, sin 26) — o2

(39)

X (g(glga sin 28) — 2(§ZS~'3 cos 29)) ,
%(5'253 cos 26) = 2b({ 57 cos 26) + 2( 5% cos 26))

+ o} (2(5‘15'3 sin 26) — 2(5'25’3 cos 29))
— 2b(cos 26).

When the fiber autocorrelation length is much shorter than the
beat length, hsper < Lp, We obtain,

(52)~1 2+ 3ex szz +ex 2422-2
1 ""6 P o_g §Y) Ug 9

(52)~1 2 —3ex —sf-z + ex ~24£z
217 g P o2 P o2 '

Since S3 = 83, (S3?) = (S2). From (36) and (40), the
decorrelation lengths for (S?) are (S2) are similar but differ
from that of (S3). However, they are all of the same order of
magnitude, ~ L% /7%hgper.

When the fiber autocorrelation length is much longer than
the beat length, hgper > Lp, we obtain

1 7 3
(8% ~ 6 [2 + 3exp(—503z) + exp (—-2-032)],
82y~ =(2-3 _Ta2) 4 352
2 6 exp 20'92 exXp 20'93 .

The diffusion lengths in the equatorial and azimuthal directions
are also somewhat different in this limit.

(40)

(41)

IV. IMPLICATIONS FOR NONLINEAR EVOLUTION

In this section, we determine the effect of the rapidly
varying birefringence on nonlinear pulse propagation in optical
fibers. Using the first model we show analytically that the
scrambling length over which the linear terms average is the
fiber autocorrelation length, but the scrambling length over
which the nonlinear terms average is the diffusion length in the
azimuthal direction on the Poincaré sphere, d3. The equation
describing the evolution in an optical fiber of the electric field
A defined in (4) is [23],

L0A , 6A 18%A NG
+G(AT03A)03A +iB=0 (42

where AT = (A}, 43), B = (4343, A4243), and T =
cosfo3 + sin Aoy . The second term and third term on the left-
hand side of (42) are the phase-velocity and group-velocity
birefringence. The fourth term describes the chromatic disper-
sion. The plus sign corresponds to anomalous dispersion and
the minus sign corresponds to normal dispersion. The last three
terms are due to the Kerr nonlinearity. We transform (42) to the
local axes of birefringence with the following transformation:

_{UN _ [ cos8/2 sind/2\ (A
v= (V) - (— sin 8/2 cos9/2) <A2)' “3)
Equation (42) becomes
v o 10%°V¥
z5—+E\I/+ ib'o ;»,———:l:2 5 %I\I/P\IJ

+5(Tto3W)os¥ + IN =0 (44)
where N = (U*V2,U2V*)t,

£= (iﬂzb/Z _if?/z)-

The nonlinear terms in (42) are invariant with respect to
rotation [23]. If the orientation angle # is independent of

and

(45)
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the distance z, the matrix ¥ is diagonal and the fields U
and V only couple nonlinearly. Equations (42) and (44) are
written in dimensionless form. The distance is normalized to
the dispersion length scale l; which is typically hundreds
of kilometers. Since the orientation of the birefringence is
randomly varying on a length scale of the order of 100 m,
the ratio € = hgper/lq is very small. With this normalization,
the phase birefringence ¥ is typically very large, of the order
e~ 1. The short fiber autocorrelation length, however, means
that ¥ changes many times in a distance /4. If we consider a
weak cw wave so that all but the first two terms in (44) can
be ignored, we find that the effect of the randomly varying
birefringence is the linear randomization of the electric field
that we have already discussed in Section IIL. We can remove
the rapid variation of the state of polarization of the electric
field by the following transformation:

U(z,t) = T(2)¥(z,t)

U U
T(z) = (_u; uj)

is a unitary matrix with coefficients u; and wuz, so that
Jug|? + |ug|? = 1 and T(z) satisfies the following equation:

(46)

where

C

T g0, (48)
0z
Substitution of (46) and (47) into (44), we obtain
B\Tf /o B\Il 10%% + 5325
2| |fw
iy TG F g TelY

+1(Tto30)os T + 1N =0 (49)
where letting ¥(z,t) = (U,V)(2,t),

G =TlosT = (al a‘**)
G4 —0ai

d N = (N, Ny)t where

(50)

-~

Ny = af(2[V]? = |UP)U — asag (2|0 - [VI))V
— a3agUV* — a2 V20,
Ny = a2(2101% = VIV + asas(2[V]* = [UHT
+ agaZVZU* — a%UQY_/*.
The coefficients a;, ¢ = 1,---,6 are defined in terms of u;
and wug as
a1 = |ui|? = |usal?, ay = 2uiuy,
as = —(urug +ujuy), as= u? —uy*?, (52)
as = i(uug — uwiud), ag = —i(u? +up?).

From the definition, the coefficients a1, ag, and ag are real
while a4, as, and ag are complex. One can further show that
a? +a} + a2 =1,

2 2 2 (33)
ay +az +ag =0.

The coefficients {a1,a2,as} satisfy (27), the equation of
motion for the Stokes parameters in the local axes if one
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replaces S; by a;, ¢ = 1,2,3. Similarly, the coefficients
{a4, a5, a6} also satisfy (27) with the same white noise source
ge. Since the coefficients of (27) are real, the real parts and
the imaginary parts of {a4, as, ag} satisfy (27) separately.

The random coefficients a; in (49) are rapidly varying. We
separate the spatial average of the coefficients in (49) from its
randomly varying part, and we obtain

0% ,_ 0¥ 10%°0
5 TS e
—|x1:|2\1f + 6(@03\11)03\1; + 5 <N>
e Lo 1
= (o — ()G~ M- (). 69
We have used the ergodic theorem [13],
(f) = lim = [ dsf(s) (55)

which states that as z — oo, spatial averages of a func-
tion f(z) are equivalent to ensemble averages. The notation
(N) represents replacing the coefficients a;a; in N by their -
ensemble average. Since {a1,as,as} and {as,as,ae} are
solutions of (27), the equations governing their means and
their variances have been derived in (30) and (35) of Section
II. To determine {(azag), we construct the generator for the
process {a;}, i = 1, ---,6, and we find that (azae) also
satisfies (35) if we use the following substitution:

S} — aja,

522 — A205,

5'3? 7 G306,

5’2513 — (0,2(16 + a3a5)/2.
From the definition of the transfer matrix T, we find that at

z = 0, we have u; = 1 and ug = 0. Equivalently we have
(ala az, 0'3) = (17 0, 0) and (0'47 as, a’G) = (07 1> —7‘) From (3), )
we find that {a1) = exp(=0d22/2) and {as) = 0. Since (35) is
homogeneous and initially (a1a4, a2as5, a306, 8206 + 030s5) =
(0,0,0,0), we conclude that (azae) = 0. Similarly, one can
show that {Re(a;)Im(a;)) = 0, ¢ = 4,5,6. The ensemble
averages of & and N are

N1 xp(—032/2) 0, _

(o) = Jimm, (e ’ 0‘9 exp(—aﬁz/Z)) =0

o (@[T — 27T — (Re(ag)) UV
(N} = Jim, < o - ety )

To calculate {a%) and (Re(al)), we ﬁrst note that (Re(a2)) =
(Re?(ag)) — (Im*(ag)) and that a2, Re®(ae), and Im?(as)
can be obtained by solving (35) with the initial conditions
(3,a3,63) = (1,0,0), [Re*(as) Re’(as),Re’(as)] =
(0,1,0), and [Im?’(a4) Im?(as),Im*(ag)] = (0,0,1). We
conclude that {a2) = 1/3 and (Re(a3)) = 0. Using these
results, we find that (54) becomes
8T 18%T 8 — - , v 1,
St ol TPT =~ (5 - (3) 5y — 5 (N—(N)).

(57)
The left-hand side of (57) is known as the Manakov equation.
The first term on the right-hand side of (57) describes the usual
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linear polarization mode dispersion, and the second term on
the right-hand side describes a nonlinear polarization mode
dispersion that has not to our knowledge been previously
discussed in the literature. The coefficients on the right-hand
side of (57) have zero mean when averaged over the Poincaré
sphere. The magnitude of the random coefficients a1, a4, a3,
asag, and af are of order one and they change sign on a
length scale given by hgper Which is much shorter than the
dispersion length scale l4. Physically, the pulse envelope is
not able to respond to the rapidly varying a; but rather to their
cumulative effects. One can therefore average (57) over an
intermediate length scale ! which is much longer than Agp.; but
is much shorter than the chromatic dispersion scale length, the
nonlinear scale length, and the polarization mode dispersion
scale length. Since the electric field ¥(z,t) does not change
significantly on the length scale , the effect of this averaging
is to replace the random coefficients a, and a;a; on the right-
hand side of (57) by their integrals (1/1) f a2 ) and
(1/1) sz d?'a;a;.

The variance of these random coefficients is typically pro-
portional to h/l, where h is the decorrelation length of a; or
a;a;. Since the decorrelation lengths of a; and a4 approx-
imately equal the equatorial diffusion length d;, while the
decorrelation lengths of a2, asag, and a approximately equal
the azimuthal diffusion length ds, the relative contribution
from the linear and the nonlinear polarization mode dispersion
in (57) to the pulse deformation will depend on the relative
strength of dq and ds. From Section III, in the limit where
the fiber autocorrelation length is much shorter than the beat
length, hgher < Lp, the azimuthal diffusion length is much
longer than the equatorial diffusion length, and the contribution
from the nonlinear polarization mode dispersion will dominate.

We derive the equations of motion for the averaged random
coefficients on the right-hand side of (57) by constructing
the corresponding generators, and we then solve the equa-
tions numencally We find that var| fo dz'(a1 — (al))} =
var[f0 dz’ Re(a4)] = var fo dz'Im(a4)], Var[fo d2' (a3 -
1/3)] = var{fo d?'[Re?(ag) — 1/3]} = var{f0 d2'[Im?(ag)
—1/3]} and var fo dz’' Re(asag)] = var[f0 dz'Im(agag)]
= vaJr[f0 dz’' Re(ag)Im(ag)]. In Fig. 1, we plot the variance
of the random coefficients versus hgper/Lp at large distance.
The solid curve glves var| fo dz'(a1 — (a1))], the long-dashed
curve gives var[ fo d#'(a3 — 1/3)], and the dotted curve gives

var| fo dz' Re(asas)]. The variances are normalized by the
distance I and the beat length L g. The short-dashed curve is
the azimuthal diffusion length normalized by Lg.

We note that [21] the equatorial diffusion length d; =~
hfber- From Fig. 1, var(f; dz’ (a1 — (a1))] =~ dil, while
var fo dz'(a% — 1/3)] and var[fo dz’' Re(agag)] o dsl. When
haber € Lp the variance of the coefficients of the nonlinear
terms are larger than is the case for the linear terms and thus
the nonlinear terms dominate the polarization mode dispersion.
When hgper ~ L, the opposite applies. The relative contri-
bution of the polarization mode dispersion to pulse evolution
depends on the strength of the birefringence b/, the pulse width,
and pulse intensity as well as the random coefficients.

10? r : .
. linear coefficient
10"
m
= 0
10
3
S 10N
5
107 N2 -
nonlinear coefficients
10‘3 L 1 i
102 101 10° 10 10?
hfiber / I"B
Fig. 1. The variances of the averaged random coefficients of the linear

and nonlinear polarization mode dispersion to the Manakov equation versus
heber/Lp at large distance. The solid curve gives va.r[f0 dz'(a1 — {(a1))],
the long-dashcd curve gives var| fo dz'(a — 1/3)], and the dotted curve

gives var| fo dz' Re(azag)]. The variances are normalized by the distance [
and the beat length Lp. The short-dashed curve is the azimuthal diffusion
length d3 normalized by Lg.

In simulations to date, it has been the practice to use a
coarse-step approach in which one simply randomizes the
electric fields at fixed intervals separated by a length 2., that
is long compared to hgper and the d;, while treating the field
evolution inside the intervals deterministically. As long as the
dispersive and nonlinear scale lengths are very long compared
10 Zstep, this procedure will accurately reproduce the averaging
that yields the Manakov equation. However, it will exaggerate
the variance of the linear polarization mode dispersion by a
factor that approximately equals 2step/hsber and will exagger-
ate the variance of the nonlinear polarization mode dispersion
by a factor that approximately equals zgep/d3. In the former
case, one can compensate for the exaggeration by appropriately
lowering ', but that is not possible in the latter case, and
the coarse-step approach will significantly overestimate the
contribution of nonlinear polarization mode dispersion when
d3 < Zstep-

V. CONCLUSION

In the two different physical models presented here, both of
which allow for arbitrary orientation of the birefringence, we
use an approach based on the theory of stochastic differential
equations to show that the polarization mode dispersion has
the same expression as that found for polarization-preserving
fibers with small random mode coupling by Poole [4]. It is also
the same as that found for a model with very general assump-
tions presented in [13]. We observed that the polarization mode
dispersion depends on hg ocal, the polarization decorrelation
length measured with respect to the local axes. We conjec-
ture that with sufficient randomization, the polarization mode
dispersion for fibers with randomly varying birefringence will
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have the same functional form given in (26) for any physicaily
reasonable distribution of the birefringence.

For the first model, we derived the polarization decorrelation
length and the diffusion lengths measured with respect to both
the local and initial eigenaxes. The results agree with those
obtained from Monte Carlo simulations. We have shown that
the length over which the linear term in the evolution equation
of the electric field averages is given by the polarization
decorrelation length measured with respect to the local axes
of birefringence which is also the fiber autocorrelation length.
The length over which the nonlinear term averages is given by
the diffusion length in the azimuthal direction on the Poincaré
sphere. At distances much larger than the longer of the two
lengths, the effect of the random birefringence is that the
electric field polarization varies rapidly on the Poincaré sphere,
and the pulse envelope evolves according to the Manakov
equation with corrections due to polarization mode dispersion.
To accurately measure the relative contribution of the linear
and nonlinear polarization mode dispersion, one must take into
account that their relative contribution depends on the ratio of
heber and ds. The usual practice of simply scrambling the
electric fields at fixed intervals while treating their evolution
inside the intervals deterministically tends to exaggerate the
contribution of both linear and nonlinear polarization mode
dispersion. While one can compensate for the former by
changing the birefringence strength, that is not possible for
the latter.

APPENDIX

Consider the stochastic differential equation

= Qirgr +Us (A1
, k=1 :
where ;(z) and U,;(z) are n-dimensional vectors, and

Qi (8, 2) is an n x m matrix. The process g;(z) is an m-
dimensional white noise process with zero mean and variances
2 .
ie.,

a;,

(A2)
(A3)

{gu(2)) =0,
(g(2)g1(2")) = oRbrib(z — ')

where §x; is the Konecker delta function

s L k=l
K=Y0,  k#1

and §(z — 2’) is the Dirac delta function,
z=12

o= = {Ooo 27

To solve this equation, we must find a mathematically well-
defined way to integrate (A1). This problem has been carefully
studied by mathematicians who have completely solved it [18];
‘however, the presentations that have been made of this subject
use the language of Lebesgue integration and measure theory
which makes the results inaccessible to many physicists and
engineers.

In this Appendix, we derive the master equation that governs
the evolution of ensemble-averaged quantities at the level of

(A4)

(A5)
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rigor that is common in physics and engineering texts. Our
starting point is that in any physical system the gp(z) wilt
not really change instantaneously—but only over some ﬁmte
but very small interval that we label (. We will therefore
assume that the gp(z) are constant over intervals of length
¢ and change randomly from interval to interval. With this
assumption, the integration of (Al) is well defined. After
carrying out this integral and ensemble-averaging, we will
let { — 0 and show that the limit is well defined. We note
that when one carries out Monte Carlo simulations of this
sort of problem, one must use finite values of ( to carry
out the integration and verify that the results are independent
of ¢ once ( is made sufficiently small. Thus, the analytical
procedure that we are following closely mirrors both our
physical understanding of the problems and what is done in
computer simulations.

Let us consider any smooth function ¢(£2) of the ;. We
will assume that the interval ¢ is sufficiently small that ¢ only
changes slightly over the interval ¢ so that if let z = 2zq be the’
beginning of an interval over which the gz(z) are constant,
then at the end of that interval
1 d%p

P(z0 + ¢) (A6)

where the first two derivatives may be written in accordance
with the chain rule as

O 9y

39 dz
d21/1_ " [3y 8 dsy;
W‘ga—m(ﬂﬂ

(A7)
U 0% dSYy dUy,
+22{Wan-agkﬂqg

j=1k=1
oY asd; \ | d€
oo o (2|
We may now substitute (A1) into (A7) and (A7) into (A6), and
we then ensemble average to obtain the ensemble-averaged
change in ¥(z). To calculate the ensemble-averaged change,

we note that the appropriate means and variances for the Ik
in the interval (2q, 29 + () are given by

{gx) =0, A

A8
(9191) = 026kt /C. A8

The g3 in different intervals are uncorrelated. This form of the
means and variances guarantees that the solutions of (A1) have
a well-defined limit as ¢ — 0. For example, if we consider
the simple equation '

aQ
== Al
P (A9)
and we integrate over the interval (0, Z), we obtain
N
Z)=> 9" (A10)
r=1
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where N = Z/¢ and ¢ is the value of ¢ in the rth interval.
We now find that

N
Y= (g™ =0 (A1)
r=1
and that
N N
@*(2)) = Z Z (g g™\ ¢2,
r=1 s=1
N
= Z {(g™)*)¢ = za2c,
=1
= azNC = g2 (A12)

which is independent of (.

When carrying out the ensemble average, there are two
different averages that must be carried out. The first average,
designated ( )1, is over the different possible values of the g,
in the interval (29,2 + ¢). This average yields

Fl(w(e0+ O = b)) = Glp(x0)] + ) (A13)
where
j=1 J j=1k=1p=1
2 Jd
X (ijQkpm + Qip a%]p BT ) (Al4)

and O(() indicates contributions that are proportional to ¢ and
higher powers of ¢ and that tend to zero as ¢ tends to zero.
The second average designated ( )2, is over all possible history
of the g; in all the intervals up to the point z = z;. We note
that the compound average ({ )1)s is equivalent to the average
over all possible histories up to z = zo + ¢. Defining { ) as
the average over all possible histories up to the point z in the
argument of 9)(z), and carrying out the average { )» on (A13),
we obtain

UGz + O) = W)l = (Glteo)) + (0. (A19)
Finally, allowing { — 0, we obtain the result
%) _ (Glya). (A16)

0z

In the mathematics literature, the generator G(¢) given in
(A14) is referred to as the Stratonovich generator [18]. In
this literature, another form of the generator in which the last
term in (A14) is dropped, referred to as the Ito generator,
is still widely in use. Historically, the Ito formulation devel-
oped first, and it has properties that make it convenient for
proving mathematical theorems. However, as we have shown,
the Stratonovich formulation appears as the natural limit of
physically realistic models in which all variables have nonzero
autocorrelation times. As the autocorrelation times of some
of the variables tend to zero, the Stratonovich formulation is
obtained.
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