
462 OPTICS LETTERS / Vol. 21, No. 7 / April 1, 1996
Stability of black solitons in media with arbitrary nonlinearity
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It is shown that the black solitons in an optical fiber or a uniform medium with arbitrary nonlinearity are all
stable. The conclusion from the analytical stability analysis is consistent with that of numerical simulations.
This then dismisses a previous criterion that suggests that the black solitons in a saturable nonlinear medium
can be unstable.  1996 Optical Society of America
The propagation of solitons in an optical fiber or
in a uniform medium has been a subject of great
interest since the early 1970’s1,2 because of their
potential applications in long-distance communication
and information processing. In a Kerr-law non-
linear medium the soliton states are stable, and they
survive even through collision, as demonstrated in
the earlier research of Zakharov and Shabat.1 In
reality, nonlinearity deviates from the ideal Kerr-law
case. For example, non-Kerr-law nonlinearity can
arise from nonlinear saturation or from doping
silica f ibers with several different materials. In
a saturable nonlinear medium or a non-Kerr-law
medium, soliton trapping can differ qualitatively
or quantitatively from its Kerr-law counterpart,3 – 10

and so can the corresponding stability. For the
fundamental bright solitons the stability of the
trapped states in an arbitrary nonlinear medium
was shown to be related to the sign of dPydb,
where P is the soliton energy or power and b is the
propagation constant.11 – 13 dPydb . 0 corresponds
to stable stationary solutions, and dP ydb , 0 to
unstable stationary solutions.11 – 13 For dark solitons
in an optical f iber operating within the normal
dispersion regime or in a self-defocusing uniform
medium there appears to be some confusion con-
cerning the stability for non-Kerr law nonlinearity.
Based on the Kerr-step-Kerr nonlinearity model,
Enns and Mulder6 suggested that, for the dark
solitons, dPcydA . 0 is associated with stable dark-
soliton solutions and dPcydA , 0 with unstable
dark-soliton solutions, where Pc is the complemen-
tary power6 and A is the contrast of dark solitons,
with A ­ 1 referring to black solitons. Krolikowski
et al.14 later showed that the criterion of dPcydA is
not sufficiently general and does not work for the
saturable nonlinear medium that they considered.
Instead, they proposed that dQydV , 0 (.0) is a
criterion related to stable (unstable) dark-soliton
solutions, where Q is the momentum and V is a
parameter that measures the steering angle of the
dark solitons, with V ­ 0 corresponding to black
solitons.15 They then concluded that the dark soli-
tons with V smaller than a critical value Vcr, below
which dQydV . 0, are all unstable.15 In other
words, their criterion involving the momentum Q
indicates that black solitons (V ­ 0 or A ­ 1) can be
unstable in saturable nonlinear media.15 We find
that this conjecture15 involving the momentum Q is
0146-9592/96/070462-03$6.00/0
not valid for black solitons because black solitons
(odd functions with zero intensity at the center), as
we show below (consistent with an earlier report11),
are all stable for an arbitrary nonlinearity.

The evolution of a soliton pulse in an optical f iber
operating within the normal dispersion regime or a
soliton wave in a uniform self-defocusing medium is
governed by the nonlinear Schrödinger equation. In
normalized units, the nonlinear Schrödinger equation
can be written as
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where, for example in the case of a pulse, e is the nor-
malized envelope function and t and j are the nor-
malized time and distance, respectively. f syd is an
arbitrary function depicting the nonlinearity of the
medium; f syd ­ y for Kerr-law nonlinearity, f syd ­
f1 2 exps2a1ydgya1 for exponential saturable nonlin-
earity, and f syd ­ yys1 1 yyIsd for two-level saturable
nonlinearity. The solutions to Eq. (1) for dark soli-
tons have in general the form of est, jd ­ qsT ­ t 2
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to
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where b ­ f sjq`j2d is determined by the boundary
condition of jqj ­ jq`j or jej ­ je`j at T ­ t 2 Vj ­ 6`.

Equation (2) or (1) is a Hamiltonian system and has
two invariants, i.e., Hamiltonian and momentum16:
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with F sjqj2d 2
Rjqj2

jq`j2 f f s yd 2 f sjq`j2dgdy. The station-
ary solutions of Eq. (2) are recovered from

dH ­ 0 .
 1996 Optical Society of America
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This means that the stationary solutions of Eq. (2)
are those functions q ­ qs at which Hamiltonian H
achieves its maximum or minimum. d2H . 0 indi-
cates that H at q ­ qs is a minimum and q ­ qs is
a stable solution, whereas d2H , 0 implies that H is
a maximum and q ­ qs is unstable. Thus the stabil-
ity of the stationary solutions can be revealed by ex-
amination of the definiteness of d2H. By substituting
q ­ qs 1 dq into Eq. (1) one can derive the second vari-
ation of the Hamiltonian d2H and express it in terms
of qs ­ us 1 ivs and dq ­ u 1 iv:

d2H ­ kujL1ul 1 kvjL0vl

1 kujL01vl 1 kvjL10ul , (4)

where kf1jf2l ­
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2d 2 V≠y≠T , and a prime
indicates a derivative with respect to the argument.
From the linearized equations

≠vy≠j ­ L1u 1 L01v, 2≠uy≠j ­ L0v 1 L10u (5)

obtained by substitution of q ­ qs 1 dq into Eq. (2),
it is straightforward to show that in general the
derivative of the stationary dark-soliton solutions is
related to the perturbation function by

k≠usy≠T jvl ­ k≠vsy≠T jul . (6)

For the special case of the black solitons of V ­ 0
and vs ­ 0, Eq. (6) reduces to k≠usy≠T jvl ­ 0. This
means that the perturbation function v is orthogonal
to the derivative of the stationary black-soliton solu-
tion ≠usy≠T . This ≠usy≠T is in fact the fundamen-
tal state of the operator L1 for the black solitons, i.e.,
L1≠usy≠T ­ 0. Therefore L1 is positive definite, and
the first term on the right-hand side of Eq. (4), kujL1ul,
is always greater than or equal to zero. For black soli-
tons the last two terms of Eq. (4) disappear, because
L01 ­ L10 ­ 0. One can evaluate the minimum value
of the second term on the right-hand-side of Eq (4),
kvjL0vl, by considering the following eigenvalue prob-
lem:

L0v ­ lv 1 a≠usy≠T (7)

for minimum l, where the constants a and l are deter-
mined by the conditions of orthogonality, k≠usy≠T jvl ­
0, and normalization, kvjvl ­ 1. This is so because es-
timation of the minimum value of kvjL0vl is equivalent
to finding the smallest eigenvalue l in Eq. (7).17 If the
minimum l . 0, the second term on the right-hand side
of Eq. (4) is positive and d2H is positive definite. The
black-soliton solution is stable. Otherwise it may be
unstable.

Expanding vs­
P`

m­1 amvmd and ≠usy≠T s­
P`

m­1
cmvmd of Eq. (7) in the complete set of eigen-
functions vm of the operator L0 gives rise to
v ­ a

P`
m­1 cmvmyslm 2 ld. This expansion v, substi-
tuted into the orthogonality condition k≠usy≠T jvl ­ 0,
leads to an equation for determining l:
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For the black solitons of V ­ 0 and vs ­ 0, operator L0
admits of only one negative eigenvalue l1 and a second
eigenvalue l2 ­ 0 with eigenfunction v2 ­ us, which
is orthogonal to ≠usy≠T , i.e., c2 ­ kv2j≠usy≠T l ­ 0,
because L0us ­ 0. Equation (8) then indicates that
the smallest lmin ­ minsld must lie between l1 and the
smallest positive eigenvalue of L0. Also from Eq. (8),
we have l ­ lmin . 0 when gs0d , 0 and l ­ lmin , 0
when gs0d . 0. gs0d is related to the complementary
power Pc ­
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where we have used relationships ≠usy≠T ­
P

`
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and L0susT d ­ 2≠usy≠T . gs0d ­ 20.5Pc , 0 of
Eq. (9) means that l ­ lmin . 0. This indicates
that minkvjL0vl is a positive quantity, and therefore
d2H . 0. We then conclude that the black solitons
in a uniform medium with arbitrary nonlinearity are
stable.

To confirm the stability result of the black soli-
tons from analytical stability analysis, we conduct
numerical simulations. In our numerical experi-
ments we examine saturable nonlinear media,
namely, exponential saturation, a two-level satur-
able model, and nonlinear saturation of f syd ­
0.5Isf1 2 1ys1 1 yyIsd2g. Numerical simulations show
that the black solitons in saturable nonlinear media
are stable for any saturation value. In particular, we
propagate the black solitons in the saturable nonlinear
model f syd ­ 0.5Isf1 2 1ys1 1 yyIsd2g considered in
Ref. 15 for Is ­ 0.08 and Is ­ 0.05 by adding per-
turbations to the initial excitation of the stationary
solutions. Small perturbations initially implanted
radiate with propagation, leading to the stable steady-
state evolution. The results from the analytical and
numerical stability analyses demonstrated here are
contrary to the conjecture of Ref. 15, which suggested
that black solitons at the saturation values Is ­ 0.08
and Is ­ 0.05 are unstable (see Figs. 1 and 2 of Ref. 15).

Here, as illustrated, there appears to be a discrep-
ancy between the stable black solitons in a uniform
medium with arbitrary nonlinearity discussed above
and earlier11 and the unstable black solitons in some
saturable nonlinear media as reported in Ref. 15. A
question that immediately follows is: Where is the
source of the discrepancy? The origin of the discrepancy
lies in an invalid assumption made implicitly in Ref. 15
during a linear stability analysis. By an asymptotic
expansion method18 as used in Ref. 15, i.e., by re-
placing u, v , expsmjd in the linearized equation (5)
with u ­ u0 1 mu1 1 m2u2 1 m3u3 1 Osm4d and v ­
v0 1 mv1 1 m2v2 1 m3v3 1 Osm4d and substituting the
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subsequent equations into the orthogonality condition
(6), we can show that the growth rate m for a dark sta-
tionary solution is decided by

m2 ­
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, (10)

where L21 is the inverse operator of
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and the subscript t refers to transpose. Obviously,
if m2 . 0, the dark stationary solution qs ­ us 1 ivs
is unstable. Otherwise, it is stable. In the analysis
of Ref. 15 it is assumed that the denominator D ­
kWtjL21W l of Eq. (10) does not change sign as the
soliton velocity V varies and that D is a negative
quantity. This then yields m2 , dQydV , leading to
dQydV . 0 sm2 . 0d associated with unstable dark
stationary solutions for V , Vcr and dQydV , 0 sm2 ,

0d with stable stationary solutions for V . Vcr (see
Fig. 2 of Ref. 15). The truth of the matter is that the
sign of denominator D in Eq. (10) can vary with V , and
the sign of dQydV alone is not sufficient to determine
the stability of a dark soliton. This becomes clear
when one examines the case V ­ 0 of the black solitons,
for which Eq. (10) reduces to

m2 ­
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21≠usy≠T l
kL0
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21L0
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As shown above, L1 is positive definite, and so is
its inverse operator L1

21. Therefore the denomi-
nator D ­ kL0

21≠usy≠T jL1
21L0

21≠usy≠Tl becomes
positive as V ! 0 for the black solitons. Also
from Eq. (9), the numerator of Eq. (11) is
k≠usy≠T jL0

21≠usy≠T l ­ 20.5Pc , 0. We then ar-
rive at the same conclusion as before by considering
the Hamiltonian of the system; i.e., the black solitons
for arbitrary nonlinearity are stable even though
dQydV . 0 as m2 , 0.

Finally, it should be mentioned that physically stable
black solitons in an optical fiber operating within the
normal dispersion regime or in a self-defocusing uni-
form medium with arbitrary nonlinearity apparently
arise from the fact that the stationary black-soliton so-
lution sits just at a minimum of the Hamiltonian of the
system, as illustrated in the above rigorous mathemat-
ical approach. A perturbed black stationary solution
that deviates slightly from its minimum tends to be
pushed back to the minimum point.

In conclusion, it has been shown that the black soli-
tons in an optical fiber or in a uniform medium with
arbitrary nonlinearity are all stable. The conclusion
from the analytical stability analysis is consistent with
an earlier report11 and with that of numerical simula-
tions. This then dismisses a previous criterion that
suggested that black solitons in a saturable nonlinear
medium can be unstable.
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