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Effect of third-order dispersion on dark solitons
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Third-order dispersion has a detrimental effect on dark solitons, leading to resonant generation of growing
soliton tails and soliton decay. This effect is shown to be much stronger than that for bright solitons.  1996
Optical Society of America
The recent experimental demonstration of data trans-
mission based on dark solitons1 has led to renewed
efforts to explore this type of soliton for optical com-
munications. Although the generation of a modulated
stream of dark solitons is a far more diff icult task
than is the case for bright ones, dark solitons are usu-
ally believed to display some advantages over bright
solitons, including lower Gordon–Haus jitter.2 At the
same time, one of the main problems associated with
dark-soliton signal transmission is a relatively high
average power. To reduce the power one should se-
lect the operational wavelength closer to the zero of
the group-velocity dispersion, where, however, soliton
propagation is inf luenced by third-order dispersion.
The effect of third-order dispersion on bright solitons
is now well understood.3– 5 Under the action of third-
order dispersion a bright soliton develops a nonvanish-
ing asymptote in the form of a tail.3 Wai et al.4 showed
that the tail’s amplitude A is exponentially small in the
third-order dispersion coeff icient b, A , exps21ybd,
and can be calculated by asymptotic analysis ‘‘beyond
all orders.’’ The rate of the energy emission is exceed-
ingly small, e.g., of the order of 10211 over one disper-
sion length at b ­ 0.08.4 This result is consistent with
Menyuk’s robustness hypothesis,6 according to which
autonomous, homogeneous, Hamiltonian deformations
of integrable equations lead to solitons that radiate be-
yond all orders if they radiate at all.

The effect of third-order dispersion on dark solitons
has not been completely understood, although it has
already been shown that third-order dispersion does
not lead to tail generation for dark solitons of small
amplitudes7 (see also Ref. 8). Here we reveal that
third-order dispersion leads to a destructive effect,
including tail generation and soliton decay, for dark
solitons of large and moderate amplitudes.

Nonlinear pulse propagation in optical fibers near
the zero of the group-velocity dispersion is described
by the nonlinear Schrödinger equation, modif ied to
include the third-order dispersion,
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where a stands for the dispersion type. Here we con-
sider positive a only. As is well known, the case a . 0
corresponds to the absence of modulational instabil-
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ity, and it can easily be verified that third-order dis-
persion does not modify this condition. For b ­ 0,
Eq. (1) is exactly integrable, and its localized solu-
tions are dark solitons propagating on a modulation-
ally stable background of the intensity u0, ussx, td ­
u0scos u tanh J 1 i sin udexps2iu0

2zd, where J ;
u0 cos ust 2 2l

p
au0zdy

p
a. Physical parameters such

as the amplitude, the velocity, and the phase shift
across the soliton are determined in terms of the phase
angle u, juj , py2.

In the case b fi 0, dark solitons of Eq. (1) are not
known and, in principle, localized solutions may not
exist. Important information can be extracted from
the analysis of the soliton asymptotics. We take u ­
su0 1 vdexps2iu0

2zd and linearize Eq. (1) for small v:
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Then, for a stationary wave moving at velocity V , we
seek a solution in the form v , svr 1 ividexpsikz d, where
z ­ t 2 Vz, and hence obtain an equation for k ; k2sVd:

sV 2 bkd2 ­ asak 1 4u0
2d . (2)

Quadratic equation (2) has two roots. To investigate
them we restrict our consideration to the soliton veloci-
ties V 2 , c2, where jcj ­ 2

p
au0 is the speed of

sound. Then one root, k2, is always negative, and
it corresponds to exponentially decaying soliton tails.
However, for any b fi 0 Eq. (2) has an additional,
positive, root, k1, which describes a nonvanishing
oscillatory tail of the soliton.

As in the case of bright solitons,3,4 the existence
of nonvanishing asymptotic behavior can be usefully
viewed as a resonant generation of linear waves,
which takes place provided that the speed of the
solitary wave V coincides with the phase velocity Vph
of linear waves. Indeed, the condition Vph ­ V leads
immediately to Eq. (2). From the physical point of
view, this result implies that the solitary wave acts as a
source generating trailing oscillations; the oscillations
propagate with the group velocity Vg. This process is
demonstrated in Fig. 1 for the case of a black soliton
of Eq. (1) with b ­ 0.18. At the initial stage of the
soliton evolution some transiting radiation is excited.
This radiation propagates to the left, moving with
 1996 Optical Society of America
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Fig. 1. Formation of a nonvanishing oscillating tail for the
black soliton sa ­ u0 ­ 1d at b ­ 0.18. (a) Gray-scale plot
in which the white lines give the propagation with velocity
of sound c and the group velocity Vg. (b) Intensity profile
at z ­ 10.

the speed of sound c, and quickly separates from the
dark soliton, as shown in Fig. 1(a). The radiation
creates an additional, small-amplitude dark soliton
[see Fig. 1(b)]. An oscillating tail is formed from the
right of the primary soliton, and its front propagates
with group velocity Vg, which is different from the
velocity of the dark soliton V and the velocity of sound
c. Note that the oscillation amplitude and period
are very stable, and the relative phase between the
tail and the soliton remains constant. As a result
of the generation of a continuously growing tail the
soliton amplitude decreases and its velocity increases;
i.e., the soliton decays (see Fig. 2). In Fig. 2(a) we
plot a change of intensity at the soliton center, Imin,
versus propagation distance z, which varies from zero
to approximately 0.8. Figure 2(b) proves that this
change is almost adiabatic and can be described by the
dependence Imin ­ u0

2V 2yc2.
We also carried out calculations for gray solitons

su fi 0d. In this case we are able to distinguish clearly
two stages of soliton dynamics. The first stage is a
transition to a new, quasi-stationary state with a small
change in the soliton’s amplitude and velocity. This
change is directly proportional to b, and the soliton’s
amplitude increases for bu , 0 and decreases oth-
erwise. The first stage is also accompanied by the
emission of radiation that either forms additional soli-
tons or disperses. The second stage of the soliton’s
evolution is characterized by the generation of an oscil-
lating tail. As the tail’s amplitude depends exponen-
tially on b [see Eq. (5) below], the first stage dominates
for small b sb , 0.1d and the second stage dominates
for relatively large b.
Calculation of the oscillation amplitude is a delicate
task that requires all orders of the asymptotic expan-
sion.4,9 However, we can obtain a qualitatively correct
result by considering the linear equation for the soliton
perturbation, j ­ u 2 us:
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A solution of Eq. (3) can be found in a cumber-
some form, but its general structure is given by j ­
AQsz dQs2z 1 Vgzdsins

p
k1z 1 fd, where Qsxd ­ 1 for

x . 0 and Qsxd ­ 0 for x , 0 and z ­ t 2 Vz. Here we
are interested primarily in the dependence of the tail
amplitude A on b and V , for which we obtain
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where C is a constant whose explicit value one can
determine by taking into account all orders (cf., e.g.,
Ref. 10); the effects of all such terms are better
found numerically by introduction of the yet unknown
C. Function B is a rational function of the positive
root of Eq. (2), k1. Using the first-order expansion for
b ! 0, k ­

p
k1 ø ayb, one can easily show that the

tail amplitude depends on b exponentially for f ixed V
(cf. Ref. 9):
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Fig. 2. Long-term adiabatic decay of a black soliton in
the presence of third-order dispersion. (a) Intensity at the
soliton center Iminszd, (b) minimum soliton intensity Imin
for b ­ 0.25, calculated analytically as Imin ­ u0

2V 2yc2

(solid curve) and from numerical simulations at equal
distances (f illed circles). The arrow shows the direction
of the evolution.
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Fig. 3. Comparison of numerical (f illed circles) and an-
alytical (solid curves) results for (a) the wavelength and
(b) the amplitude of the oscillating tail. Parameters are
a ­ u0 ­ 1 and b ­ 0.2. The analytical curve in (a) is
given by the resonant wavelength

p
k1; that in (b) is given

by the expression for A from relation (4) at c ­ 7000.

i.e., in a fashion similar to that for bright solitons and
in a manner that is consistent with the robustness hy-
pothesis. Moreover, the algebraic factor s1 2 V 2yc2d1/2

in the exponent demonstrates that the radiation ampli-
tude becomes exponentially small for any fixed b in the
limit V 2 ! c2.

In general, the dependence on the soliton velocity
V is less trivial than the dependence on b. Tail
generation dominates for bV , 0. In particular, when
b ­ 0.2 the tail amplitude reaches its maximum value
at V ­ 20.8 (see Fig. 3). This result is in agreement
with numerical simulations.

Now we can readily understand the validity
of the small-amplitude approximation used in
Ref. 7. Indeed, as the amplitude of the dark soli-
ton decreases, i.e., as the soliton velocity V approaches
the limit velocity c at a fixed value of b, the amplitude
of the oscillating tail decreases rapidly because it
depends exponentially on the soliton amplitude [see
Eq. (5)]. The oscillation amplitude is beyond all
orders of the asymptotic expansion in the soliton am-
plitude, and in this limit the soliton decay is therefore
negligible.

In conclusion, we have demonstrated the destructive
action of the third-order dispersion on dark solitons
that results in the generation of growing tails and
subsequent soliton decay.
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