
February 1, 1996 / Vol. 21, No. 3 / OPTICS LETTERS 195
Minimum channel spacing in filtered soliton
wavelength-division-multiplexing transmission
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We study a soliton transmission line with sliding-frequency filters, and we determine the limits on soliton
stability imposed by the value of the free spectral range of Fabry–Perot étalon filters. From these limits,
we infer the minimum channel spacing that is possible in a soliton wavelength-division-multiplexing system.
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One of the advantages of soliton transmission lines
is the natural way in which they can be combined
with wavelength-division multiplexing (WDM). The
total data rate is determined by the individual chan-
nel data rate and the number of channels. The largest
number of channels that can be used is determined
in turn by the minimum and maximum frequency
spacing of channels. In a soliton transmission line
without filtering, the minimum channel spacing for
WDM is determined by timing jitter induced by soliton
collisions1 or the frequency shift that occurs when soli-
tons collide in the detector2; both effects limit the
spacing to a minimum of approximately four soli-
ton spectral widths.2 The maximum spacing is deter-
mined by the requirements that soliton collisions occur
over several amplif iers1 and that the channel gain dif-
ferential be nearly zero2; this limitation is typically sev-
eral nanometers. In a soliton transmission line with
Fabry–Perot étalons as sliding-frequency guiding f il-
ters, the channel spacing is determined by the separa-
tion between the frequencies at the peaks of the f ilter
transmission function. By changing the free spectral
range of the f ilter one may bring the WDM channels
closer. On the other hand, the f ilter characteristics
cannot be changed arbitrarily because certain restric-
tions are imposed on the f ilter by the requirement that
the solitons remain stable during propagation.3,4 In
this Letter we analyze how closely one can bring WDM
channels with Fabry–Perot étalons while maintaining
stable soliton propagation.

The propagation equation in soliton units is3,5
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where a is the amplifier excess gain, v
0
f is the constant

sliding rate, and f std is the response function of a
distributed Fabry–Perot étalon f ilter. The Fourier
transform f̃ svd of f std may be written as
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where c is the speed of light, zd ­ t
2
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dispersion length of a soliton with duration t0 ; t0y1.76
0146-9592/96/030195-03$6.00/0
(with t0 the pulse FWHM), l is the wavelength, D is the
dispersion coefficient, lf is the filter separation along
the transmission line, d is the f ilter air gap, and R
is the ref lection coefficient. We recall that the free
spectral range equals cy2d, and we note that Eq. (1)
is written in retarded coordinates that accelerate with
the soliton. In this set of coordinates the filter is
stationary, whereas the soliton mean frequency is
shifting at the filter sliding rate v

0
f .5

In most previous analyses the f ilter function was
expanded in a Taylor series and only the second-
and the third-order terms of this expansion were
included. Through second order, this expansion term
approximates the filter shape by a parabola with the
curvature h2 defined as
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In this approximation it was recently shown that
soliton propagation remains stable up to h2 ­ 0.4,4 and
the soliton mean frequency v0 at equilibrium is offset
from the filter frequency vf by

Dv ­ v0 2 vf ­ 23v
0
f y4h2A2 , (4)

where A is the soliton amplitude. The relation among
the excess gain a, soliton amplitude A, and the f ilter
curvature h2,

a ­
2h2

3A2 1 2h2sDvd2 , (5)

provides the condition for stable soliton propagation
where gain and losses are balanced, and the con-
dition v0

f , v0
cr ­ 2s2y27d1/2h2 is imposed by the

filter strength on the sliding rate.3 The next
approximation, which takes into account the third-
order filter term, results in correction to the expression
for Dv given by Eq. (4) and implies that upsliding
in frequency is better than downsliding for practical
soliton transmission.6

With the decrease of the filter transmission chan-
nel separation the changes in f̃ svd on the scale of the
soliton spectral width Dv0 become too rapid to be use-
fully approximated by the first few terms of a Tay-
lor expansion. We therefore study the impact of the
full filter function f̃ svd given by Eq. (2) on soliton
 1996 Optical Society of America
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Fig. 1. Soliton spectrum (solid curve) and the real part of
the Fabry–Perot étalon filter Ref f̃ svdg (dashed curves) for
different free spectral ranges (FSR’s): FSRyDv0 ­ 16, 7,
and 3.5.

propagation. The shape of f̃ svd at several different
values of the free spectral range together with the
soliton spectrum is shown in Fig. 1. We simulated
soliton propagation governed by Eq. (1) for the input
pulse u0 ­ sechstd with the initial mean frequency
v0 centered under the peak filter transmission fre-
quency vf . This initial pulse does not correspond to
the equilibrium soliton state in the transmission line,
and it therefore sheds radiation, which is damped,
while evolving toward the equilibrium state, when
it exists, resulting in a pulse with some amplitude
A, duration t, and mean frequency offset Dv from
vf . When no equilibrium exists, the calculations in-
dicate that the initial pulse is unstable. Note that
the numerical observation of instability is not enough
to ensure that there is no equilibrium because the
initial conditions could be outside the basin of at-
traction. In practice, however, as we discuss below,
there is a physical reason to believe that no equilib-
rium exists when solitons are unstable in our calcu-
lations. In our calculations we set the sliding rate
to be v

0
f ­ 0.8v0

cr, and we used upsliding. The other
parameters that we used in our calculations were
pulse duration t0sFWHMd ­ 1.76t0 ­ 20 ps, f ilter
separation along the transmission line lf ­ 30 km,
and fiber dispersion coefficient D ­ 0.5 psy(nm km).
We also used the value of excess gain given by Eq. (5),
so that in all cases in which we found stable solitons
their duration and amplitude nearly equaled those of
the initial pulse.

In Fig. 2 we show the evolution of the peak pulse
amplitude A and the mean frequency offset Dv, setting
the filter curvature h2 ­ 0.1 and using different values
of the f ilter free spectral range. We first note that,
as the free spectral range decreases, the value of
Dv grows. This effect is predicted by the full f ilter
function f̃ svd and is not contained in the third-order
Taylor expansion. When the f ilter peaks are closer
than four spectral widths of the soliton, Dv becomes
too large for the chosen value of excess gain to balance
the f ilter loss, and the pulse dies after some distance
of propagation, as shown in Fig. 2. From this physical
argument, we conclude that there is no longer a stable
soliton solution.
From a practical standpoint, large Dv is not
desirable for soliton information transmission. When
Dv is large, the filter curvature at the soliton mean

Fig. 2. (a) Soliton peak amplitude A and (b) mean fre-
quency offset from the filter frequency Dv as a function
of distance z given in soliton periods z0, obtained through
numerical solution of Eq. (2) for f ilters with curvature h2 ­
0.1 and different free spectral ranges (FSR’s): FSRyDv0 ­
10 (solid curves), FSRyDv0 ­ 6 (dashed curves), and
FSRyDv0 ­ 3.5 (dotted curves).

Fig. 3. Absolute value of the soliton mean frequency offset
from the filter peak frequency at equilibrium Dv as a
function of the filter free spectral range for the filter
curvatures h2 ­ 0.03 (circles), h2 ­ 0.1 (squares), and
h2 ­ 0.3 (triangles).
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frequency is smaller than in Eq. (3), indicating that
more gain is required for stable soliton propagation.
Our calculations showed that if we increase the value
of excess gain by 20% from the value given by Eq. (5)
stable soliton propagation may be obtained even when
Dv ­ 0.6. However, the soliton spectral width at
equilibrium is considerably broader than the initial
spectral width because the ratio between gain and loss
that yields the resultant pulse width has changed. An
increase of the excess gain in a real communication
line implies an the increase of the soliton timing jitter,
and the increase of the spectral width implies WDM
channel cross talk. We thus limit our considerations
to the excess gain a given by Eq. (5), and we take the
free spectral range at which the filter fails to guide the
soliton as the limiting case for WDM channel spacing.

We have discussed a relatively weak filter with
h2 ­ 0.1. As h2 increases, the pulse shape at equi-
librium becomes distorted, developing sidebands in
the time domain. Moreover, its spectrum becomes
oscillatory,3 imposing another limitation on the
WDM channel separation. We have investigated the
pulse evolution over 100 soliton periods for different
filter strengths h2. In Fig. 3 we show Dv as a
function of the filter’s spectral range. Each marked
point in Fig. 3 corresponds to a computational result.
The dashed line shows the portion of Dv imposed
on the soliton by sliding alone, which is given by
Eq. (4). We first observe, as expected from the
results of Ref. 6 with upsliding, that Dv decreases
as h2 increases. Also, when the free spectral range
is large, we find that Dv is smaller than predicted
by Eq. (4). The f irst marked point on each of the
curves is the soliton stability limit, corresponding
to the disappearance of the pulse at h2 ­ 0.1 and
pulse shape distortion at h2 ­ 0.3. It is remarkable
that the limiting value of Dv is nearly the same for
different filter strengths h2 and lies near 0.45 of the
soliton spectral FWHM, Dv0. From Fig. 3 we infer
that the optimal value of the f ilter peak separation
is approximately 5 FWHM of the soliton spectrum
because under this condition soliton propagation is
stable for almost any filter strengths of interest.

In conclusion, we have numerically investigated the
limitation that Fabry–Perot f ilters impose on the
frequency spacing of WDM channels. We found that
the minimal value of f ilter peak frequency separation
is 5 FWHM of the soliton spectrum. This value is
only slightly larger than in an unfiltered system and
indicates that one need only pay a minor penalty in
spacing of WDM channels when using sliding f ilters.
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