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Nonlinear polarization-mode dispersion in optical
fibers with randomly varying birefringence
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Randomly varying birefringence leads to nonlinear polarization-mode dispersion (PMD) in addition to the well-
known linear PMD. Here we calculate the variance of the field fluctuations produced by this nonlinear PMD.
Knowing the size of these fluctuations is useful for assessing when nonlinear PMD is important and for its
proper incorporation in fast numerical algorithms. We also derive the equilibrium probability distributions
for the PMD coefficients, and we track the evolution of the polarization state’s probability distribution from its
initial delta-function distribution to its steady-state uniform distribution on the Poincaré sphere. © 1997 Op-
tical Society of America [S0740-3224(97)03411-5]
1. INTRODUCTION
Optical fibers have become an important communication
medium because of their waveguiding properties, i.e.,
their ability to trap light and to transmit information to
wherever the fiber is installed.1 Such transmission is
never perfect, of course, and nonideal behavior leads to
limitations in the performance of communication systems
based on optical fibers. For example, because different
frequencies propagate with slightly different group veloci-
ties and any signal is necessarily constructed from a
range of frequencies, the signal will disperse or spread
with distance.1 One can counteract this dispersion in a
number of ways, such as by sending signals at the zero-
dispersion wavelength of the optical fiber,1–3 by using dis-
persion compensation or management,4–6 or by using self-
phase modulation to turn propagating signal pulses into
optical solitons.2,7 Furthermore, communication fibers
are transparent over a wide range of frequencies. Thus
any added wideband frequency noise, such as amplified
spontaneous emission noise from the erbium-doped fiber
amplifiers used to compensate for loss in the fiber, will be
propagated unattenuated along with the signal. For op-
tical solitons this frequency noise is subsequently turned
into random pulse position fluctuations by their
propagation,8 and unless it is corrected by addition of op-
tical filters,9,10 this timing jitter increases rapidly enough
to impose a limit on the capacity of soliton communication
systems.

In addition, the two polarization states in an ideal, per-
fectly circular optical fiber are degenerate, so the propa-
gation wave number does not depend on the polarization
state. Real optical fibers are never perfect, of course, and
have slight asymmetries or other perturbations that de-
stroy the degeneracy, leading to two polarization states
with slightly different phase and group velocities, a phe-
nomenon known as birefringence.2 In the situation in
which the birefringence axes and magnitude are fixed as
a function of distance along the fiber, the evolution of the
optical pulse envelope has been shown to be governed by
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the coupled nonlinear Schrödinger equation.11–13 In
standard communication fibers, however, both the orien-
tation of the principal birefringence axes and the magni-
tude of the birefringence vary randomly with distance
along the fiber. In this case the fiber is on average per-
fectly circular, and the mean pulse evolution is governed
by a special case of the coupled nonlinear Schrödinger
equation known as the Manakov equation.14,15

When the birefringence varies randomly with distance
along the fiber, the deviations in the polarization state
from the mean behavior determined by the Manakov
equation are also random. Because the two principal po-
larizations have slightly different group velocities, these
polarization fluctuations produce linear or intensity-
independent signal pulse broadening and distortion,
known as polarization-mode dispersion (PMD). Such lin-
ear PMD has been studied in great detail.16–20 In addi-
tion to the linear PMD, however, the polarization fluctua-
tions also produce intensity-dependent signal pulse
distortions, known as nonlinear PMD.21 In this paper we
determine the statistics of the pulse distortions produced
when nonlinear PMD acts on a propagating signal.
These estimates show that nonlinear PMD effects are
negligible for present-day, practical communication sys-
tems but that they will be significantly more important in
proposed very-high-data-rate transmission system oper-
ating in the neighborhood of 100 Gbits/s. In addition, we
show that nonlinear PMD effects can be enhanced in com-
munication systems that employ optical fiber that has
been spun during manufacture to reduce the amount of
linear PMD.22

Several length scales are important for the discussion
of PMD effects. The first is the fiber decorrelation
length,21 hfiber , which is the autocorrelation length scale
associated with variations in the principal axes of bire-
fringence and which is an intrinsic property of the fiber.
The second is the birefringence beat length, LB , which is
a measure of the birefringence strength and is the length
scale over which a 2p-phase shift would be produced be-
tween the two principal polarizations if the birefringence
1997 Optical Society of America
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axes were fixed. The calculation for the statistics of the
nonlinear PMD fluctuations is shown to simplify consid-
erably when either hfiber ! LB or hfiber @ LB . Finally,
there is the polarization decorrelation length, hE , which
is the autocorrelation length associated with the electro-
magnetic field fluctuations induced by the random bire-
fringence variations.21

The formulation of the paper is as follows. In Sections
2 and 3 we review the Manakov PMD equations that gov-
ern the evolution of nonlinear optical signals in the pres-
ence of random birefringence and describe the method
that we use to calculate the statistics of the nonlinear
PMD fluctuations. In Section 4 we calculate these statis-
tics for the case hfiber ! LB , and in Section 5 we do so for
the case hfiber@ LB . In Section 6 we show how the
method can also be used to calculate the well-known re-
sult for the linear PMD. In Sections 7 and 8 we discuss
how the Fokker–Planck equation for the probability dis-
tribution of the polarization state can be simplified when
hfiber ! LB and hfiber @ LB . Finally, Section 9 gives our
conclusions.

2. MANAKOV POLARIZATION-MODE
DISPERSION EQUATIONS
The dimensionless set of equations that describe the evo-
lution of the electromagnetic field envelope in a nonlinear
optical fiber with random birefringence are the Manakov
PMD equations21,23
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where C̄ 5 (Ū, V̄)T, 6 is for either anomalous or normal
second-order dispersion, and b8 5 ]b/]v is the group-
delay difference per unit length (recall that D 5 2b is the
birefringence strength). An alternative measure of the
amount of birefringence is the beat length, LB 5 p/b.
Also,
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^N̂1& 5 1/3~2uV̄u2 2 uŪu2!Ū, (4a)

^N̂2& 5 1/3~2uŪu2 2 uV̄u2!V̄. (4b)

The random variables xj and zj are the first and the third
components, respectively, of the solution of the vector
equation
d
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for j 5 1, 2, 3, where gu 5 du /dz is a white-noise process.
At z 5 0 the initial conditions xj 5 d j1 , yj 5 d j2 , and zj
5 d j3 are satisfied, where d jk is the Kronecker delta func-
tion; i.e., d jk 5 1 if j 5 k, and d jk 5 0 otherwise.

Here C̄ is the electric-field envelope measured relative
to axes that follow the linear polarization state in the fi-
ber and is related to the electric-field envelope measured
relative to fixed axes, A 5 (A1 , A2)T, as follows. First,
the linear evolution of the fixed axis polarization state is
determined by the solution of 21

dA
dz

5 ibSA, (6)

where S 5 cos us3 1 sin us1 , u is the angle between the
principal birefringence directions and fixed coordinate
axes, and

s1 5 F0 1

1 0G , s2 5 F0 2i

i 0G , s3 5 F1 0

0 21G
(7)

are the Pauli spin matrices. The two polarization com-
ponents relative to local birefringence axes are then de-
termined from A by use of the transformation

C 5 S U
V D 5 F cos u/2 sin u/2

2sin u/2 cos u/2G S A1

A2
D , (8)

so Eq. (6) becomes

i
dC

dz
1 S̃C 5 0, S̃ 5 F b 2igu /2

igu /2 2b G . (9)

Stokes parameters provide a good way to track the po-
larization state of the signal envelope.21,24 The Stokes
parameters relative to the local polarization axes are S̃1

5 uUu2 2 uVu2 5 C†s3C, S̃2 5 UV* 1 VU* 5 C†s1C,
and S̃3 5 i(UV* 2 VU* ) 5 C†s2C. The third Stokes
parameter, S̃3 , was used previously with the opposite
sign,21 but the above is consistent with its original
definition.24 These local Stokes parameters satisfy the
coupled set of equations21

d
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Note that the equation that governs the evolution of the
coefficient triplets (xj , yj , zj), Eq. (5), is the same as that
which governs the evolution of the Stokes parameters.

We obtain the final connection between C̄ and A by us-
ing the solution of

i
dT
dz

1 S̃T 5 0, T~0 ! 5 I (11)

as a transformation defining C̄ through

C~z, t ! 5 T~z !C̄. (12)

Note that
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T~z ! [ Fu1 2u2*

u2 u1* G (13)

is a unitary matrix, so uu1u2 1 uu2u2 5 1. It is from this
matrix that the coefficients xj , yj , and zj are defined21:

x1 5 uu1u2 2 uu2u2, x2 1 ix3 5 22u1u2 ,

y1 5 u1u2* 1 u1* u2 , y2 1 iy3 5 u1
2 2 u2

2,

z1 5 i~u1u2* 2 u1* u2!, z2 1 iz3 5 i~u1
2 1 u2

2!.

(14)
If we use the vectors (xj , yj , zk), j 5 1, 2, 3, to form

the columns of a matrix Q:

Q 5 F x1 x2 x3

y1 y2 y3

z1 z2 z3

G , (15)

then, because initially (x1 , y1 , z1) 5 (1, 0, 0),
(x2 , y2 , z2) 5 (0, 1, 0), and (x3 , y3 , z3) 5 (0, 0, 1), we
have Q 5 I at z 5 0. Furthermore, from Eq. (5) we have

dQ
dz

5 WQ, (16)

where

W 5 F 0 gu 0

2gu 0 2b

0 22b 0
G . (17)

Because W is antisymmetric and Q(0) 5 I, Q(z) is an or-
thogonal matrix. Thus both the columns and the rows of
Q are orthonormal vectors. This fact is used in Sections
4 and 5.

In the simplest birefringence model it is assumed that
the birefringence strength 2b remains constant and that
the orientation angle u is driven by the white-noise pro-
cess:

du

dz
5 gu~z !, (18)

where

^ gu~z !& 5 0, ^ gu~z !gu~z8!& 5 su
2d~z 2 z8!. (19)

This model has been shown to capture all the essentials of
the more realistic case in which both the orientation angle
and the birefringence strength vary randomly.20,25 Tech-
nically speaking, the averaging here should be done over
a random ensemble of fibers, or rather over a random en-
semble of the functions gu (z) that determine the birefrin-
gence angle u(z); however, physical systems such as this
one that can be described by Markov processes are gener-
ally ergodic,26,27 in which case ensemble averages can be
replaced by spatial averages.

From Eqs. (18) and (19) a diffusion equation for the
probability distribution of u can be obtained21,28:
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where p(u, z) is 2p periodic in u and p(u, 0) 5 d(u
2 u0). Equation (20) allows one of the fundamental
length scales present in the fiber to be determined,
namely, the fiber correlation length hfiber . This is the
length scale over which the birefringence axes lose
memory of their original orientation. From the solution
of Eq. (20),
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and in particular from

^cos~u 2 u0!& 5 exp~21/2su
2z !, (22)

we obtain hfiber 5 2/su
2.21 The u variations drive the bi-

refringence fluctuations because the birefringence matrix
S depends on u, and the birefringence fluctuations in turn
produce polarization variations in the electromagnetic
field envelope C̄ through the coefficients xj and zj in Eq.
(1). Note, however, that the xj appear only as linear
terms and therefore generate linear PMD, whereas the zj
coefficients appear nonlinearly and thus produce nonlin-
ear PMD.21

3. FORMULATION: POLARIZATION-MODE
DISPERSION STATISTICS
The statistics of the coefficients xj and zj can be deter-
mined either from the coefficients’ probability distribu-
tions or from the equations for their statistical moments.
The former method gives complete information about the
coefficients’ statistics, but finding the probability distribu-
tion involves solving a partial differential equation known
as the Fokker–Planck equation.27 We defer this ap-
proach until Sections 7 and 8. Using averages and sta-
tistical moments of the coefficients is more direct but still
yields useful information about the behavior of the linear
and nonlinear PMD.

The equations for the means and the second moments
of the various coefficients have already been determined;
in terms of the Stokes parameters these equations are21

d
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d
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d
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where j 5 1, 2, 3, and
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(24b)

d
dz ^zjzk& 5 4b^1/2~ yjzk 1 ykzj!&, (24c)
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d
dz ^1/2~ yjzk 1 ykzj!&

5 2b~^ yjyk& 2 ^zjzk&!

2 1/2su
2^1/2~ yjzk 1 ykzj!&, (24d)

where j, k 5 1, 2, 3. As might be expected, Eqs. (23) and
(24) are the same ones that the means and the second mo-
ments of the Stokes parameters satisfy.21 In particular,

^xj& ↔ ^S̃1&, ^ yj& ↔ ^S̃2&, ^zj& ↔ ^S̃3&,

^xj xk& ↔ ^S̃1
2&, ^ yjyk& ↔ ^S̃2

2&, ^zjzk& ↔ ^S̃3
2&,

^1/2~ yjzk 1 ykzj!& ↔ ^S̃2S̃3&. (25)

Not all the first and the second moments of xj , yj , and
zj appear in Eqs. (2) and (3), of course; thus the only
terms that are needed are x1 , x2 , x3 , z1

2 2 (1/3), z1z2 ,
z1z3 , z2

2 2 z3
2, and z2 z3 . When one talks about the

variations induced in the field envelope C̄, however, it is
really the statistics of the integrals of these quantities
that are needed. The variations in C̄ depend on the in-
tegrals of the coefficients because the length scale over
which the fluctuations in xj , yj , and zj occur (the polar-
ization or field decorrelation length,21 hE) is much shorter
than the natural length scale over which the pulse enve-
lope evolves, namely, the dispersion length Ldisp . [Note
that in Eq. (1) all spatial variables have been scaled by
this length.]

If the birefringence fluctuations produce uniform mix-
ing on the Poincaré sphere, then the field decorrelation
length is proportional to the fiber decorrelation length,
hE } hfiber .21 This is the situation when the fiber decor-
relation length is much longer than the beat length,
hfiber @ LB . When hfiber ! LB , however, azimuthal mix-
ing on the Poincaré sphere is poor and LB

2/(12p2hfiber)
becomes the relevant length scale for fluctuations in the
coefficients zj .21 In this limit, then, nonlinear PMD be-
comes much more significant than linear PMD. Never-
theless, even for values that lie at the edge of the realistic
parameter range, e.g., hfiber ' 0.3 m and LB ' 100 m, the
nonlinear PMD length scale is smaller than dispersion
lengths that are typical in standard communication sys-
tems, and the disparate length scales can be exploited to
yield the statistics of the induced field fluctuations.

Inasmuch as the field decorrelation length is short com-
pared with the dispersion length, the field envelope C̄ is
able to respond not to any individual changes in these co-
efficients but rather only to their cumulative effects. Al-
ternatively, as dC̄/dz is O(1), the envelope is able to
build up appreciable changes only after distances of the
order of the dispersion length, and it experiences only
small variations over shorter distances. Thus, over a
short distance interval from z0 to z0 1 l, in the terms on
the right-hand side of Eq. (1), C̄ can be replaced by its ini-
tial value, C̄(z0 ,t), and only the random coefficients
themselves are integrated.

By the central-limit theorem,29 the probability distribu-
tion for the integrals of these various nonlinear PMD co-
efficients will be Gaussian to a good approximation when
l @ hE because they can be thought of as sums of a large
number of effectively independent random variables.
Their means, variances, and covariances can be calcu-
lated by extension of the system of moments, Eqs. (23)
and (24), to include these new terms (alternatively, the
Fokker–Planck equation can be extended). The number
of equations grows quickly, however, as additional un-
needed moments must be included to make the set of
equations complete. However, as long as we are con-
cerned primarily with distance intervals l that are long
compared with the mixing length scale of the various co-
efficients, a simpler method can be employed. Essen-
tially, we calculate

K E
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^ f~z!&dz, (26)
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z0
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z0
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@ f~z! 2 ^ f~z!&#dz

3 E
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5 E

z0

z01lE
z0
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Š f~z! 2 ^ f~z!&]

3 @ f~z8! 2 ^ f~z8!&#‹dzdz8, (27)

where f(z) represents one of the nonlinear PMD coeffi-
cients. When z0 is large compared with the field decor-
relation length, however, we can replace ^ f(z)& by its
large-distance asymptotic value, f̄, say. In this case, the
expression for the mean [Eq. (26)] becomes

K E
z0

z01l

f~z!dzL ; E
z0

z01l

f̄dz 5 f̄ l. (28)

Note that relation (28) is not expected to be a good ap-
proximation within a few field decorrelation lengths of
z0 5 0 because in that region the initial polarization
state biases the result for ^ f(z)&. Once z0 @ hE , how-
ever, the random motion of the polarization state has
acted over a distance long enough for the initial state to
have been forgotten.

In a similar way, the variance becomes

VarF E
z0

z01l

f~z!dzG
5 E

z0

z01lE
z0

z01l

^@ f~z! 2 f̄#@ f~z8! 2 f̄ #&dzdz8

5 E
z0

z01lE
z0

z01l

R~z 2 z8!dzdz8, (29)

where R(z 2 z8) 5 ^@ f(z) 2 f̄ #@ f(z8) 2 f̄ #& is the auto-
correlation function associated with f(z).30 Again,
within a few field decorrelation lengths of the initial con-
dition at z0 5 0 the autocorrelation function will be more
complicated than this because the process is not really
stationary in that region; once z0 @ hE , however, the pro-
cess loses memory of the initial condition and the auto-
correlation becomes a function only of the difference
z 2 z8. Equation (29) simplifies to
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E
z0

z01lE
z02z

z01l2z

R~j!djdz 5 2E
0

l

~l 2 j!R~j!dj, (30)

where we have used R(2j) 5 R(j). For l @ hE we then
have approximately

VarF E
z0

z01l

f~z!dzG ; 2lE
0

`

R~j!dj 2 2E
0

`

jR~j!dj,

(31)

because generally R(j) → 0 exponentially for uju @ hE . If
the autocorrelation function is a simple exponential func-
tion, R(j) 5 R(0)exp(2uj u/hE), then Eq. (30) becomes

2R~0 !hE
2F l

hE
1 expS 2

l
hE

D 2 1G , (32)

which for l @ hE yields

VarF E
z0

z01l

f~z!dzG ; 2R~0 !hEl 2 2R~0 !hE
2, (33)

which allows us to define the decorrelation or mixing
length21 hE for more general cases by looking at the term
proportional to l in relation (31):

VarF E
z0

z01l

f~z!dzG ; 2^@ f~z! 2 f̄ #2&hEl 5 2R~0 !hEl,

(34)

so that

hE [
1

R~0 ! E0

`

R~j!dj. (35)

The autocorrelation function R(j) can be calculated in
a straightforward manner from the equations for the
means and the variances of the random coefficients, Eqs.
(23) and (24), when z0 @ hE . Again, take f(z) to repre-
sent one of the coefficients. If we assume temporarily
that f(z0) is known, then we can use f(z0) as an initial
condition in Eqs. (23) or (24) to calculate the conditional
expectation29 or average of the autocorrelation function
given f(z0):

^@ f~z0! 2 f̄ #@ f~z0 1 j! 2 f̄ #uf~z0!&

5 @ f~z0! 2 f̄ #^@ f~z0 1 j! 2 f̄ #uf~z0!&. (36)

We then find the autocorrelation function by averaging
over all possible states f(z0):

R~j! 5 Š^@ f~z0! 2 f̄ #@ f~z0 1 j! 2 f̄ #uf~z0!&‹. (37)

Here the inner average is done assuming that f(z0) is
given and the outer average is done over all possible
states of f(z0). If z0 @ hE , then the polarization state
has become completely randomized on the Poincaré
sphere and this last step becomes a simple angular aver-
aging. Note, however, that Eqs. (24) for the second mo-
ments are still sufficiently complicated that additional ap-
proximations are desirable. It is shown that con-
siderable simplification results in the limits hfiber ! LB
(Section 4) and hfiber @ LB (Section 5).

Finally, a similar asymptotic expression for the pair-
wise covariances of the integrated nonlinear PMD coeffi-
cients can be obtained in terms of the integral of the
cross-correlation function.30 This expression is omitted
here, as an argument is given in Section 4 that all such
asymptotic covariances are zero.

The central-limit theorem states that the probability
distribution associated with these integrated terms will
be close to a joint Gaussian distribution29 when l @ hE .
Thus, once all means, variances, and covariances are
known, it is relatively simple to numerically generate re-
alizations of the integrated terms that have the required
statistics. As a result, it is possible to propose a method
for numerically integrating Eq. (1) by identifying l with
the numerical step size Dz. We start by integrating the
unperturbed Manakov equation, i.e., the deterministic
left-hand side of the equation, using some numerical
method.2 The PMD effects are then included by the ad-
dition, after each numerical step, of a single sample of a
set of random variables with the same statistics as the in-
tegrated terms. In the case of the nonlinear PMD terms
this can likely be done in such a way as to preserve the
same quantities that the continuous equation conserves;
for example, a small additive term iDFC̄ can be written
as the multiplicative term exp(iDF)C̄ to the same degree
of accuracy, but the latter method preserves uC̄u2.

The size of the numerical step that can be taken with
this method is, of course, limited both by the accuracy re-
quired by the numerical method when one is solving the
deterministic terms and by the requirement that the ef-
fects of PMD per step be small. Nevertheless, it appears
that relatively large steps should be able to be taken with
this method, in a manner similar to the coarse-step
method used for the coupled nonlinear Schrödinger
equation.14,15,23

4. NONLINEAR POLARIZATION-MODE
DISPERSION STATISTICS WHEN hfiber ! LB

In the limit hfiber ! LB , we have su
2 @ b in Eqs. (24).

The quasi-steady approximation to Eq. (24a) then shows
that for z @ hfiber we have ^xj xk& ' ^ yj yk&. Also, because
the vectors (xj , yj , zj) are the columns of an orthogonal
matrix Q, we have xj xk 1 yj yk 1 zj zk 5 d jk , i.e., 1 if j
5 k and 0 otherwise. When these facts are used in Eq.
(24d), and the limit su

2 @ b is again applied, we find that

^1/2~ yj zk 1 yk zj!& '
2b

su
2 @d jk 2 3^zj zk&#. (38)

Finally, substituting relation (38) into Eq. (24c), we have

d

dz
^zj zk& '

24b2

su
2 @1/3d jk 2 ^zj zk&#. (39)

From relation (39) it is seen that the decay length for the
second moments of z is su

2/24b2, which in this limit is
much longer than 2/su

2 5 hfiber .
The means and the variances of the integrated coeffi-

cients can now be found. First, we can calculate the long-
term mean of 1/3d jk2^zj zk& needed in relation (28) by in-
terpreting the transpose of the orthogonal matrix Q as a
rotation. In particular, the last row (z1 , z2 , z3) is the
rotation QT applied to the initial vector (0, 0, 1), and, as
rotations preserve lengths, (z1 , z2 , z3) has unit length.
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This vector thus represents some arbitrary point on the
unit sphere, and relative to arbitrary fixed axes this point
can be represented as

^z1 , z2 , z3& 5 ~cos w, sin w cos c, sin w sin c!
(40)

for some spherical angles w and c. Thus

z1
2 2 ~1/3! 5 cos2 w 2 ~1/3!, (41a)

2z1z2 5 2 cos w sin w cos c 5 sin 2w cos c,
(41b)

2z1z3 5 2 cos w sin w sin c 5 sin 2w sin c, (41c)

z2
2 2 z3

2 5 sin2 w~cos2 c 2 sin2 c! 5 sin2 w cos 2c,
(41d)

2z2z3 5 2 sin2 w cos c sin c 5 sin2 w sin 2c.
(41e)

Moreover, because the fixed axes are completely arbitrary
the various components of this representation can also be
rotated cyclically when necessary: z1 → z2 , z2 → z3 ,
and z3 → z1 .

When z0 @ hE the probability distribution associated
with the polarization state will be uniformly distributed
over the Poincaré sphere, and we therefore have

^z1
2 2 1/3& 5

1
4p E

0

2pE
0

p

~cos2 w 2 1/3!sin wdwdc 5 0,

(42)

^z1z2& 5 ^z2z3& 5 ^z2z3&

5
1

4p E
0

2pE
0

p

~cos w sin w cos c!sin wdwdc

5 0, (43)

so, as expected, the means of the various nonlinear PMD
terms do not grow with distance. The variances of the in-
tegrated terms are found from relation (31) and Eq. (37).
From relation (39) we have

^zj zk 2 1/3d jkuzj~z0!zk~z0!&

5 @zj~z0!zk~z0! 2 1/3#expF2
24b2

su
2 ~z 2 z0!G , (44)

so that

R~j! 5 ^@zj~z0!zk~z0! 2 1/3d jk#2&expS 2
24b2

su
2 j D .

(45)

From Eq. (45) we can see that

R~0 ! 5 ^@zj~z0!zk~z0! 2 1/3d jk#2&

5
1

4p E
0

2pE
0

p

~zj zk 2 1/3d jk!2sin wdwdc. (46)

Because

^~cos2 w 2 1/3!2& 5 4/45, (47a)

^~cos w sin w sin c!2& 5 1/15, (47b)

^~sin2 w cos 2c!2& 5 4/15, (47c)
we can therefore apply relation (33), using the mixing
length hE 5 su

2/24b2 5 LB
2/(12p2hfiber), to obtain

VarF E
z0

z01l

~z1
2 2 1/3!dzG ;

8
45

hE~l 2 hE!, (48)

VarS E
z0

z01l

zj zkdz D ;
2
15

hE~l 2 hE! (49)

for ( j, k) 5 (1, 2), ( j, k) 5 (1, 3), or ( j, k) 5 (2, 3),
and

VarF E
z0

z01l

~ z2
2 2 z3

2!dzG ;
8
15

hE~l 2 hE!. (50)

In addition, if relation (32) is used, relations (48)–(50) be-
come

Var ; sE
2F l

hE
1 expS 2

l
hE

D 2 1G , (51)

where sE
2 5 8/45hE

2, 2/15hE
2, or 8/15hE

2.
Each of these integrated nonlinear PMD coefficients

yields the same mixing length scale or field decorrelation
length, hE 5 su

2/24b2 5 LB
2/(12p2hfiber). This expres-

sion shows one of the somewhat counterintuitive features
of nonlinear PMD when b ! su

2, namely, that the
amount of nonlinear PMD increases as the birefringence
decreases. We can understand this fact by examining
Eq. (5), where the changes in u are seen to produce ran-
dom rotations about the zj axis, while the birefringence b
is proportional to the rotation rate about the xj axis.
When b is small, therefore, relatively slow zj variations
result, and latitudinal mixing on the Poincaré sphere is
poor. As the zj coefficients appear in the fluctuating
cross-phase modulation terms in Eq. (1) and the averaged
effect of these terms is polarization dependent whenever
the polarization state is not uniformly distributed on the
Poincaré sphere, the reduced mixing that arises when b
decreases produces an increase in the amount of nonlin-
ear PMD. From a physical perspective this result is not
surprising. As the birefringence strength tends to zero,
the length scale over which the field remains correlated
along a fixed set of axes increases.20,25 The ellipticity of
the field varies in accordance with this length scale even
when the field is measured with respect to the rapidly
varying local frame.

The covariances of the various integrated coefficients
can also be calculated in a similar manner, but it is clear
from the above arguments that in each case the
asymptotic behavior will be proportional to the cross-
correlation function evaluated at zero delay, i.e., the pair-
wise covariances of the nonintegrated coefficients. It can
easily be seen from Eqs. (41) that the averages of all pair-
wise combinations of the various coefficients are zero,
however, and therefore the asymptotic covariances of all
the various integrated coefficients vanish. The inte-
grated coefficients are therefore statistically independent
of one another.

Figure 1 shows a comparison between the numerical
estimate for the variance of *(z1

2 2 1/3)dz obtained by
solution of Eq. (5) and the theoretical result, relation (51).
Several values of the ratio hfiber /LB were considered, and
for each case 5000 separate solutions of Eq. (5) were cal-
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culated, with each separate run using a different random
sequence to simulate the white-noise process. The agree-
ment is seen to be very good when hfiber /LB is small, but
significant discrepancies begin to appear when this ratio
is as large as 1/10. It is shown in Section 5 that this dis-
crepancy is due mainly to errors in the estimate for hE .
Similar curves were produced for the variances of the in-
tegrals of the other coefficients, but they are almost iden-
tical to those shown here. Thus the theoretical result
that the variances are in ratio to one another in the
amounts 8/45:2/15:8/15 is a good estimate. Similarly, the
numerical results for both the means and the covariances
of the various integrals were found to be negligibly small,
as expected.

In Section 3 it was indicated that when l @ hE the
probability distributions for the various integrated non-
linear PMD terms should be Gaussian. For short dis-
tances, however, the probability distributions will be close
to the steady-state distributions of the integrands. We
can calculate these steady-state distributions by first re-
calling that the steady-state distribution of the polariza-
tion state is uniform on the Poincaré sphere, so p(w, c)
5 1/4p, and that the average of any quantity is deter-
mined by means of ^F& 5 **Fp(w, c)sin wdwdc. We de-
termine the probability distribution of u 5 z1

2 2 1/3

5 cos2 w 2 1/3, for example, from the marginal distribu-
tion p(w) 5 1/2 (obtained by integration of c of out of the
joint distribution) by using29

p~u ! 5 p~w!sin w
dw

du
5

1

4Au 1 1/3
,

21/3 , u , 2/3. (52)

The steady-state probability distributions of the other in-
tegrands can be determined similarly. Figure 2 shows
the numerically determined probability distribution of
*(z1

2 2 1/3)dz for various distances l when LB /hfiber
5 10. For short lengths the distribution clearly reflects

Fig. 1. Comparison between the numerical and the theoretical
estimates for the variance of *0

l (z1
2 2 1/3)dz for several values of

hfiber /LB when the ratio is small. Each curve represents the re-
sults of 5000 solutions of Eq. (5). The theoretical curve is Eq.
(51) with sE

2 5 8/45hE
2 and hE 5 LB

2/(12p2hfiber).
the asymmetric steady-state distribution of z1
2 2 1/3, but

for longer distances it relatively quickly becomes Gauss-
ian. Other values of the ratio LB /hfiber produce similar
results.

5. NONLINEAR POLARIZATION-MODE
DISPERSION STATISTICS WHEN hfiber @ LB

In the limit hfiber @ LB , or equivalently su
2 ! b, it is con-

venient to let

a 5 ^xj xk& 2 1/2^ yjyk 1 zj zk&, (53a)

b 5 ^ yj yk 2 zj zk&, (53b)

g 5 ^ yj zk 1 ykzj&, (53c)

which yields the equation

d
dz S a

b
g
D 5 F 23/2su

2 3/4su
2 0

su
2 21/2su

2 24b

0 4b 21/2su
2
G S a

b
g
D (54)

In addition, using xj xk 1 yj yk 1 zj zk 5 d jk , we obtain

^zj zk& 5 1/3d jk 2 1/3a 2 1/2b. (55)

Equation (54) is more convenient to analyze than Eq.
(5) when su

2 ! b because in the (a, b, g) coordinates it is
easier to separate the rapid oscillation about the xj axis
produced by the large birefringence b from the relatively
slower variations caused by the random rotations about
the zj axis. In the new coordinates the evolution is a
rapid rotation of b and g about the a axis combined with a
slow exponential decay of all three components. This ef-
fect can be seen more explicitly when we make the trans-
formation

S b
g D 5 F cos 4bj 2sin 4bj

sin 4bj cos 4bj
G S b8

g8 D , (56)

Fig. 2. Numerically determined probability distribution of
*(z1

2 2 1/3)dz for l/hfiber 5 2.5, 5.0, 10.0, and 20.0, showing the
approach to a Gaussian distribution for large l. Here LB /hfiber
5 10 (so hE ' 0.84hfiber), and each curve is the result of 50,000
runs.
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where j 5 z 2 z0 , which yields

da

dj
5 23/2su

2a 1 3/4su
2~b8 cos 4bj 2 g8 sin 4bj!,

(57a)

db8

dj
5 su

2a cos 4bj 2 1/2su
2b8, (57b)

dg8

dj
5 2su

2 sin 4bj 2 1/2su
2g8. (57c)

Inasmuch as b @ su
2, the sinusoidal terms in Eqs. (57)

oscillate rapidly and contribute only a small amount to
the solution, so that

a ' a~z0!exp~23/2su
2j!, (58a)

b8 ' b~z0!exp~21/2su
2j!, (58b)

g8 ' g~z0!exp~21/2su
2j!. (58c)

Thus Eq. (55) yields

^zj zku~xl , yl , zl!z0
& 2 1/3d jk

5 21/3@xj xk 2 1/2~ yj yk 1 zj zk!#z0
exp~23/2su

2j!

2 1/2@ yj yk 2 zj zk#z0
exp~21/2su

2j!cos 4bj

1 1/2@ yj zk 1 ykzj#z0
exp~21/2su

2!sin 4bj. (59)

Equation (59) must be integrated with respect to j, and
the rapidly oscillating terms do not contribute substan-
tially to the integral. Therefore it is appropriate to use
as the integrand the averaged solution

^zj zku~xl , yl , zl!z0
& 2 1/3d jk

' 1/2~1/3d jk 2 xj xk!z0
exp~23/2su

2j!. (60)

Equation (60) does not provide a good pointwise approxi-
mation to the autocorrelation, because in general R(j)
will combine an exponential decay with a rapid oscilla-
tion, and Eq. (60) gives only the exponential decay.
When Eq. (59) is integrated, however, it is only the expo-
nential decay that contributes to the nonlinear PMD vari-
ances at leading order, because the rapid oscillations av-
erage out. Note it is the rapid rotation around the xj axis
induced by the relatively large birefringence b that pro-
duces the rapid oscillations and which causes the average
value of ^zj zk& to depend only on xj xk , or equivalently on
yj yk 1 zj zk , at z0 . The rapid oscillation is also what
leads to the factor of 1/2 that appears in Eq. (60). Essen-
tially, first the rapid rotation about the xj axis produces
strong mixing in the yj and zj directions and then the
slower random rotations about the zj axis cause varia-
tions in the xj direction to grow.

Using Eqs. (30), (37), and (60), we can find how expres-
sion (32) is modified, namely,

VarF E
z0

z01l

~zj zk 2 1/3!dzG
5 2R~0 !hE

2F l
hE

1 4 expS 2
l

4hE
D 2 4G , (61)
where hE 5 1/(6su
2) 5 1/12hfiber is the field decorrelation

length defined by Eq. (35) and R(0) 5 ^@xj xk 2 1/3d jk#2&
5 ^@zj zk 2 1/3d jk#2&. The extra factor of 4 comes from
the 1/2 in Eq. (60). As a result,

VarF E
z0

z01l

~z1
2 2 1/3!dzG ; 8/45hE~l 2 4hE!, (62)

VarS E
z0

z01l

zj zkdz D ; 2/15hE~l 2 4hE! (63)

for ( j, k) 5 (1, 2), ( j, k) 5 (1, 3), or ( j, k) 5 (2, 3),
and

VarF E
z0

z01l

~z2
2 2 z3

2!dzG ; 8/15hE~l 2 4hE!. (64)

As in Section 4, we find that all the asymptotic covari-
ances of the integrated nonlinear PMD terms are zero.

Figure 3 shows comparisons between the numerical es-
timate for the variance of *(z1

2 2 1/3)dz obtained by so-
lution of Eq. (5) and the scaled theoretical result, Eq. (61)
with sE

2 5 2R(0)hE
2, for several values of hfiber /LB .

The agreement is seen to be very good when hfiber /LB is
large, but the effect of the oscillatory terms that appear in
Eqs. (56) and (57) becomes evident when this ratio de-
creases, apparently because when it is not large the terms
do not properly average out. As was found in Section 4
for the case hfiber ! LB , the numerically determined
curves for the variances of the other integrated coeffi-
cients are almost identical to those shown here, so when
hfiber @ LB the variances are also in ratio to one another
in the amounts 8/45:2/15:8/15, as expected. Similarly, the
numerical results for the means and covariances of the
various integrals were found to be negligibly small.

An attempt can be made at constructing a uniform ap-
proximation for the variance of the integrated coefficients
by combining the results obtained in Section 4 for the case
in which hfiber /LB is small with the results obtained above

Fig. 3. Comparison between numerical and theoretical esti-
mates for the variance of *0

l (z1
2 2 1/3)dz for several values of

hfiber /LB when the ratio is large. Each curve represents the re-
sults of 5000 solutions of Eq. (5), and the theoretical curve is Eq.
(61) with R(0) 5 4/45 and hE 5 1/12hfiber .
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for the case in which hfiber /LB is large. A proper uniform
treatment would involve determining the full solution of
Eqs. (24) and then averaging over all initial conditions to
obtain the autocorrelation function, but this cannot be
done easily because the closed-form solution of Eqs. (24) is
extremely complicated. We can construct a first guess at
such a uniform approximation by defining a uniform mix-
ing length:

hU 5
LB

2

12p2hfiber
1

1

12
hfiber , (65)

and an associated variance scale sU
2 5 2R(0)hU

2.
These expressions have the correct behavior in the two
limits and should be at least close to correct between the
limits. Figure 4 shows the results of comparing Eq. (65)
with the numerical solution of Eq. (5). The agreement
between the two is now seen to be improved in compari-
son with Fig. 1. In particular, the slope of the curves for
large l appears to be in good agreement for all the values
of hfiber /LB , even though the transient behavior for small
l and the asymptotic intercept for large l vary with
hfiber /LB . The two theoretical curves (for large and
small hfiber /LB) are also shown.

6. LINEAR POLARIZATION-MODE
DISPERSION STATISTICS
The method outlined in Section 3 and used in Sections 4
and 5 to evaluate the magnitude of the nonlinear PMD
can also be used in a slightly modified form to evaluate
the amount of linear PMD. To do this we consider the z
derivative and the linear perturbing terms in Eq. (1):

]C̄

]z
5 2b8s̄

]C̄

]t
, (66)

Fig. 4. Comparison between numerical and uniform theoretical
estimates for the variance of *0

l (z1
2 2 1/3)dz for several values of

hfiber /LB . Each curve represents the results of 5000 solutions of
Eq. (5). In this case two theoretical curves are shown, namely,
Eqs. (51) and (61), with R(0) 5 4/45 and hE replaced by hU .
The uniform mixing length hU is given by Eq. (65).
where s̄ is as given in Eq. (2). By integrating Eq. (66)
from z0 to z0 1 l, where l is small, we obtain

C̄~z0 1 l, t ! ' C̄~z0, t ! 2 b8E
z0

z01l

s̄dz
]C̄

]t
~z0 , t !.

(67)

In the deterministic case, the linear term merely produces
a polarization-dependent shift in a pulse’s position. As-
suming this also to be true when the birefringence is ran-
dom, we let C̄(z0 , t) 5 f(t)U, where uUu2 5 1 and C̄(z0
1 l, t) 5 f(t 2 Dt)U. Expanding this expression for
Dt ! 1, we therefore must have

DtU 5 b8E
z0

z01l

s̄dzU. (68)

Equation (68) is an eigenvalue condition for both the time
delay Dt and the accompanying polarization state U.
From Eq. (2), the characteristic equation is just

Dt 2 5 b82(
j51

3 S E
z0

z01l

xjdz D 2

. (69)

The magnitude of the linear PMD, tD , is defined to be
Dtmax 2 Dtmin , or tD 5 2Dt. Therefore

^tD
2& 5 4b82(

j51

3 K S E
z0

z01l

xjdz D 2L . (70)

Equation (23a) gives ^x1ux1(z0)& 5 x1(z0)exp(21/2su
2j),

with similar results for x2 and x3 . As ^xj& 5 0, expres-
sion (32) yields

K S E
z0

z01l

x1dz D 2L 5 2/3hE
2F l

hE
1 expS 2

l
hE

D 2 1G
; 2/3hE~l 2 hE!, (71)

where hE 5 2/su
2 5 hfiber and ^x1

2& 5 1/3. Adding the
contributions in Eq. (70) from x1 , x2 , and x3 (which are
statistically independent of one another by the same ar-
gument as that used for the nonlinear PMD terms), we fi-
nally obtain

^tD
2& 5 8b82hE

2F l
hE

1 expS 2
l

hE
D 2 1G , (72)

which is identical to results obtained previously.16–19

The long-term behavior of the linear PMD is seen to be
independent of whether the birefringence beat length is
larger or smaller than the fiber decorrelation length,
hfiber 5 2/su

2. Because the linear PMD arises from just
the xj coefficients, the rate of its growth depends only on
the rate of longitudinal mixing on the Poincaré sphere.
This rate is always proportional to su

2, independently of
whether b ! su

2 or b @ su
2. Figure 5 shows the nu-

merical estimate for the variance of *x1dz obtained by so-
lution of Eq. (5) for nine values of hfiber /LB . The agree-
ment with the theoretical result, relation (71), is seen to
be good for all values of hfiber /LB .
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7. POLARIZATION-STATE
PROBABILITY-DISTRIBUTION FUNCTION
WHEN hfiber ! LB

Rather than working with the means and the variances of
the various linear and nonlinear PMD coefficients, one
can alternatively work with the Fokker–Planck equation
for the polarization state’s probability-distribution func-
tion. When we omit the distribution with respect to u,
the appropriate generator for the probability distribution
P associated with Eq. (10) is21

]P

]z
5 F1

2
su

2S S̃2
]

]S̃1

2 S̃1
]

]S̃2
D 2

2 2bS S̃3
]

]S̃1

2 S̃1
]

]S̃3
D GP. (73)

Note that the first operator in parentheses corresponds to
flow about the S̃3 axis, so that the squared operator is a
diffusion process, and that the second operator corre-
sponds to flow about the S̃2 axis. This point can be made
more explicit if we transform to spherical coordinates, us-
ing

S̃1 5 R sin f cos c, S̃2 5 R sin f sin c,

S̃3 5 R cos f. (74)

With these variables, Eq. (73) becomes

]P

]z
5

1

2
su

2
]2P

]c 2 2 2bS cos f cos c

sin f

]P

]c
1 sin c

]P

]f
D ,

(75)
and the diffusion about the S̃3 axis in the c direction is
now clearly shown.

Equation (75) cannot be solved in general, but we can
exploit widely different length scales, such as when su

2

@ b or su
2 ! b, to obtain approximate analytical

solutions.28 First, we consider the case su
2 @ b. We let

1/2su
2z 5 z and define e 5 4b/su

2. We also expand the

Fig. 5. Numerical estimates for the variance of *x1dz for vari-
ous values of hfiber /LB . Each curve represents the results of
5000 solutions of Eq. (5). Here sE

2 5 2/3hE
2.
probability distribution in a multiple-scale perturbation
expansion that separates the rapidly and slowly varying
parts of the evolution28,31:

P 5 P0~f, c, z, z̃ ! 1 eP1~f, c, z, z̃ !

1 e2P2~f, c, z, z̃ ! 1 ..., (76)

where z̃ 5 e2z is the slow variable. At leading order, we
find that

]P0

]z
5

]2P0

]c 2 , (77)

which has the solution

P0 5 (
2`

`

pn~f, z̃ !exp~inc 2 n2z!. (78)

In particular, we note that P0 → p0(f, z̃) as z → `.
At order e we obtain the equation

]P1

]z
2

]2P1

]c2 5 2S cos f cos c

sin f

]P0

]c
1 sin c

]P0

]f
D

[ f1~f, c, z! 5 (
2`

`

f n
~1 ! exp~inc!. (79)

We also expand P1 in a Fourier series in c, and all the
terms remain bounded as z → `, except possibly for n
5 0. The n 5 0 term will grow linearly with z unless a
solvability condition is satisfied. In general, at O(ek)
this condition is

lim
z → `

f 0
~k !~f, z! 5 lim

z → `

1
2p E

0

2p

fk~f, c, z!dc 5 0.

(80)

At order e with k 5 1 this condition is automatically sat-
isfied, but in general the linear growth with z is not de-
sirable because it will disorder the perturbation expan-
sion by producing terms proportional to enz, where n is
the order at which the linear growth first appears. Such
behavior can be thought of as arising from a nonuniform
perturbation expansion in powers of e. For a uniform re-
sult one does not want to expand any dependencies of the
form enz. The multiple-scale expansion takes care of
this by defining new slow variables that keep such combi-
nations of e and z from being separated. We can find the
steady-state behavior at O(e) by taking the limit z → `
in Eq. (79), which yields

2
]2P1

]c 2 5 2sin c
]p0

]f
, (81)

so that, as z → `,

P1 → 2sin c
]p0

]f
. (82)

At O(e2), the equation is
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]P2

]z
2

]2P2

]c2
5

]P0

]z̃
2 S cos f cos c

sin f

]P1

]c
1 sin c

]P1

]f
D

[ f2~f, c, z! 5 (
2`

`

f n
~2 ! exp~inc!. (83)

As before, this equation will have unbounded solutions as
z → ` unless the solvability condition, Eq. (80) with k
5 2, is satisfied. Applying this condition, we obtain

]p0

]z̃
5

1

2

1

sin f

]

]f
S sin f

]p0

]f
D . (84)

Equation (77) describes the short-distance evolution of
the probability distribution on an O(1) length scale,
whereas Eq. (84) describes the long-distance evolution on
an O(1/e2) length scale. It is also possible to combine the
two to arrive at an equation that uniformly describes the
evolution of the probability distribution. We reverse the
multiple-scale expansion, Eq. (76), by noting that

]P

]z
5

]P0

]z
1 e2

]P0

]z̃
1 ... (85)

and by also noting that the z̃ derivative is important only
when z is large, in which case P0 ' p0 . Adding the two
equations, using P 5 P0 1 ..., and converting from z
back to z, we thus obtain the approximate equation

]P

]z
5

1

2
su

2
]2P

]c2 1
4b2

su
2

1

sin f

]

]f
S sin f

]P

]f
D . (86)

Equation (86) can be solved exactly by separation of
variables.32

The multiple-scale perturbation solution of Eq. (86) is
uniformly close to that of Eq. (75); i.e., the error between
the two solutions is O(e) uniformly for all z. In addition,
Eq. (86) clearly shows the rapid mixing of the probability
distribution in longitude (c) and the relatively slow mix-
ing with respect to latitude (f) that occur when b ! su

2.
This equation is a Fokker–Planck equation in its own
right, which allows us to replace the original stochastic
differential equation for the PMD coefficients, Eq. (10),
with another equation that generates the same probabil-
ity distribution with only small errors. This equation is

d
dz S S̃1

S̃2

S̃3

D 5 F 0 gu g1

2gu 0 g2

2g1 2g2 0
G S S̃1

S̃2

S̃3

D , (87)

where gu (z) is the same white-noise process as defined in
Eqs. (19) and g1(z) and g2(z) are two additional indepen-
dent white-noise processes that satisfy

^ gj~z !& 5 0, ^ gj~z !gk~z8!& 5
8b2

su
2 d~z 2 z8!d jk .

(88)

Equation (87) generates the Fokker–Planck equation21
]P

]z
5 F1

2
su

2 1
4b2

su
2 S 1

sin2 f
2 1 D G ]2P

]c2

1
4b2

su
2

1

sin f

]

]f
S sin f

]P

]f
D . (89)

For su
2 @ b, the second term inside the brackets in Eq.

(89) is negligible compared with the first, except possibly
for a small region near the poles of the Poincaré sphere,
and therefore Eq. (89) is for all intents and purposes the
same as Eq. (86).

Equation (87) can be used as the starting point for an
alternative numerical solution of Eq. (10). Rather than
combining a deterministic rotation about the S̃1 axis at
rate 2b with a random rotation about the S̃3 axis as indi-
cated in Eq. (10), we can use random rotations about all
three axes as indicated in Eq. (87). Because 4b2/su

2

! 1/2su
2, the random rotations about the S̃1 and S̃2 axes

can be taken much more infrequently than those about
the S̃3 axis. Also, if b/su

2 is small enough, it is even pos-
sible that the random rotations about the S̃1 and S̃2 axes
can be done more infrequently than would be necessary to
resolve the deterministic rotation about the S̃1 axis in Eq.
(10), thus resulting in an overall computational savings.

8. POLARIZATION-STATE PROBABILITY-
DISTRIBUTION FUNCTION WHEN
hfiber @ LB

In the limit b @ su
2, we first transform Eq. (10) to re-

move the rapid rotation produced by the relatively large
birefringence b, using

S S̃1

S̃2

S̃3

D 5 F 1 0 0

0 cos 2bz sin 2bz

0 2sin 2bz cos 2bz
G S R1

R2

R3

D . (90)

In addition, we let z 5 2bz, so Eq. (10) becomes

d
dz S R1

R2

R3

D 5 eh~z!F 0 cos z sin z

2cos z 0 0

2sin z 0 0
G S R1

R2

R3

D ,

(91)

where ^h(z)h(z8)& 5 d (z 2 z8) and e 5 su /(2Ab).
Equation (91) is now weakly random because of the e

on the right-hand side, and all the coefficients are oscilla-
tory with zero mean. It is therefore in the proper form to
be averaged.28,33,34 To summarize the result of this av-
eraging, if we write Eq. (91) in the form

dRi

dz
5 e(

j
Bij~z!Rj , (92)

then the averaged Fokker–Planck equation is28,33,34

dP

dz
5 e2 (

i, j,k,l
^BijBkl&Rj

]

]Ri
S Rl

]P

]Rk
D . (93)

When we use the specific form of Bij and change back to z
derivatives, Eq. (93) becomes



2978 J. Opt. Soc. Am. B/Vol. 14, No. 11 /November 1997 Wai et al.
dP
dz

5
su

2

4 F S R1
]

]R2
2 R2

]

]R1
D 2

1 S R1
]

]R3
2 R3

]

]R1
D 2GP. (94)

We can solve Eq. (94) exactly by first converting to the
spherical coordinates R1 5 cos w, R2 5 sin w cos q, and
R3 5 sin w sin q and then using separation of variables.32

This averaged Fokker–Planck equation can be thought
of as arising from independent random rotations about
the R2 and R3 axes; i.e.,32

d
dz S R1

R2

R3

D 5 F 0 g1 g2

2g1 0 0

2g2 0 0
G S R1

R2

R3

D , (95)

where g1(z) and g2(z) satisfy

^ gj~z !& 5 0, ^ gj~z !gk~z8!& 5 ~su
2/2!d~z 2 z8!d jk .

(96)

Because the analytical transformation, Eq. (90), is deter-
ministic, it should be possible to solve Eq. (95) numeri-
cally when b @ su

2 with less computational effort than
would be required to solve Eq. (10), as the rapid rotation
about the S̃1 axis would no longer need to be resolved nu-
merically.

9. CONCLUSIONS
In this paper we have calculated the means and the vari-
ances of the nonlinear PMD fluctuations produced by ran-
dom birefringence in an optical fiber. It was shown that,
for distances that are long compared with the polarization
decorrelation length hE , the nonlinear PMD corrections
have a Gaussian distribution with zero mean and a vari-
ance given by 2R(0)hEl, where R(0) is an O(1) constant
ranging from 1/15 to 4/15, depending on the particular
correction term being considered. The mixing length hE
was found to be LB

2/(12p2hfiber) when hfiber ! LB and
hfiber /12 when hfiber @ LB .

Situations in which the nonlinear PMD is not negli-
gible occur when the mixing length hE is not small in
comparison with the dispersive or nonlinear length
scales, so that incomplete mixing on the Poincaré sphere
results. As fiber decorrelation lengths for standard com-
munication fiber are typically in the range 0.3–300 m and
beat lengths range from 10 to 100 m, such a situation is
not likely to occur in the limit hfiber @ LB , where hE
5 hfiber /12, because the resulting mixing lengths are
quite short. Even when hfiber ! LB and extreme values
for hfiber and LB are considered, the resulting amount of
nonlinear PMD is still negligible under conditions typical
for practical, present-day communication systems. For
example, for hfiber 5 0.3 m and LB 5 100 m, one obtains
hE 5 280 m. This is much shorter than present-day dis-
persive and nonlinear scale lengths, which are typically
hundreds of kilometers.

Nonlinear PMD effects are much more likely to become
important in proposed very-high-data-rate transmission
systems operating in the neighborhood of 100 Gbits/s,
however, particularly in those that employ solitons.
First, in such systems pulse widths must be smaller by an
order of magnitude, and thus the dispersive and nonlin-
ear length scales are in the kilometer range. Second,
with shorter pulse widths such systems are more suscep-
tible to effects such as linear PMD. Equation (72) shows
that reducing linear PMD, however, means either in-
creasing the beat length LB or reducing the fiber decorre-
lation length hfiber . Increasing the beat length is equiva-
lent to reducing the magnitude of the birefringence,
which can be done by more careful control of the optical
fiber during manufacture to reduce perturbations from
the ideal circular state. Decreasing the fiber decorrela-
tion length means shortening the length scale associated
with such variations, which is likely what occurs when
the fiber is spun during the manufacturing process, a
method that has already been used to reduce linear
PMD.22

Reducing linear PMD by either method, however, has
the side effect of increasing the polarization decorrelation
length hE and with it the amount of nonlinear PMD. In
essence, decreasing the amount of linear PMD also re-
duces the rate of mixing on the Poincaré sphere, which in
turn increases the nonlinear PMD. As an example, if
hfiber is merely reduced from 30 to 5 cm by the spinning
process (which does not seem unreasonable because spin
rates in the range of 20–50 turns/m have been reported),
then hE increases to 1.5 km, which is now comparable
with the dispersive and nonlinear length scales in a high-
bit-rate transmission system. Recent research by Arend
et al.35 shows experimental evidence of this effect. As a
result, we conclude that, although nonlinear PMD poses
no threat to standard communication systems, it will in
principle affect very-high-data-rate systems and may
make it impossible to deploy them in practice.
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