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The transition between the transient and the stationary regimes of stimulated Raman scattering is examined
computationally for pulses with a sharp initial rise. We find that the transient-regime predictions are useful
for times less than T', regardless of the pulse duration and that the stationary-regime predictions become use-

ful only for times much greater than T,. © 1996 Optical Society of America.

Fundamental studies of stimulated Raman scattering in
molecular gases are often carried out in Hy and Dy be-
cause the scattering is strong and the behavior is rela-
tively simple in these gases.! Typically, collimated
beams of pump and Stokes radiation are injected into a
Raman cell that is roughly a meter long, while pulse du-
rations vary from 40 ps to 100 ns.2® Long-focal-length
beams are used to minimize the importance of transverse
effects, which can then be either ignored or taken into ac-
count by a simple transformation of the axial coordinate.
The Stokes radiation is generated in a separate cell by
spontaneous emission. Multipass cells are sometimes
used to increase the interaction length and to suppress
the generation of higher-order Stokes radiation.* Under
these circumstances, Wang® showed many years ago that
the basic equations that govern the evolution of the pump
and the Stokes waves in the Raman cell may be written
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where x and ¢ are the distance along the Raman cell and
time, E; and E, are the complex envelopes of the pump
and the Stokes fields, @ is the complex envelope of the
material excitation that corresponds to the off-diagonal
element of the density matrix, 2; and %k, are the wave
numbers of the pump and the Stokes fields, «x; and x4 are
the standard Raman coefficients first introduced by
Wang,® and T, is the collisional de-excitation time.

It is useful to use retarded time, i.e., to make the trans-
formation x' = x, ¢t' =t — x/c, which eliminates the ¢
derivatives from Eqs. (1a) and (1b). It is also useful to
normalize Egs. (1) so that the parameters x; and x5 do not
appear. There is no unique way to do this, but one way
that is physically meaningful is to set
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T= t,/Tpulse ’ Y = Tpulse/TZ ’

0740-3224/96/0901921-06$10.00

E k 1/2 E
Ar=g— A=l 50
Emax kZ Emax
kl 1/2 Q
X =i|l— _— 2
l(kz) KlEIZnaprulse’ ®

where T’ is the duration of the pump pulse and E .4 is
the maximum value of the pump field. The characteristic
length scale L is then fixed, and one finds L
= 1/kikoE ?naprulse’ so that L is inversely proportional to

the initial energy of the injected pump pulse if the pulse
shape is fixed. We thus obtain the normalized equations
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In the experiments to date, Ty varies within the range
600 ps—1.2 ns, depending on the gas pressure, which is
just a factor of 2, while the pump duration varies from 40
ps through 100 ns, which is three orders of magnitude.?™®
Thus for control of the parameter y that appears in Eqgs.
(2) and (3) it is most natural to change to pulse duration.
One can increase y without altering the characteristic
length scale L by keeping the pump pulse’s energy fixed
while increasing its duration. The appropriate boundary
conditions are that A;(y = 0,7) = A;5(7) and As(y
= 0,7) = Ayo(7) are specified for all 7, which implies
physically that the time history of the pump and the
Stokes radiation is known at the entry to the Raman cell,
and X(x, 7) — 0 for all y as 7 — —, which implies
physically that the material is unexcited before the radia-
tion enters the Raman cell. Mathematically, Eqgs. (3) to-
gether with these boundary conditions constitute a well-
posed boundary-value problem with a unique solution.”
There are two limits in which the evolution of the pump
and the Stokes radiation is well characterized. The first
limit, the so-called stationary limit, occurs when pulse du-
rations are long compared with 7'y and the derivatives of
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the pump and the Stokes radiation are initially small
compared with Tg, 1ie., [dA;o/d7| < y]A;y and
|0Ag0/d7| < y|Agg|. In this limit and when 7> 1/y, the
contribution of X/d7to Eq. (3¢) can be neglected, and this
equation becomes X = A;A%/y. Time then appears
parametrically in Eq. (3). Noting that K?2(7)
= |A1(x, |? + |Ay(x, 7)|? is constant at each point of 7
as a function of y, Egs. (3) can be integrated to yield

Ay =A(7)
y K(7)exp[—K *(7)x/¥]
{|A10(7)|*exp[ —2K 2(7)x/y] + |Ago(7)[P}?
Ay = Ay(7)

K(7)
X .
{lA 1 o(7)|%exp[ —2K 2(1)x/y] + |Ago(7)|?}2
(4)

The second limit, the so-called transient limit, occurs
when Ty < T9. In this limit the contribution to Eq.
(3c) from the term yX can be neglected. While the re-
sulting equations do not have a simple analytical solution
with the physically realistic boundary conditions that we
assumed, these equations can be completely analyzed
with the inverse scattering method,® and it can be shown
that the solution always tends toward a self-similar solu-
tion depending only on the combination of variables
xS K2(r")d7". This solution has been referred to as an
accordion because it appears like an accordion being
squeezed from the right in numerical solutions and can be
expressed analytically in terms of Painlevé transcendent
functions.'®

While self-similar oscillations have been observed ex-
perimentally by Duncan et al.,>® there has yet to be a
careful experiment in which accordions are specifically
studied and their properties are carefully compared with
the theoretical predictions. The reason that no more
than three self-similar oscillations were observed by Dun-
can et al. is that they used a single-pass cell. In the tran-
sient regime, both the onset of second Stokes radiation
and the number of self-similar oscillations are governed
by the dimensionless parameter y.* Duncan et al. ob-
tained values of y as large as several hundred by chang-
ing the input-pulse energy, but when y = 50, they found
that second Stokes radiation became important and de-
stroyed the self-similar oscillations. At y = 50 the
theory predicts only three self-similar oscillations, which
is what was observed. In effect, Eq. (3) became invalid in
the real experimental setting when y = 50. Shortly
thereafter, MacPherson et al.* demonstrated experimen-
tally that it is possible to avoid second Stokes and anti-
Stokes generation completely by use of a multipass cell in
which the second Stokes and the anti-Stokes radiation is
filtered out at each pass, thus allowing Egs. (3) to remain
valid for almost arbitrarily large values of y, the only
practical limitation being the number of passes that can
actually be made. MacPherson et al.* used 18 passes and
showed that Eqgs. (3) remain valid over the entire length,
but they could not observe accordions because they used
pulse durations of 100 ns, which is much longer than T's.
From this discussion it should be apparent that there is
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no fundamental barrier to observing accordions. It could
be done in principle by combining the short-pulse setup
that was used by Duncan et al.® with the multipass geom-
etry developed by MacPherson et al.* There is consider-
able interest in doing so because accordions are a univer-
sal phenomenon in the same mathematical sense that
solitons are and are expected to appear in a wide variety
of systems.!8

Recently, Wessel et al.? pointed out that it is not really
necessary to use pulses that are short compared with T'5.
As long as the leading edge of both the pump and the
Stokes radiation has a sharp rise time that is short com-
pared with Ty, the initial portion of the pulse in which the
time is less than 7'y will behave just as if it were in the
transient regime. To achieve this rapid rise, they pro-
posed to use an electro-optic modulator to truncate the
front-end of long-duration pulses. Over a time scale that
is long compared with 7'y, the pulse should exhibit the be-
havior that is expected in the stationary regime; thus it
should be possible to observe a transition from the tran-
sient regime to the stationary regime in a single pulse! In
this paper we examine this transition numerically, using
the procedure described in Ref. 9.

In our simulations we used hyperbolic secant pulses as
our initial conditions because passively mode-locked,
short-pulse lasers typically produce this shape. We trun-
cated the leading edge of the pulse to obtain a rapid rise
in accordance with the proposal of Wessel et al.2 Thus our
initial conditions have the form

Aqo(7) = aH(7)sech(7),
Ag () = BH(7)sech(7), (5)

where H(7) = 1 when 7= 0 and H(7) = 0 when 7 < 0 is
the usual Heaviside function, and we took a = 1.0 and
B = 0.01 in all our simulations, corresponding to initial
conditions in which the Stokes wave is small compared
with the pump wave but nonnegligible.

We examined a series of y values ranging from vy
= 0.1 to v = 10.0, but in this report we present only the
results when y = 0.1, y = 1.0, and y = 10.0 since these
values are sufficient to give a good indication of the over-
all behavior. We recall that y corresponds physically to
Tpuse/To and that the easiest way to change y in an ex-
periment is to change T'yq. . The limit y = 0.1 is highly
transient at all values of 7, and we verified that at this
value the evolution of both the pump and Stokes waves is
visually indistinguishable from the evolution at y = 0 in
the figures that we present. By contrast, the behavior at
v = 10.0 differs significantly from the transient behavior,
and the evolution is described by the stationary equa-
tions, Eqgs. (4), when 7 is sufficiently large. Nonetheless,
when 7 is small, accordions are visible even when vy
= 10.0. This result is consistent with the observation
that, when y7 < 1, the behavior will be transient regard-
less of the size of vy since the evolution at later times de-
pends on the evolution at earlier times. This fact is ex-
ploited by Wessel et al.? in their proposal to use the
beginning of long pulses to explore transient behavior.

Figures 1-3 show successively the evolution at
x = 50, x = 100, and y = 200. We focused on these val-
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Fig. 1. Pump (solid curve) and Stokes (dashed curve) ampli-
tudes as a function of time (7) at a distance y = 50.

Fig. 2. Same as Fig. 1 but for y = 100.

ues because previous studies showed that accordions ap-
pear on this length scale in the transient regime.® The
behavior as a function of time is nearly the same at all
three values of y when y = 0.1 and y = 1.0. The peaks
of the pump oscillations appear at somewhat earlier times
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when y = 1.0 than when y = 0.1, and the size of the
maxima is somewhat diminished, but the differences are
not large. By contrast, the evolution when y = 10.0 is
quite different. While accordionlike oscillations are vis-
ible at y = 100 and y = 200 when 7 < 1, the number of
maxima is smaller than in the transient regime, and the
maxima occur at earlier times. That is consistent with
our theoretical expectation since true transient behavior
is expected only when yr =< 1. In addition, a peak can
be observed at 7= 1.3 when y = 100 and at 7= 1.8
when y = 200; this peak corresponds to the onset of sta-
tionary behavior. A similar but much smaller peak can
be observed between 7 = 3 and 7 = 4 when y = 1.0. To
understand this peak’s presence, we note that Eq. (3¢c) im-
plies

T

X(x,7) = f_ Ay(x,7"AZ (x,7")exp[ —y(r — 77)]d7".
(6)

When yis small, then X is affected by values of A; and A,
in the neighborhood of 7 = 0 even when 7is large. Since
the intensity near 7 = 0 is large, X remains large when 7
is large. By contrast, when v is large, the value of X at =
is affected only by the values of A; and A, over times of
the order of y ! before 7, implying that, when ris large, X
must be small, which, if we refer to Egs. (3a) and (3b), im-
plies in turn that the rate of pump depletion is slowed.
Thus the peak appears.

In Figs. 4—6 we show the same data as in Figs. 1-3 af-
ter making the following transformation: We first recall
that K%(7) = |A1(x, D|? + |As(x, 7)|? and that K(9) is y
independent. Letting T, = [*., K ?(7)dr, we also define
new time and space variables,

Y=0.1

Fig. 3. Same as Fig. 1 but for y = 200.
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Fig. 4. Pump (solid curve) and Stokes (dashed curve) ampli-
tudes, after transformation by Eqgs. (7) and (8), as a function of
time (7') at a distance y = 50. Note that the distance is x
= 50, not ¥’ = 50, to permit comparison with Fig. 1.
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Fig. 5. Same as Fig. 4 but for y = 100. Note that the distance
is y = 100, not xy' = 100, to permit comparison with Fig. 2.
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and new dependent variables,

Ay

' AZ XI _ X
m, = . (8

A= * K T.

These transformations leave Eqs. (3) invariant except
that y — yT../K 2(7) so that, when y = 0, this transfor-
mation is strictly invariant. It has previously been
shown that, when y = 0, this transformation transforms
any set of initial conditions into a new, equivalent set in
which K(7') = 1 in the interval 0 < 7/ < 1 and K(7')
= 0 elsewhere. Itisin these new variables that the self-
similar nature of the accordions is most readily apparent.
Referring to the case y = 0.1 in Figs. 4—6, we find that
the behavior of the pump and the Stokes amplitudes as a
function of 7 at y = 50 in the range 0 < 7' <1 is
identical to the behavior of the pump and the Stokes am-
plitudes at y = 100 in the range 0 < 7’ < 0.5 and is also
identical to the behavior of the pump and the Stokes am-
plitudes at y = 200 in the range 0 < 7' < 0.25. This be-
havior in which the pump and the Stokes oscillations are
squeezed from the right as the pump and the Stokes
waves evolve in y is the reason that these solutions are
referred to as accordions. We note, however, that the
pump amplitude has a sharp rise to Aj =1 at 7’ = 1.
The reason for this sharp rise is the onset of stationary
behavior. The behavior at y = 1.0 is similar to that at
v = 0.1, but the rise of the pump amplitude at 7’ = 1 is
more visible. While the behavior at v = 10.0 is quite dif-

0.2 04 0.6 0.8 1.0

Fig. 6. Same as Fig. 4 but for y = 200. Note that the distance
is x = 200, not y' = 200, to permit comparison with Fig. 3.
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T=01
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Fig. 7. Pump amplitude (solid curve) as a function of time (7),
compared with the prediction of the stationary-regime theory
(dashed curve) at a distance y = 50.

Y= 0.1

Fig. 8. Same as Fig. 7 but for y = 100.

ferent, and the rise of A is quite visible near 7' = 1, ac-
cordionlike oscillations are clearly visible near 7/ = 0
when y = 200.

In order to determine precisely when the onset of the
stationary regime occurs, we compare the pump ampli-
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tude with the predictions of Eqs. (4) in Figs. 7-9. The
predictions of Eqs. (4) are never useful when y = 0.1,
which is not surprising since the behavior is not expected
to be stationary until y7> 1, i.e., 7> 10, and at this
value of 7 the pump and the Stokes amplitudes are van-
ishingly small. In the case y = 1.0 the predictions of
Egs. (4) are nearly correct when 7 = 4.0 at y = 50, when
7= 4.5 at y = 100, and when 7 = 5.0 at y = 200. In the
case y = 10.0 the predictions of Egs. (4) are nearly correct
when 7= 1.2 at y = 50, when 7= 1.6 at y = 100, and
when 7= 2.0 at y = 200. When y = 200, we find in
both cases that accordionlike behavior is visible at early
times, followed by a region in which the pump amplitude
rises and eventually becomes equal to the predicted val-
ues of the stationary theory. This point increases as y in-
creases.

It is natural to search for a new transformation that
would generalize Eqgs. (7) and (8) in the case of nonzero 7.
This question has been examined by Levi et al.,'° who
found such a transformation in the case of nonzero y but
who also found that this transformation only applies for a
particular exponential form for the pump and the Stokes
amplitudes. This form is not useful to us because it cor-
responds to pump and Stokes waves with infinite energy.
We empirically examined a variety of variable transfor-
mations, including that suggested by Levi et al.,'° with-
out finding one that was consistent with all our data.

In this report we have studied the transition between
transient and stationary behavior in stimulated Raman
scattering. We have found that, when v < 1, the behav-
ior is essentially transient, and, even when y = 1, the be-
havior is nearly what is predicted by the transient theory,
although there is some displacement of the pump maxima
to earlier times and a decrease in their magnitude. At
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Fig. 9. Same as Fig. 7 but for y = 200.
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large times there is also a transition to stationary behav-
ior. Even when y = 10, accordionlike oscillations can be
observed when 7 < 1 and y = 100. These results bode
well for the experimental proposal of Wessel et al.? to
study accordions by use of the early times in a long-
duration pulse.
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