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Reduced model of the evolution of the polarization states in
wavelength-division-multiplexed channels
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We have developed a reduced model of the evolution of the polarization states of the channels in a wavelength-
division-multiplexed system that follows only the Stokes parameters for each channel. We apply this model
to demonstrating that the expected repolarization of polarization-scrambled signals is small. We verify our
results by comparing them with numerical simulations with realistic parameters.  1998 Optical Society of
America
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Previously1 it was shown that polarization-dependent
loss can account for repolarization of a polarization-
scrambled signal. Polarization scrambling is used in
current long-distance undersea systems to avoid fad-
ing,2,3 and repolarization can lead to renewed fading,
which is a signif icant practical problem. Our previous
research was based on a reduced model in which we
followed the Stokes parameters of an individual chan-
nel and neglected the intersymbol interference that is
due to the Kerr nonlinearity and chromatic dispersion.
The accuracy of results obtained with this approach is
open to question, particularly in a wavelength-division-
multiplexed (WDM) system in which neighboring chan-
nels can interfere. We developed it because following
the complete temporal evolution of many WDM chan-
nels often requires prohibitive amounts of computer
time. Moreover, the various polarization-dependent
loss elements have random orientations, and one must
therefore consider a large number of different cases to
determine the probability distribution of the repolari-
zation. Following the complete temporal evolution of
even a single channel for a large number of cases can
also require prohibitive amounts of computer time and
for many WDM channels is clearly impractical. Thus
there is a real need for well-verif ied reduced models.

In this Letter we validate the reduced approach just
outlined in which we follow the evolution of the Stokes
parameters of each WDM channel rather than their
full temporal evolution. First we show analytically
that this model is applied exactly in the limit of strong
dispersion management and derive the equations that
govern the nonlinear evolution when polarization
mode dispersion (PMD) can be neglected. Intuitively
this reduced model works because in the presence of
large chromatic dispersion the bits in any channel
pass rapidly through the bits of the others, so the
bits in one channel are affected only by the Stokes
parameters of the other channels. We find an exact
solution for the nonlinear equations that govern the
polarization evolution, and we show that there is no
change in the degree of polarization. This result
is significant for long-distance, undersea telecom-
munication systems because it indicates that the
occasional repolarization that is observed in
polarization-scrambled signals is not due to chro-
matic dispersion and nonlinearity and is therefore
0146-9592/98/211677-03$15.00/0
almost certainly due to polarization-dependent
loss.1 Finally, we verify our reduced approach by
comparison with complete simulations, neglecting
PMD. We show for realistic parameters that this re-
duced approach yields reasonable agreement with the
simulations and in particular that the repolarization
is small.

Our starting point is the Manakov equation4,5
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where U ­ sux, uy dt represents the complex envelopes
of the two polarizations, b00 is the dispersion coeffi-
cient, g ­ s8y9d sk0n2yAeff d is the nonlinear coefficient,
and z and t are distance along the optical fiber and
retarded time, respectively. Earlier experimental6

and theoretical4,5 work showed that Eq. (1) accurately
describes nonlinear and dispersive pulse propagation
in standard communication fiber with rapidly and
randomly varying birefringence when the usual linear
PMD can be neglected. In communication systems
the residual nonlinear contribution beyond what is
included in the Manakov equation, referred to as non-
linear PMD, is completely negligible.4 – 6 We also
neglect the effect of spatially varying loss and gain,
assuming that it occurs on a length scale that is short
compared with the nonlinear and dispersive length
scales, so its effects can be averaged. Writing U as a
sum of contributions over n channels, we find that
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where ksmd and vsmd are the central wave number
and frequency of the mth channel, respectively, and
U smd is the corresponding wave envelope. Substituting
Eq. (2) into Eq. (1), we find that

i
≠U smd

≠z
2

b00

2
≠2U smd

≠t2 1 gfUysmdU smdgU smd

1 g

nX
q­1, fim

fUysqdU sqdgU smd

1 g

nX
q­1, fim

fUysqdU smdgU sqd ­ 0 , (3)
 1998 Optical Society of America



1678 OPTICS LETTERS / Vol. 23, No. 21 / November 1, 1998
where, consistent with our assumption that the dis-
persion between channels is large, we neglect the
four-wave mixing terms. We now define the Stokes
parameters for each of the channels as
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where we assume that T ­ t2 2 t1 contains a large
number of individual bits. Using Eq. (3) to determine
the evolution of the Stokes parameters, we find that
dS smd

0 ydz ­ 0 and we find for dS smd
1 ydz that
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In a highly dispersive system, the channels for which
q fi m rapidly pass through the mth channel in the
time domain. Consequently the evolution of the mth
channel is affected only by the averaged time variation
of the q fi m channels, so we can effectively treat them
as continuous waves. We thus replace
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from which we conclude that
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We can find similar expressions for dS smd
2 ydz and
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The effect of dispersion does not appear in Eq. (8); only
the nonlinearity appears, and the equations are analo-
gous to the equations that govern nonlinear polariza-
tion rotation of continuous-wave beams.7 However,
the local dispersion is critical because it must be large
enough that each channel appears as a continuous-
wave background to its neighbors. It is an immedi-
ate consequence of Eq. (8) that the Stokes parameters
of a single channel do not evolve. Moreover, regard-
less of the number of channels, the polarization of each
channel simply rotates, so the degree of polarization is
not changed. In particular, a polarization-scrambled
channel cannot repolarize.

Although Eq. (8) is nonlinear, a complete analytical
solution can be found. This result is intrinsically sig-
nificant because the number of large-dimensional non-
linear systems for which exact solutions can be found is
small; however, the form is somewhat cumbersome and
is not presented here.

We studied the effectiveness of the Eq. (8) by simu-
lating nonreturn-to-zero signal transmission with
dispersion management. We polarization scramble
our signals, using synchronous phase modulation
as discussed by Bergano et al.2 We also use syn-
chronous phase modulation and amplitude modulation
to minimize the distortion of the nonreturn-to-zero
signal. Polarization scrambling of the optical carrier
is achieved by differential modulation of the optical
phases of two orthogonal polarization states with a
sinusoidal signal, usmd

x std ­ AxstdexpfifxstdgcossVty2d
and usmd

y std ­ Ay std expfifystdgcossVty2d, where fxstd ­
dx 1 ax cossVt 1 cd and fystd ­ dy 1 ay cossVt 1 cd.
Here we let Axstd ­ cxHstd and Ay std ­ cyH std, where
H std ­ 1 in the time slots of the one bits and H std ­ 0
in the time slots of the zero bits; cx and cy are constant
coefficients. ax and ay are two phase modulations.
We chose the values ax ­ 3.307 and ay ­ 0.903, so the
difference ax 2 ay nearly equals j0, 1 ­ 2.405, the first
zero of the zeroth Bessel function. With this choice
and with the setting cx ­ cy , an ideal square pulse
would be depolarized. The sum was chosen to be con-
sistent with the experiments of Bergano et al.2 The
phase modulation frequency V corresponds to the bit
rate, c describes the relative phase between the phase
modulation and the data bits, and dx and dy denote
arbitrary offsets. By varying c, dx, dy, cx, and cy
we can adjust the degree of polarization to any de-
sired value.

We studied multichannel systems at 5 and 10 Gbitys.
The pulse streams have a path-averaged power of
0.4 mW. Typical experimental dispersion maps use a
span of normal dispersion fiber at D1 ­ 22 psynm km
followed by a span of anomalous dispersion fiber
at D2 ­ 17 psynm km, with a total dispersion of
zero.1 To make the dispersion management stronger
for comparison with the theory, we often multiplied
the values of D1 and D2 by constant factor up to
10. The map length was 200 km. For a 1000-km
long map we obtained even better agreement
with theory.

For a two-channel 10-Gbitys WDM system with a
1-nm channel spacing we found that, when D1 ­
220 psynm km and D2 ­ 170 psynm km, the Stokes
vectors of both channels evolve exactly as predicted
by Eq. (8), as shown in Figs. 1(a) and 1(b). Even
when we decreased the values of D1 and D2 to D1 ­
22 psynm km and D2 ­ 17 psynm km, the Stokes vec-
tors did not change much from the theoretical predi-
cation shown in Fig. 1(c), although the difference is
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Fig. 1. Evolution of the Stokes vector components as a
function of distance. Solid curves, the Stokes compo-
nents of channel 1; dashed curves, the Stokes components
of channel 2. (a) Analytical result. (b) Simulation re-
sult: D1 ­ 220 psynm km, D2 ­ 17 psynm km. (c) Simu-
lation result: D1 ­ 22 psynm km, D2 ­ 170 psynm km.
Parameter values: dx ­ 0 and dy ­ 0 for both channels;
c ­ 1.5 for channel 1 and c ­ 0.8 for channel 2; path-
averaged power in the x polarization, 0.22 mW, and in the
y polarization, 0.2 mW, for both channels.

Fig. 2. Evolution of the degree of polarization of two
channels as a function of distance with D1 ­ 22 psynm km
and D2 ­ 17 psynm km. The parameter values are the
same as for Fig. 1.

visible. We also observed that, consistent with theory,
the degree of polarization does not change much, as
shown in Fig. 2. In particular, if the initial degree
of polarization is zero, then the final degree of polari-
zation is less than 0.1. The degree of polarization is

defined as dpol ­ fS smd2

1 1 S smd2

2 1 S smd2

3 g1/2yS smd
0 . We

note that, even though the Stokes vector is small in
this case, S0 is large so the evolution is nonlinear.
We used bit patterns that were 64 bits long, and we
verified that the results are not sensitive to the exact
bit pattern chosen. We also note that, motivated by
the experiments of Bergano et al., we focused on a
case in which the initial value of the Stokes vector
components is small, but our approach also works well
in general.

In a two-channel 5-Gbitys system with 0.5-nm chan-
nel spacing we found a similar result, although the re-
polarization was somewhat larger. Moreover, as we
increased the number of channels the agreement with
theory improved at both 5 and 10 Gbitsys.

In conclusion, we have developed a reduced approach
for modeling the evolution of the Stokes parameters of
the channels in a WDM system. We showed that this
reduced model is exact in the limit of strong dispersion
management. We applied this model to the practi-
cally important issue of repolarization of polarization-
scrambled signals and showed that the repolarization
cannot be caused by chromatic dispersion and nonlin-
earity alone. We compared our predictions with simu-
lations made with realistic parameters, and we found
good agreement with the reduced model.
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