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Timing-jitter reduction in a dispersion-managed soliton system
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We found by using Monte Carlo simulations that the timing jitter in a dispersion-managed soliton system
decreases as the strength of the dispersion management and hence the ratio of the pulse energy to the pulse

bandwidth increases.

The results are in qualitative but not quantitative agreement with earlier predictions

that the decrease is inversely proportional to the square root of the pulse energy. Using an improved semi-

analytical theory, we obtained quantitative agreement with the simulations.

OCIS codes: 060.5530, 060.2330.

Dispersion management is a promising approach for
minimizing the jitter of the pulse arrival time in a
soliton system'~* that is due to the Gordon-Haus
effect.” Dispersion-managed solitons periodically
spread and recompress in a dispersion-managed sys-
tem, returning to the same initial shape after propa-
gating one period through the dispersion map. Thus
their shape is not continually stationary, as is the
case for standard solitons, but is only periodically sta-
tionary. The spreading that occurs during the propa-
gation effectively lowers the nonlinearity so that the
energy of a dispersion-managed soliton with a given
average dispersion is higher than for standard solitons
and increases with the strength of the dispersion
management by an amount that is referred to as
an enhancement factor.®” Since the timing jitter is
inversely proportional to the soliton amplitude in a
standard soliton system, it is natural to anticipate that
the timing jitter will be (at least roughly) inversely pro-
portional to the square root of the enhancement factor,
and both theoretical and experimental studies to date
support this hypothesis.2"* However, the shape of the
dispersion-managed soliton at its point of maximum
compression changes and its time—bandwidth product
grows as the strength of the dispersion management
increases.” Thus it would be surprising if the timing
jitter were reduced by exactly the square root of the
enhancement factor. In this Letter we carry out a set
of careful Monte Carlo simulations, and we show that
the reduction can be significantly less—as much as
30% in one case that we examined. We also compare
the simulations with a semi-analytical theory based on
linearizing the noise contribution about the numeri-
cally determined pulse shape and find excellent
agreement.

The use of linearization in this context is highly sig-
nificant. Linearization was used by other authors®~!
to calculate the effects of amplified-spontaneous-
emission (ASE) noise. However, in all this research a
fixed, analytically determined signal shape before lin-
earization was assumed. More recently, Kumur and
Lederer? and Georges et al.’® considered the timing
jitter of dispersion-managed solitons, using a quadratic
ansatz for the pulse chirp. In real systems the pulse
evolution is usually too complex to be captured in a
simple ansatz, but, on the other hand, the ASE noise
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contribution is often small so that linearization is
valid. Thus, our approach of linearizing around
numerically determined pulse shapes seems likely to
have broader applicability than just to the case consid-
ered in this Letter as a way of avoiding numerically
time-consuming Monte Carlo simulations.

We considered a dispersion-managed soliton trans-
mission system with lumped amplifiers and a peri-
odic dispersion map that is described by the perturbed
nonlinear Schrodinger equation, which we write in the
form
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where we use a notation introduced by Haus!* that
is well adapted to the study of noise effects. We
retain ¢ as unnormalized time, and the intensity |u|? is
normalized to the photon flow. The distance variable
z corresponds to the physical distance multiplied by
the absolute value of the path-average dispersion |B”|.
The dispersion coefficient D(z) equals —B"(z)/|8"],
where B’(z) is the local dispersion. The nonlinear
coefficient y equals 2whv2ns/cAcx|B’|, where v is
the carrier frequency, ng is the Kerr coefficient, and
¢ is the speed of light in vacuum. The distributed
gain coefficient g(z) equals the amplitude gain gy at
the amplifiers and equals the loss —T" < 0 elsewhere;
g(z) integrates to zero over one amplifier period.
The contribution of the ASE noise F(z, t) is delta
correlated:

(F(z, )F*(, t)) = 20(2)g0od(z — 2")8(¢t — t'), (2)

where for mathematical convenience we set 6(z) equal
to the spontaneous-emission factor ng, at the ampli-
fiers and zero elsewhere so there is no noise con-
tribution outside the amplifiers. We now define the
average pulse position ¢,:

+ ylulPu=igu + F(z,t), (1)

tp = % [_mtlu(t)|2dt, (3)

where U = [*_ |u(t)|2dt is the total photon number.
We also define the central frequency Q of u(z, ¢) as

1 “fou , ou*
Q= ﬁ [_m<a_tu o u)dt (4)
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It is convenient to remove the central frequency from
u(z, t) by means of defining q(z, t) = u(z, t) exp(—iQ¢).
We now find that the standard deviation of ¢, can be
written as

o=t — )2 =A+B+0)2, (5

where
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The first term in Eq. (5), A, gives the contribution
to the timing jitter from the accumulated frequency
shift along the fiber, where the innermost inte-
gration gives the individual contribution of each
amplifier. This term typically makes the largest
contribution to the timing jitter. One can see that the
frequency shift depends on both the pulse bandwidth
[, 10q/at|>dt/U and the photon number U. This
term increases proportionally to z3. The second term,
B, gives the contribution to the timing jitter induced
by the pulse chirp. Suppose, for example, that q(z, )
is chirped at a particular amplifier, as will generally
be the case for dispersion-managed solitons, so that we
can write ¢ = @ exp(iat?), where Q(z, t) is symmetric
about # = 0. In this case the time integral in Eq. (6b)
becomes 4ai [~ (t — t,)?|Q|?d¢, which is proportional
to the chirp parameter . The final term, C, gives the
direct contribution of the ASE noise to the timing jit-
ter. Terms A and C appear in the theory of standard
solitons and were described, for example, by Haus,*
whereas the term B is a new factor. Equation (5) is
obtained by linearization of Eq. (1) about the pulse
shape u(z, t) and solution of the resulting Langevin
equation.

We now turn to the calculation of the timing jit-
ter for dispersion-managed solitons by use of both the
linearization approach described above and Monte
Carlo simulations. In our simulations we solve Eq. (1)
by using a standard split-step approach. The effect of
the ASE noise contained in the term F'(z, ¢) is modeled
by addition of noise in the Fourier domain immediately
after the amplifiers. Writing the Fourier transform of
u(z, t) as it(z, w) and integrating Eq. (1), we find that
we should add an amount of noise it = Aexp(ig) to
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each Fourier component, where A = [n4,(G — 1)Av]Y2,
G is the total gain of the amplifier, ¢ is a random
phase from 0 to 27, and Av is the bandwidth asso-
ciated with each component. As in Ref. 7, we used a
dispersion map consisting of alternating 100-km spans
of positive and negative dispersion, and we injected
a chirp-free pulse at the midpoint of the negative-
dispersion segment with a FWHM duration tpwpm
equal to 20 ps. Fiber loss is 0.21 dB/km with an am-
plifier spacing of 50 km. The fiber effective area A
is 50 um?, the Kerr coefficient n9 is 2.6 X 10716 cm?/W,
and the spontaneous-emission factor ng, is 2.0. We
set the path-average dispersion 87 = —0.1 ps2/km =
0.08 ps/nm km, and the normalized path-average dis-
persion D = 1.

In our first set of simulations, shown in Fig. 1, we
chose the normalized dispersion in the two spans, D, =
30 and hence D; = —28. The parameter that we used
to characterize the strength of the dispersion man-
agement is y = 2[(D1 = D)L1 — (Dy — D)Ls]/tiwum,
where L, and Ly are the span lengths in the dispersion
map. In this first set of simulations we found that vy is
2.9, corresponding to an energy-enhancement factor of
2.17. Figure 1 shows the timing jitter as a function of
distance. We compared our Monte Carlo simulations
with the timing jitter of the uniform-dispersion system
divided by the square root of the enhancement factor,
which we refer to as the modified Gordon—Haus tim-
ing jitter. In Refs. 2 and 3 it was predicted that the
timing jitter would be reduced by the square root of
the enhancement factor. We find that the timing jit-
ter is reduced, but the reduction is less than predicted,
and the deviation grows with the distance. Substi-
tuting the numerically determined stable pulse pro-
file for q(z, t) into Eq. (5), we also directly calculated
the timing jitter. This semi-analytical calculation is in
complete agreement with the Monte Carlo simulations.
This result is highly significant because this approach
yields greater precision than the Monte Carlo method
at a fraction of the computational cost and is likely to
have a wider applicability than just to this problem.
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Fig. 1. Timing jitter as a function of distance with ampli-

fiers spaced 50 km. Curves (1), timing jitter in a standard
soliton system with uniform-dispersion fiber. Dashed
curve, analytical result from Ref. 8; solid curve, the result
of the average of 100 Monte Carlo simulations. Curve (2),
timing jitter in a dispersion-managed soliton system.
Circles, result of our semi-analytical approach; solid
curve, result of the Monte Carlo simulations. Curve (3),
modified Gordon—Haus result.
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Fig. 2. Timing jitter as a function of distance with

amplifiers spaced 100 km and placed at the points of

maximum pulse expansion in the dispersion map.

Curves (1)-(3) are as in Fig. 1.
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Fig. 3. Timing jitter as a function of distance with zero
average dispersion. The solid curve and the circles are as
in Fig. 1. A, B, and C are the results of Egs. (6a), (6b), and
(6¢), respectively.

Figure 2 shows what happens when we locate the
amplifiers at the points of greatest pulse expansion
in the dispersion map and we increase the space be-
tween amplifiers to 100 km. Keeping D constant and
vy = 3.65, we find that the deviation from the modi-
fied Gordon—Haus timing jitter differs by a large
percentage, increasing to 30% after 10,000 km. The
time—bandwidth product for this case is 0.66, and the
enhancement factor equals 8.16. The pulse has a mul-
tipeaked structure. Extensive simulations show that
as the time—bandwidth product increases, the predic-
tions of the modified Gordon—Haus theory consistently
become worse. This result is intuitively reasonable
since the larger spectrum implies that the stable pulse
can grab more noise. We also compared the results
of Monte Carlo simulations with those from the Gor-
don—Haus theory in the uniform-dispersion fiber with
the same path-average dispersion. We found that nu-
merical simulations are consistent with the Gordon—
Haus theory only within 8000 km in the case shown in
Fig. 1. Beyond that distance, a considerable discrep-
ancy between the Gordon—Haus theory and our simu-
lations appears because linearization is no longer valid;
in the case shown in Fig. 2 this discrepancy occurs even
sooner. However, the linearization remains valid for

the dispersion-managed solitons at up to 10,000 km be-
cause of their larger intensity.

Another interesting case that we calculated is the
timing jitter in a system with zero average disper-
sion.!®® The results are shown in Fig. 3. We used
a 100-km-long map with the amplifiers spaced 50 km
apart and located at the edge of each span of the dis-
persion map. The normalized fiber dispersions were
set at D; = 90 and Dy = —90. In this case the terms
B and C in Eq. (5) are comparable with the term A,
and all of them grow linearly with distance. Since the
contribution of the term B to the timing jitter is nega-
tive, we achieve a very small timing jitter at the end of
a 10,000-km transmission line. The term A does not
vanish because the independent, random noise contri-
butions from the amplifiers at the beginning and in the
middle of the map do not precisely cancel.

In conclusion, we have calculated the exact timing
jitter for several different cases, using both a lineariza-
tion approach and Monte Carlo simulations. We found
that the deviation from the modified Gordon—Haus
predictions, when they apply, can be significant. The
linearization approach that we developed yields com-
plete agreement with Monte Carlo simulations and
higher precision at a fraction of the computational cost.
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