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Dispersion-managed solitons in a
fiber loop with in-line filtering
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We investigate both numerically and experimentally soliton propagation in a fiber loop with dispersion
management, in-line filters, and frequency shifting. More than 90% of the fiber in the loop is in the normal-
dispersion regime, but the net dispersion is anomalous. Stable pulses in the loop have an enhanced power
relative to solitons in a fiber with uniform dispersion equal to the loop’s path-averaged dispersion. Because
the loop’s path-averaged dispersion is small, the in-line filtering and the frequency shifting play an important
role in pulse shaping. Recirculating loop experiments that demonstrate stable pulse propagation over
28,000 km are consistent with results from computer modeling.  1997 Optical Society of America
Recent experimental1 and theoretical2,3 studies show
that dispersion management is a promising approach
to improve the performance of soliton transmission
systems. Dispersion-managed schemes have the ad-
vantage that they can support stable pulse propaga-
tion very close to zero-path-averaged group-velocity
dispersion (GVD), leading to a reduction in both the
Gordon–Haus4 and the acoustic4,5 timing jitter. Previ-
ous computer simulations have shown that solitons in
dispersion maps with large deviations of the local dis-
persion from the average will have an enhanced power
relative to solitons in a fiber with uniform dispersion
equal to the path-averaged dispersion of the map,3 and
the stable pulse dynamics along the dispersion map
are analogous to stretched pulses in mode-locked fiber
lasers.6 We report an observation of such pulses in
a recirculating loop experiment in which more than
90% of the f iber is in the normal-dispersion regime, al-
though its net dispersion is anomalous. A key element
of this experiment, as in almost all recirculating loop
experiments, is an acousto-optic modulator that allows
us to switch out the data periodically for loading and
unloading the loop. In doing so, it downshifts the fre-
quency of the signal propagating in the loop. Because
our average dispersion is low, this downshift—along
with the in-line f ilters that are required for suppres-
sion of amplif ied spontaneous-emission noise outside
the channel bandwidth—play an important role in the
pulse shaping. In this Letter we examine this issue
both theoretically and experimentally.

The schematic illustration of our recirculating f iber
loop is shown in Fig. 1. The loop consists of four
fiber spans separated by Er-doped fiber amplifiers.
Each of the f irst three spans consists of a 25-km
length of dispersion-shifted fiber with normal GVD,
D1 ­ 21.2 psysnm kmd at l ­ 1.55 mm. The fourth
span consists of a 25-km length of dispersion-shifted
fiber connected to a standard fiber with an anoma-
lous GVD, D2 ­ 16.5 psysnm kmd. We chose the
length of the standard fiber so that the average GVD
D ­ 0.1 psysnm kmd. The system operated with 25–
30-ps pulses that were f iltered by a 1.2-nm filter and
were frequency shifted 100 MHz by an acousto-optic
0146-9592/97/050289-03$10.00/0
modulator after each circulation, implying a frequency
shift of 1 GHzyMm.

In our computer model we used input pulses with
a duration tsFWHMd ­ 25 ps that was equal to the
pulse duration in our experiments and a hyperbolic
secant shape. We varied the pulse power to find a
stable propagation regime. Pulse propagation in the
fiber spans was modeled with the nonlinear Shrödinger
equation with a loss equal to 0.2 dBykm. We included
the third-order dispersion D 0 ­ 0.07 psysnm2 kmd in
our computer model. However, in our calculations
we did not observe any significant effect from its
inf luence. The amplifier gain at the peak of the f ilter
transmission function was chosen to overshoot the
integrated loss of the fiber loop by an amount a, which
is referred to as the excess gain.7 The excess gain,
together with the frequency-dependent loss, provides
the necessary frequency-dependent balance between
gain and loss that allows for stable pulse propagation in
filtered systems. The input pulse was injected with its
central frequency at the peak of the f ilter transmission
function. In our system the stable pulses are not strict
solitons even in an averaged sense; they are entities
whose shape varies substantially over one period of the
dispersion map but which return to the same shape at
the end of each period.

If the filter transmission function is approximated
by a parabola, pulse in-line filtering can be described

Fig. 1. Experimental setup of the recirculating fiber-
optic loop.
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by the expression
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where u is the complex amplitude of the electric field,
LF ­ 108 km is the filter separation, and h is the
curvature at the peak of the filter transmission func-
tion. By analogy with the dispersion length zd ­
t

2
02pcyDl2, where t0 ­ tsFWHMdy1.76, we can now

introduce a f iltering length zF ­ t
2
0LF yh. A typical

nonlinear scale length in soliton transmission is the
soliton period z0 ­ pzdy2. When the average value
of GVD is low, the soliton period becomes comparable
with the filtering length zF , and the f ilter then plays
an important role in pulse shaping. For our parame-
ters the soliton period was z0 ­ 2500 km, and the
filtering length was zF ­ 4350 km. Similar consid-
erations apply to the frequency shift that we used.
The value f 0 ­ 1 GHzyMm is almost an order of
magnitude smaller than a typical sliding rate in the
sliding f ilters that have been used in soliton transmis-
sion experiments,4 but it is nonetheless large in soli-
ton units.8 For our parameters the filter strength b ­
zdyzF and the frequency-shifting rate g ­ 2pf 0t0zd in
soliton units were b ­ 0.36 and g ­ 0.14, respectively.
For the stable pulses that are formed in our loop the
sliding rate is nearly critical.7,8

Figure 2 shows the peak intensity, the pulse width,
and the frequency offset versus the transmission dis-
tance. The input pulse parameters were the same
in all the simulations. It can be seen that, without
the f ilters, the pulses have not reached equilibrium
even after 40,000 km but continue to oscillate. With
filtering but no frequency shifting the pulses oscillate
because of interaction with the amplified, linear dis-
persive wave, as shown in the middle of Fig. 2 by the
dotted curve.9 The length scale on which this oscilla-
tion occurs can, in principle, be lengthened by means of
a decrease in the excess gain. In our experiments this
instability was canceled out by the frequency shifting.
The simulations that include both filtering and fre-
quency shifting are shown in Fig. 2 as the dotted and
the dotted–dashed curves. In this case pulses reach a
stable equilibrium after just 5000–8000 km. At this
equilibrium the pulses stretch and compress with the
periodicity of the loop, returning to a well-defined
shape at the end of each period. Depending on the
value of the excess gain, either the filter can trap the
pulse or the pulse can damp by the system because of
insufficient gain. In our experiments the evolution of
the intensity of the light pulse along the line was moni-
tored by measurement of the fundamental 8-GHz rf
component after the pulse’s passage through the pho-
todetector. The circles in Fig. 2 show the experimen-
tal dependence of the fundamental 8-GHz rf component
versus the transmission distance. The experimental
curve is in good agreement with the simulation results.
Comparing the pulse parameters with and without f il-
tering and frequency shifting (shown in Fig. 2), we find
that frequency shifting, as well as filtering, plays an
important role in stablizing the pulses at distances
greater than ,8000 km and that the stable filtered
Fig. 2. Calculated evolution of the pulse peak intensity,
duration at FWHM, and the absolute value of the pulse
mean frequency in the transmission scheme shown in
Fig. 1. The input pulse intensity was I sz ­ 0d ­ 2.25I0,
where I0 is the intensity of an average soliton. The pulse
width is normalized to the input pulse width, and the
mean frequency is shown in soliton units. The data are
plotted at the last amplifier output after each dispersion
map. The solid curve corresponds to the case in which
there are no filters, amplifiers, or frequency shifting. The
dashed curve corresponds to the loop with in-line f ilters
and amplifiers but no frequency shifting; the excess gain
a ­ 0.27. The dotted–dashed curve and the dotted curve
correspond to a loop with in-line filters, amplifiers, and fre-
quency shifting; the excess gain is a ­ 0.22 and a ­ 0.27,
respectively. The circles show the experimental data for
the fundamental 8-GHz rf component.

Fig. 3. Experimentally observed 8-GHz optical pulse
trains (a) for 0 Mm, (b) at 10 Mm, and (c) at 28 Mm.
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Fig. 4. Calculated stable pulse and spectrum shapes at
40,000 km when the excess gain a ­ 0.27. The dotted
curve is the input pulse. The time scale is normalized to
the pulse FWHM, and the frequency is shown in soliton
units.

Fig. 5. Calculated evolution of the stable pulse peak
intensity, and duration at FWHM inside the dispersion map
after the pulse propagated over 40,000 km for the value of
the excess gain a ­ 0.27. The previous evolution of the
pulse parameters is shown in Fig. 2 by a dotted curve.

pulses, shown by the dotted curve, have ,10% more
power resulting from excess gain than do pulses in
an unfiltered system with the same duration. At
equilibrium the pulses in the computer simulations
reproduce their shapes and spectra after each cycle of
dispersion management. Figure 3 shows the experi-
mentally observed pulses in the recirculating f iber
loop. The pulses stabilized at a distance of ,8000 km,
and then they stably propagated, reproducing their
shapes or spectra after each loop cycle, consistent with
the simulations.

The computer simulations predict that the stable
pulse, obtained with filtering and frequency shifting,
has an asymmetric shape in time and an asymmetric
spectrum, as shown in Fig. 4. However, the detection
of this asymmetry is beyond the resolution of our
experiments. The calculated stable pulse evolution
inside the dispersion map is shown in Fig. 5. The
pulses stretch in the positive-GVD part of the map by
up to 1.4 times the input duration and compress in the
negative-GVD part by as much as the initial duration.

In conclusion, we have studied dispersion-managed
soliton propagation in a recirculating f iber loop that
is more than 90% in the normal-dispersion regime, al-
though its net dispersion is anomalous. We have in-
vestigated the effects of weak filtering and frequency
shifting owing to an acousto-optic modulator, and we
have found that, at a low value of the path-averaged
GVD, these elements play an important role in the
pulse shaping. These elements are present in our re-
circulating loop experiments as in nearly all recirculat-
ing loop experiments that have been done to date, and
our experiments confirm that with their presence a
stable equilibrium is obtained in 5000–8000 km, as
was theoretically predicted. Although it is clear that
the acousto-optic modulator has a profound effect on
the pulse shaping, it is not clear how it affects the bit-
error rate performance. To elucidate this point, we an-
ticipate carrying out future experiments in which the
frequency shift owing to the acousto-optic modulator is
canceled.
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