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Nonlinear-optical loop mirror demultiplexer
using a random birefringence fiber:

comparisons between simulations and experiments
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A numerical simulation of the switching characteristics of a polarization multiplexed nonlinear-optical loop
mirror demultiplexer is presented and compared with experiment. The model assumes that the optical fiber
that composes the loop has a randomly varying birefringence, that the signal and the control pulses have the
same frequency, and that these pulses are nearly solitons. Factors that affect the shape and the width of the
switching window curve are discussed. A phase-dependent modulation of the switching window curve, which
is due to incomplete averaging of the light polarization state, is observed both experimentally and numerically.
Models in which the randomness is neglected are not able to describe this modulation adequately.  1997
Optical Society of America
Demultiplexing data channels that are transmitted at
100-Gbitys rates requires the design and development
of advanced all-optical devices. The possible use of a
nonlinear-optical loop mirror (NOLM) as the demulti-
plexing element in high-data-rate communication sys-
tems has been reported by a number of authors.1 One
forms the NOLM by joining each of the two ends of
an optical f iber to a four-port fiber coupler to make a
Sagnac interferometer. Switching is accomplished by
introduction of a relative phase shift between the two
counterpropagating signal pulses through cross-phase
modulation induced by a control pulse. A relative tim-
ing jitter between the control pulse and the signal pulse
often occurs in practice, and the demultiplexer must al-
low for this by having a switching window that is signif-
icantly broader than the individual pulses. Recently
a numerical study of a NOLM demultiplexer showed
that a broader switching window can be obtained by in-
corporation of soliton dragging effects if the fiber that
composes the loop has low birefringence and the back-
ground random birefringence is negligible.2

In this Letter we report computer simulations of a
NOLM demultiplexer for which the birefringence of the
loop f iber is assumed to vary randomly, as is the case
for standard communication fiber. Polarization mode
dispersion in these types of fiber is a major obstacle in
high-bit-rate systems. Our model takes into account
the effect of a polarization controller and clarifies
some effects that are apparent on the length scales
over which our device operates and that cannot be
explained with simpler models. The simulations are
compared with experimental results that were reported
previously,3 showing excellent agreement.

A schematic illustration of the demultiplexer is
shown in Fig. 1. The pulse stream to be demultiplexed
enters the device at the signal-in port. A 50y50 cou-
pler and a fiber loop constitute the Sagnac interferome-
0146-9592/97/120886-03$10.00/0
ter. Polarization multiplexing allows the control pulse
to copropagate with the clockwise propagating portion
of the signal pulse (the control pulse energy and the
copropagating signal pulse energy are equal, and their
carrier frequencies are the same). In the absence of a
control pulse the device acts as a mirror, and the sig-
nal returns to the input. When the control pulse is
present, the copropagating signal pulse experiences an
additional phase shift, Df, that is due to cross-phase
modulation relative to the counterclockwise propagat-
ing signal pulse. At the coupler, the pulses inter-
fere and produce an output at the signal-out port.
Random variations in the birefringence axis of the
fiber alter the polarization state of the light propa-
gating around the loop. Therefore it is necessary
to insert a polarization-controlling device, such as a
linear retarder, into the loop to ensure that there is
no control leakage out the signal-out port.

The coupled nonlinear Schrödinger equations that
describe propagation in a birefringent f iber in normal-
ized units are4
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where u and v are the normalized complex f ield en-
velopes along the slow and fast polarization axes in
the f iber, respectively, j and s are normalized distance
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Fig. 1. (a) Schematic illustration of the demulti-
plexer: PBS1, PBS2, polarization beam splitters; SI,
signal-in port; SO, signal-out port; CI, control-in port;
CO, control-out port; WP, wave plate (or polarization
controller).

and retarded time, respectively, b is the wave-number
difference between the two principal polarizations at
the same central frequency (2pyb is the normalized
beat length), 2d ­ ≠by≠v is the inverse group-velocity
difference, and a is the normalized attenuation coeff i-
cient. It is natural to normalize the field amplitudes
with respect to the soliton power P0 and the time to
the pulse’s FWHM t0, in which case the length must be
normalized to zd ­ st0y1.76d2 s2pcyDl2d, which is both
the dispersive and the nonlinear length scale for a fun-
damental soliton, where D is the dispersion, l is the
wavelength, and c is the speed of light.

In a f iber with randomly varying birefringence, the
polarization state of a pulse varies randomly with dis-
tance, so when the propagation length is long, the non-
linear terms and the group-velocity dispersion terms
average over all the polarization states on the Poincaré
sphere. The pulse propagation in that case can be de-
scribed by use of the Manakov equation.5 However,
our goal is to develop a model of a nonlinear loop mirror
that does not limit us to long fiber lengths, and there-
fore the full set of Eqs. (1) is used.

The equations are solved numerically by a split-step
Fourier method.6 Randomly varying birefringence is
modeled by random rotation of the fiber birefringence
axis by an amount Du ­ spy4d s3lsyzhd1/2 rans21, 1d
at the beginning of each propagation step of size
ls, where rans21, 1d is a uniform random function
on the interval s21, 1d. The parameter zh is known
as the decorrelation length.7 This definition for Du
corresponds to a random walk of the birefringence
angle equal to py2 in a distance zh. For these studies
we took zh to be 30 m. The value for ls ,, lc was
chosen to be small enough that numerical errors were
insignificant and was typically 0.2 m or less.

We implement the polarization controller numeri-
cally by multiplying the f ield by the appropriate
Jones matrix J for a linear retarder of orientation
g and retardance c, where J11 ­ cosscy2d 2
i sinscy2d coss2gd, J12 ­ 2i sinscy2d sins2gd, J21 ­ J12,
and J22 ­ J11

p.8 We found values for g and c by
allowing the control pulse to propagate around the
loop in the absence of the signal pulse. By requiring
that the resultant field, with components uc and vc, be
transformed by the retarder so that its û component
is extinguished and defining the phase difference
w ­ arctanfImsucdyResucdg 2 arctanfImsvcdyResvcdg,
then
g ­
1
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The field that propagates in the counterclockwise
direction must pass through the linear retarder in the
opposite direction before propagating around the loop,
so the appropriate Jones matrix by which to multiply
this f ield is nearly the same as J, with J12 becoming
2J12 and J21 becoming 2J21.

To simulate the experiment accurately3 it was nec-
essary to characterize the fiber in the loop mirror.
A fiber of length L ­ 1 km was wound on a 16-cm-
diameter spool. Given that the cladding diameter
was 125 mm, we can conclude that the stress-induced
linear birefringence was less than 1027, and circular
birefringence could be ignored.9 A nominal birefrin-
gence of the order of Dn ­ 2 3 1027 and a polarization
mode dispersion Dt , 100 fs were estimated experi-
mentally by the frequency domain technique.10 The
dispersion parameter D was 5.45 psynmykm, and the
physical attenuation coefficient ayzd was measured to
be 0.13 km21.

As the experimental source generated transform-
limited pulses, we determined the input pulse width
used for the simulations by fitting the experimen-
tal spectrum to a sech2 spectrum. The experimental
pulse width of t0 ­ 1.54 ps was used in the simulations.
By comparing the experimental and theoretical spectra
of the switched pulse, we obtained a good estimate of
the pulse energy. Figure 2(a) shows both the experi-
mental spectrum and the one obtained from a simula-
tion assuming that the signal pulse energy at the input
port, W0, was 1.36 times the energy of a soliton.

We calculated the switching characteristics by keep-
ing only the f inal clockwise propagating component
ucw and the final counterclockwise propagating com-
ponent uccw , which are passed by the polarizing beam
splitters. For a given delay between the input con-
trol and signal pulses, we calculated the fractional
transmitted energy by integrating the quantity T ­
jucw 2 uccw j2yW0. Figure 2(b) shows a plot of T as a
function of delay, along with the related experimen-
tal trace. Near zero delay, where Df $ p, the switch-
ing window is somewhat insensitive to changes in Df,
and in fact a certain amount of overswitching was ob-
served. Even though this effect f lattens the top of the
switching window (makes it more square) and is the
reason for the dip in the curve very close to zero delay
where Df . p, it may be detrimental to the opera-
tion of the demultiplexer, depending on the threshold
level required for switching. It should be noted that
the vertical scale in Fig. 2(b) is not a free parameter,
inasmuch as W0 was found from the fit in Fig. 2(a) and
all the parameters involved in producing this fit were
determined experimentally.

The simulation shown in Fig. 2(b) assumes that the
phase difference between control and signal pulses,
DF, is zero independently of time delay. However, the
high-frequency f luctuations shown in the experimental
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Fig. 2. (a) Plot of the power spectrum of the signal
switched out of the demultiplexer. Sidebands are gen-
erated by the interference between the dispersive wave
and the soliton component. (b) Plot of the experimental
and the simulated switching windows, i.e., the transmitted
power, T , as a function of time delay between control pulse
and signal pulse. The simulation assumes a fixed phase
difference between control and signal pulses. The arrows
indicate the location of the plots in Fig. 3.

Fig. 3. Detailed view of Fig. 2(b). (a), (b), (c) Experimen-
tal traces at time delays of 20.6, 0, and 0.5 ps, respectively.
(d), (e), (f ) The corresponding responding simulations. The
x axis has been converted into a phase delay for these plots.

trace of Fig. 2(b) are a consequence of the time-delay
dependence of DF. Figure 3 shows a more detailed
view of the experimental trace at the three time
delays marked by the arrows in Fig. 2(b). The x
axis is represented as a phase delay in Fig. 3. The
simulations corresponding to the experimental traces
are also shown in Fig. 3. Each of these simulations
assumes a fixed time delay but a variable phase.
By trying different random sequences we found that
the exact shape of the curves in Fig. 3 depends on
the precise configuration of the random birefringence.
However, we found that there is reasonable qualitative
agreement between experiment and simulation in that
the amplitudes of the modulations are approximately
the same. The amplitude of the modulation does not
vary signif icantly as zh is varied by an order of
magnitude. However, the modulation tends to zero as
zh tends to zero. We compared the simulations shown
in Fig. 3 with the results from a model based on the
Manakov equations and found that it is not possible
to explain the interference effects with the Manakov
model because the loop length is small compared with
the length scale over which the polarization state of the
light uniformly samples the Poincaré sphere (,4 km
according to our simulations).

In summary, we have investigated the switching
characteristics of a NOLM demultiplexer, using a
model that assumes that the f iber’s axes of birefrin-
gence are randomly varying, as is the case in standard
communication fiber, and that takes into account the
effect of a polarization controller. This model allows
us to explain effects that are important to the success-
ful operation of a loop mirror demultiplexer that cannot
be explained with models in which the randomization
of the birefringence is ignored or averaged.
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