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Comparison of Theory and Experiment for
Dispersion-Managed Solitons in a Recirculating

Fiber Loop
R.-M. Mu, V. S. Grigoryan, Curtis R. Menyuk, Fellow, IEEE, G. M. Carter, Senior Member, IEEE, and J. M. Jacob

Abstract—We have developed a model that accurately predicts
the dynamics of the signal pulses and the growth of amplified spon-
taneous emission noise in a dispersion-managed soliton pulse train
propagating in a recirculating fiber-loop experiment. Theoretically
predicted dependencies of the amplitude and phase margins for the
marks and the amplitude margin for the spaces as a function of
distance are in remarkable agreement with the experiments. This
model allows us to determine the key physical effects that limit the
propagation distance in our experiments.

Index Terms—Amplitude margin, amplified spontaneous emis-
sion noise, dispersion-managed soliton (DMS), excess gain, filter,
phase margin, pulse dynamics, timing jitter.

I. INTRODUCTION

T HE use of dispersion management has revolutionized the
field of soliton transmission, resulting in record distances

for single-channel transmission at 10 Gb/s [1], 20 Gb/s [2], and
40 Gb/s [3] without using stronger soliton controls. The advan-
tages of the dispersion-managed soliton (DMS) over a standard
soliton with the same bandwidth are attributed to an increase
in signal power and a reduction of timing jitter relative to a
transmission line that has a constant dispersion equal to the av-
erage value of the dispersion map [4]–[11]. A number of im-
portant factors that affect the performance of a communication
system based on DMS pulses have been separately considered,
including details of the dispersion map, the interaction between
the signal and the noise, the nonlinear interaction between two
signal pulses, and chromatic dispersion [12]–[21]. However, it
is difficult to use this work to analyze or optimize a real exper-
imental implementation of a DMS system because in any real
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system these effects occur simultaneously and interact with each
other. The purpose of this paper is to overcome this limitation
and present a complete model of a DMS transmission system
that contains the essential physics needed to accurately model
the data obtained from an experimental DMS system. With this
model we were able to successfully reproduce the signal dy-
namics, including its transient evolution, the signal and noise
variation with propagation distance, the timing jitter, the eye di-
agrams, and the bit-error rates (BER’s) that were obtained in
our experiments. In addition, we were able to identify the key
limitations on propagation distances in our system based on the
knowledge we gained through this investigation. This type of
model will be beneficial for designing and optimizing system
performance in non-DMS systems as well.

This paper is organized as follows. The model is developed in
Section II. The dynamics of the signal propagation is presented
in Section III. The growth of amplified spontaneous emission
(ASE) noise and its impact on system performance are discussed
in Section IV. Finally, Section V contains the conclusion.

II. M ODEL AND SYSTEM PARAMETERS

Our simulation model uses a modified nonlinear Schrödinger
(NLS) equation that may be written as

(1)

Here, the pulse envelope is normalized as
, where is the electric field enve-

lope, cm /W is the Kerr coefficient, is
the central frequency, m is the effective area, and
is the speed of light. The quantity is the characteristic dis-
persion length; it equals , where is a characteristic
scale time, and is the dispersion that we used to normalize
the NLS and is set to 1.2 ps/nmkm. In our simulation, we chose

ps, which roughly equals the root-mean-square
soliton duration at the points of maximum compression. The
distance is normalized as , where is the physical
distance along the recirculating loop. It increases continually
as the signal undergoes multiple turns in the loop. The retarded
time is normalized as , where is the
physical time and is the inverse group velocity. Other
quantities are normalized as follows: ,

, where is the third-order disper-
sion, , where is the filter curvature,
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and , where is the power gain or loss.
The net gain coefficient may be written as

elsewhere
(2)

where
is the gain coefficient of the th amplifier;
is the loss coefficient of the fiber;
is the initial position of the th amplifier on the th
round-trip;
is the amplifier length.

The autocorrelation function for the Langevin term in
(1) may be written as

(3)

where is the Planck’s constant and equals the sponta-
neous emission factor when and
is zero elsewhere.

In order to accurately calculate the evolution of the DMS
pulses in the recirculating loop, it is of critical importance to
carefully calculate the effects of the amplifier saturation. We
will return to this issue in more detail in Section III and con-
fine our discussion here to presenting our modeling approach.
Since the amplifier gain evolves on a time-scale of milliseconds,
while evolves on a time-scale of picoseconds, we must
use a multiple time/length-scale approach in which we average
over the rapid variations of to determine the evolution
of the gain and then fix the gain to determine the evolution of

[22]. If we consider the evolution of the gain coefficient
of the th amplifier in the loop, then its gain coefficient may be
written

(4)

where is the normalized time; in contrast toused in
(1), is unretarded. The distanceis internal to the amplifier
so that and is normalized with respect to .
The quantity is the unsaturated gain of theth amplifier,

is the normalized relaxation time, which, in physical units,
we set equal to 1 ms, and is the saturation energy, which,
in physical units, we set to 10J, corresponding to a saturation
power of 10 mW.

To solve (1) in parallel with (4), we must relateand to
and . To do so, we note that as the signal propagates along

the loop, so that is increasing, the time increases in the th
amplifier. Thus, we find that . The recircu-
lating loop is a bit over 100-km long, so that a signal undergoes
approximately two round-trips in one excitation time. Thus, we
must take into account the transient evolution of the gain in each
amplifier, as well as the variation of as a function of
position inside the amplifier. However, we may assume that
at a fixed value of , this variation is very slow. Since we only

Fig. 1. The experimental setup. Small circles along the loop show the tap
points at which experimental data could be extracted.

keep a limited range of in (1)—on the order of several hun-
dred picoseconds—we may average over the rapid variations of

as a function of to find

(5)

where pulses fill the loop with pulses separated in time by
so that is one round-trip in the loop in
normalized units. The integerindicates the number of round-
trips so that

(6)

Finally, the energy corre-
sponds to the average energy in a single bit at .
Having at each determined the slow variation of the gain from
(5), we then determine the fast variation of from (1) by
assuming that the gain is independent ofon each round-trip.
We have found that dividing the amplifier into 100 sections
yields a sufficiently accurate numerical solution for .
We note that in steady state, (5) becomes

(7)

where is constant as a function of. However, to obtain
accurate results for the convergence of initial pulse shapes to
their final values, one must use (5) rather than (7).

Fig. 1 shows our recirculating loop configuration [1]. There
are four spans of dispersion-shifted fiber (SMF-LS), each
about 25 km in length, with a normal dispersion equal to

ps/nm–km at 1551 nm, followed by an approximately
7-km span of standard single-mode fiber (SMF-28) with an
anomalous dispersion equal to 16.6 ps/nm–km at 1551 nm.
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TABLE I
FIBER PARAMETERS FOR CALCULATING

DISPERSION

To calculate the dispersion as a function of wavelength we used
the formulas

for SMF-28 fiber

for SMF-LS fiber

on the data sheet that Corning Inc. provided along with the fiber
that we purchased [23]. The quantity corresponds to an ef-
fective dispersion slope coefficient, while corresponds to the
zero-dispersion wavelength. We show the values of, , and
the exact lengths of each fiber in Table I. The average disper-
sion slope over one loop period is about 0.075 ps/nm–km. By
changing the central wavelength of the input signal, we were
able to adjust the average dispersion . An amplifier follows
each span of normal dispersion fiber and a fifth amplifier fol-
lows the 2.8-nm bandpass filter that is at the end of the 7 km
span of standard fiber. The total loss within one loop period is
31.53 dB, including the loss in the fibers, the optical filter, con-
nectors, couplers, and acoustio-optic switches. We also defined
the total unsaturated gain coefficient within one loop period as

that can be altered by changing the individual unsaturated gain
coefficient at each amplifier. In our investigation, we al-
ways set , the same
and set a little larger in order to com-
pensate for the loss in the switches, the optical filter, and the
couplers. The value of will determine the energy of the DMS
pulse at steady state.

We now specify the initial condition in our simulations. Un-
less otherwise stated, we launched Gaussian-shaped pulses with
a full-width at half maximum (FWHM) pulse duration of 9 ps
and a peak power of 9 dBm at the midpoint of the anoma-
lous span. The pulse train takes the form of 1-1-1-0-0-0-1-0,
which includes all possible nearest-neighbor interactions since
only the nearest-neighbor interactions are important for single-
channel DMS systems. The bits were spaced 100 ps apart, cor-
responding to a 10 Gb/s signal. We used the split-step Fourier
method to solve (1) with an 800-ps calculation window, so that
the pulse train that we used is, in effect, repeated periodically
ad infinitum.

Equations (1)–(5), along with the initial condition just speci-
fied, comprise the model of our recirculating loop experiments.
The model will illustrate the principal characteristics of single-
channel DMS in a communication system. The important char-

Fig. 2. The evolution of the DMS pulse trains as a function of the distance with
D = 0:02 ps/nm–km. In this case, we setG = 5:4 dB andG = 10:85

dB.

acteristics are the nonlinear pulse propagation in the map, the
accumulation of ASE noise, the interaction of the signal and
the ASE noise, and the nonlinear interaction between adjacent
pulses. In the following sections, we will illustrate how these
coupled effects determine the system performance of our ex-
perimental system.

III. D YNAMICS OF DISPERSION-MANAGED SOLITONS

In this Section, we consider the dynamics of the DMS in our
recirculating loop experiment. Our focus is on determining the
requirements for an initial pulse to reach a steady state in which
it varies periodically during one round-trip through the recir-
culating loop and on describing both the initial transient and
the final steady-state evolution. We have found through careful
comparison of theory and experiment that gain saturation in
the amplifiers plays a critical role in our experiments, while
third-order dispersion and saturable absorption, due to, for ex-
ample, nonlinear polarization rotation, do not. It is our view that
the modeling approach presented here—particularly our model
of gain saturation—will have a wider range of applicability than
to just our experiments. In order to concentrate on the dynamics
of the DMS pulse, we set the ASE noise to zero in the investiga-
tions of this section. We also set the third-order dispersion and
the saturable absorption to zero in most of this section, except
near the end where we examine their importance.

We first consider the impact of gain saturation on the initial
transient evolution of the input pulses. Fig. 2 shows the evo-
lution of a set of initially Gaussian-shaped pulses at the output
port of the recirculating loop when dB with

dB and dB, while the average dispersion
equals 0.02 ps/nm–km. We see that they undergo a transient evo-
lution over about 5000 km before settling down into a periodi-
cally stationary state. We also see that the evolution is apparently
identical for all the pulses regardless of where they fall in the
pulse stream. Thus, nearest neighbor interactions are negligible
in this case, despite the stretching of the DMS pulses. Pulses that
are initially hyperbolic-secant shaped undergo a nearly iden-
tical evolution as do a number of other pulse shapes. This re-



MU et al.: DMS IN A RECIRCULATING FIBER LOOP 251

Fig. 3. The influence of different gain model to the stabilization of the DMS
pulse propagation. (a) Without gain saturation,G = 31:6 dB withG = 5:0

dB andG = 11:6 dB, andP = 9 dBm. (b) Without gain saturation,
G = 31:5 dB with G = 5:0 dB andG = 11:5 dB, andP = 9

dBm. (c) Without gain saturation,G = 31:6 dB with G = 5:0 dB and
G = 11:6 dB, andP = 5 dBm. (d) With gain saturation,G = 32:45

dB andP = 9 dBm. (e) With gain saturation,G = 32:45 dB andP = 5

dBm. In cases (d) and (e), the values ofG andG are the same as in Fig. 2.

sult is consistent with our experiments that indicate the DMS
behavior is independent of the input parameters over a wide
range [24]. This stability in the loop’s behavior is a consequence
of the gain saturation and the filtering. If the gain saturation
is neglected, the initial pulse shapes that are launched into the
system must be very close to the final periodically stationary
pulse shapes in order for the system to converge; this sensitivity
is in contradiction to the experiments. This point is illustrated
in Fig. 3, in which we show the evolution of the peak power
of a Gaussian-shaped pulse as we vary the round-trip gain
and the peak power of the input pulse . In cases 3(a)–(c), in
which the gain saturation is turned off, the system has difficulty
stabilizing. In cases 3(a) and (c), the pulses are overamplified so
that the amplitudes of the pulses continually increase and even-
tually blow up. In case 3(b), the pulses are underamplified and
eventually disappear. By contrast, in cases 3(d) and (e), in which
gain saturation is included, the pulses ultimately stabilize with
the same pulse shape, regardless of the details of the input pulse
shapes.

We next consider the detailed dynamics of the DMS pulse
after the system has reached its steady state using the same set of
parameters, as in Fig. 2. We used the first pulse in the pulse train
shown in Fig. 2 to create Fig. 4 after verifying that the results did
not depend on which pulse we used. The output average power
nearly equals 0 dBm. These values produce results that corre-
spond well to our experiments [24]. In Fig. 4(a), we directly
compare the experimentally measured FWHM pulse durations
to our simulation results at the taps shown in Fig. 1. Note that
the horizontal scale is expanded in the anomalous dispersion
regime for better visibility. Agreement between our experiments
and our simulations is excellent. In Fig. 4(b) and (c), we show
the variation of the pulse peak power and the chirp as a func-
tion of position along the loop. Here, we define the chirp as the
second derivative of the phase with respect to time at the central
position of the pulse in the time domain. Despite the asymmetric
variation of the pulse peak power, the chirp goes nearly to zero

Fig. 4. The dynamics of the DMS signal at steady-state. We show the (a)
duration; (b) peak power; and (c) the chirp of the pulse as functions of distance
during one round trip in the loop. The squares show the experimentally measured
the pulse durations.

at the midpoints of both the anomalous and normal dispersion
spans just as in the lossless, unfiltered case [25]. The experimen-
tally measured spectra and pulse durations are consistent with
this result as we will show in Section IV.

In Fig. 5, we show the simulated behaviors of the pulse
duration and the root-mean-square (rms) pulse bandwidth as

is changed. The pulse durations of the first and the last
marks (ones) in the pulse train are calculated individually.
The rms pulse bandwidth was calculated for the last (isolated)
marks. The values of and are the same as in Fig. 2.
When 0.02 ps/nm–km ps/nm–km, the minimum
FWHM pulse durations only change by 1 to 2 ps. This small
variation is below the resolution of our streak camera and is
thus consistent with the conclusion from our experiments that
the pulse dynamics were independent of in this range
[24]. However, the pulse bandwidth and the pulse-stretching
factor increases as decreases in the anomalous dispersion
regime toward zero and the increases become very rapid when

is in the normal dispersion regime. The large stretching
of the pulse durations in the normal regime occurs because the
pulse energy is limited by the unsaturated gain, so that the
nonlinearity is not strong enough to support a normal DMS
signal unless the stretching factor is large [26]–[30]. Comparing
Fig. 5(a) to (b), we find that the large stretching in the normal
dispersion regime leads to significant interpulse interactions.
These interactions would be bad in a communication system.
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Fig. 5. Pulse dynamics with different path average dispersions. We show (a)
the pulse duration of the first mark; (b) the pulse duration of the last mark; and (c)
the root-mean-square pulse bandwidth of the last (isolated) mark as a function
of distance during one round-trip in the loop.

By increasing the unsaturated gain to 34.45 dB, with
and increased by 0.4 dB each, we observe a significant
reduction in the stretching factor of the normal DMS pulses as
shown in Fig. 6. The dynamical behaviors are identical for all
the pulses inside the same pulse train, implying that there is no
strong interpulse interaction in our system in this case.

We next considered the effect of nonzero third-order disper-
sion. Fig. 7 shows the propagation of a DMS in the loop with

ps/nm–km and the same dispersion slope of 0.075
ps/nm –km as found in the fiber used in the experimental loop.
All other parameters are the same as in Fig. 2. There is no visible
change of the DMS dynamics with respect to Fig. 2, except that
there is a slow constant drift of the pulse center with the pulse
shape nearly unchanged. This effect occurs because the group
velocity averaged over the bandwidth of the pulse is somewhat
lower than the group velocity at the central frequency due to
the third-order dispersion. This drift does not affect the system
behavior because it is common to all the DMS pulses and will
be removed by the clock recovery circuit. Similarly, simulations
with ps/nm–km and ps/nm–km show
that the dispersion slope of 0.075 ps/nm-km leads to no signifi-
cant changes from the corresponding cases with zero dispersion
slope.

Finally, we consider the effect of nonzero saturable absorp-
tion, which could be created for example by a combination of
nonlinear polarization rotation and polarization-dependent loss
[31], [32]. To include this effect, we add a saturable absorber

Fig. 6. Pulse dynamics with higher unsaturated gainG . We show (a), (b), and
(c) as in Fig. 5.

Fig. 7. Stable pulse propagation with third-order dispersion included in the
simulation model.

after the optical bandpass filter. We modeled the saturable ab-
sorption as

(8)

We found that when the strength of the absorber—represented
by —is less than 0.4, there is no observable effect on the pulse
dynamics. The value corresponds to about a 0.1 dB
loss difference between the pulse peak and the pulse tail per



MU et al.: DMS IN A RECIRCULATING FIBER LOOP 253

round-trip in the loop when the threshold power of the saturable
absorber is set to 50 mW. However, when is larger than
0.4, which indicates a stronger saturable absorber, the loss dif-
ference between the pulse peak and the pulse tail is larger than
0.1 dB per loop. In this case, we saw that the pulse trains suffered
serious distortion and could even drop during the propagation.
No such effects were observed in our experiments [1]. Thus, we
can conclude that under our operating conditions, the saturable
absorption does not play a significant role in the DMS pulse dy-
namics.

IV. SYSTEM PERFORMANCE IN THEPRESENCE OFASE NOISE

ASE noise from the erbium-doped fiber amplifiers (EDFA’s)
degrades the marks (ones) by inducing timing jitter and ampli-
tude jitter, as well as some pulse distortion; it also accumulates
in the spaces (zeros). As we will show in the following, it is the
noise increase in the spaces that limits the transmission distance
in our recirculating loop.

The effect of the ASE noise is contained in the term
in (1). We modeled its effects by adding noise

in the Fourier domain after each amplifier. Writing the
Fourier transform of as and using (5), we
find that after the th amplifier, we should add an amount
of noise to each Fourier component,
where ,

is the gain associated with theth
amplifier, is a random phase uniformly distributed between
0 and , and is the normalized bandwidth associated with
each component. We set to match the experimentally
measured value. Strictly speaking, the real and imagery com-
ponents of are Gaussian-distributed with zero means and
variances given by . However, numerical experimentation
has shown that using the approach described here leads to the
same results since the correct amount of power is added on
average to each Fourier component. Another issue is that we are
using a scalar model and thus effectively neglecting the noise
that is added in the polarization orthogonal to the signal polar-
ization. This neglect is perfectly reasonable in standard soliton
systems that are limited by spontaneous-signal beat noise—in
particular, the timing jitter. However, as we will show, our
system is limited by the growth of spontaneous–spontaneous
beat noise in the spaces, and it is less evident that this neglect
is justified. We have carried out careful experiments that
show that when our system is operating optimally, the signal
and noise are in fact copolarized through the combination of
polarization-dependent loss and the polarization controller,
thus justifying our neglect of the orthogonally polarized noise
component. We will publish this investigation elsewhere.
Anecdotal evidence indicates that this behavior is common in
recirculating loop experiments that are less than 500 km in
length, although no one to our knowledge has yet published a
careful study of this issue.

In Fig. 8, we show the optical power of the 10-GHz radio fre-
quency (RF) tone from our optical pulse train for both theory
and experiment. The input signal is a 10 Gb/s pulse train. In
our simulations, we used the 1-1-1-0-0-0-1-0 pulse pattern with

Fig. 8. The transient behavior of the 10-GHz RF component as a function of
distance in the presence of the noise.

the initial pulse FWHM duration of 20 ps. The total unsaturated
gain coefficient was set to 33.65 dB with dB and

dB, which at ps/nm–km leads to the
best agreement between theory and experiment. Initial oscilla-
tions, followed by a flat steady-state and a long-term degrada-
tion due to the accumulation of ASE noise, are all visible. The
initial oscillations are due to variations in the pulse duration,
and they arise from launching a nearly transform-limited pulse
at the junction between the normal and anomalous regimes. At
this junction, the pulse would have to have a significant chirp to
avoid oscillations. The oscillations in theory and experiment are
different. This difference occurs because the signal pulses from
the laser source are slightly chirped in the experiment, and their
shapes are somewhat different from ideal Gaussian shape that
we assumed. Moreover, we expect that the gain coefficients and
the actual amplifier relaxation time differ somewhat from the
values we used. These quantities are difficult to measure accu-
rately in practice. Nonetheless, the length of the transient regime
and the behavior at steady state exhibit perfect agreement be-
tween theory and experiment. In Fig. 9, we show the pulse shape
and the spectrum in the middle of the anomalous fiber section.
Again, as also shown in Fig. 5(a), the minimum pulse duration
is 9.7 ps in the simulation, while it was recorded as 9 ps in the
experiment. The two values agree within the resolution of the
streak camera. The spectrum is nearly Gaussian until about 30
dB down when the contribution of the ASE noise becomes evi-
dent. Thus, the experimentally measured spectra and pulse du-
rations confirmed that the pulse is chirp-free at this point as pre-
dicted by the simulations shown in Fig. 4(c). Note the excellent
agreement of the experiment and the simulations even at this
level.

We next compare our simulation results to those obtained
in [1]. As in [1], we consider two average dispersions, setting

ps/nm–km and ps/nm–km. We set
at different values in these two cases in order to keep the

output-pulse average power at nearly 0 dBm, as in the exper-
iment. Fig. 10 shows the signal intensity and both the experi-
mentally and numerically determined eye diagrams at the input,
while Fig. 11 shows the results after 24 500 km of propagation.
The parameters for this set of simulations are as in Fig. 8. The
simulations include an electrical fifth-order Bessel filter with a
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Fig. 9. The pulse shape at steady state in the presence of ASE noise. We
show the (a) time, and (b) frequency variations. In (a), solid lines correspond
to theory and the dashed lines to experiment. The simulated pulse shape in the
time domain corresponds to the first three marks in our pulse pattern, while the
experimental data is a group of three pulses that we measured using a streak
camera. The simulated pulse spectrum corresponds to the last (isolated) mark
in the pulse train averaged over 50 realization.

low-pass bandwidth of 4.3 GHz to match the experimental re-
ceiver. Including the electrical filter is critical in order to obtain
good agreement between the eye diagrams and the BER’s. The
eye diagrams in Figs. 10 and 11 show the excellent agreements
between the experiments and the simulations. We find a signif-
icant buildup of ASE noise in the spaces at 24 500 km, as well
as significant change in the DMS pulses due primarily to ampli-
tude jitter and timing jitter. It is the buildup of ASE noise in the
spaces that limits our system.

We first consider the timing jitter [33]. To calculate it, we
define the central pulse time position[10] as

(9)

where is the pulse energy. The timing jitter
is defined as

(10)

Using (10), we calculated the timing jitter using 100 different
realizations of the ASE noise for both ps/nm–km
and ps/nm–km. We set dB with

dB and dB for ps/nm–km, and
we set dB with dB and dB
for ps/nm–km. The results are shown in Fig. 12.
The agreement between theory and experiment is good con-
sidering the 0.5 ps uncertainty in the measurements. As ex-
pected, the timing jitter is smaller for smaller values of .
Note that the growth rate of the jitter is smaller than the standard
Gordon–Haus rate ( ) due to the addition of the optical

Fig. 10. Signal intensity and eye diagrams at the input. On the left, we show
the numerically determined signal intensity in the optical domain, and the curves
on the right show the eye diagrams after the electrical filter.

Fig. 11. The signal intensity and eye diagrams after 24 500 km. The curves are
as in Fig. 10.

Fig. 12. Timing jitter as a function of the transmission distance.

filter [17], [33]–[37]. For our 10 Gb/s system we estimate that
a timing jitter of 5.4 ps will lead to an error rate of .
Since the maximum timing jitter is well below 5.4 ps even with

ps/nm–km, timing jitter does not limit our system.
The ASE noise also causes energy fluctuations in both the

marks and spaces. Using our simulations, we calculated the
mean and the variance of the optical energy in the marks and
spaces. Assuming the fluctuation is Gaussian distributed in both
the marks and spaces [38], we could then calculate the ampli-
tude margin at a given error rate of , which is the value
we used in our experiments [1]. The margins are expressed as
the voltage decision levels once the signal has passed through
the receiver. While the error rate of is higher than the
standard values of , it allowed us to experimentally col-
lect a sizable number of errors in a reasonable time for this study.
Moreover, with the increasing use of forward error correction, it
is increasingly sensible to examine higher raw error rates. The
assumption that the distribution of the marks and spaces about
their means is Gaussian is also questionable. Indeed, this as-
sumption is known to fail far out on the tails of the distribution
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functions [38]. However, this assumption yields excellent agree-
ment between the experiments and simulations, indicating that
higher-order effects are not important at the error rates that we
are considering.

Fig. 13 shows our comparison of the simulations
and experiments when ps/nm–km and

ps/nm–km. The only parameters that we
changed are dB with dB and

dB in first case and dB in the second
case with dB and dB. The upper
curves show the margin for the marks, and the lower curves
show the margins for the spaces. Fig. 13 shows that while the
margins for the marks undergo a slow, almost linear decay, the
margins for the spaces grow nearly exponentially. This behavior
is a well-known consequence of including a filter in the loop
[39]. While the filter reduces timing and amplitude jitter, it also
causes frequency-dependent loss. The DMS pulse has a finite
bandwidth so that the net loss that it experiences due to the filter
is determined by the integral of the loss over its bandwidth.
This loss is compensated by the gain. By contrast, there are
components of the spectrum in the spaces that experiences a
net gain. Asymptotically, the growth of noise in the spaces may
be written [34], [36]

(11)

and is a constant coefficient that can be written approximately
as

(12)

where
is the time window size used in the simulation,
is the actual gain coefficient, and

.
The quantity is the excess gain in the loop at the minimum
loss point of the filter, and is the curvature of the filter at
this point. The growth of the noise power for both the marks
and spaces for the case ps/nm–km with the same
parameters as in Fig. 13(a) is shown in Fig. 14. We assume that
the noise power is proportional to the energy variance of the
marks and spaces. We see that the noise growth in the marks
is well fitted by a linear curve. In order to fit the growth in the
spaces, we used a simplified-dependent formula

(13)

based on (11). By adjustingand , we found that the growth
of the noise in the spaces is consistent with the nearly exponen-
tial growth given by (11). We thus conclude that the buildup of
the ASE noise in the spaces limits the transmission distance in
our system.

V. CONCLUSION

We have developed a model for nonlinear pulse propagation
in an optical fiber transmission system with dispersion manage-
ment that includes the effect of gain saturation in the EDFA’s.
We have carefully compared this model to recirculating loop ex-
periments that we carried out in order to study the behavior of

Fig. 13. Amplitude margin along the transmission line at a bit rate of 10
Gb/s. The upper curve shows the decision level of the marks, and the lower
curve shows the decision level of the spaces. Squares and diamonds are the
experimental data.

Fig. 14. Noise behavior in the system withD = 0:08 ps/nm–km. The long
dashed line shows a linear fit to the marks, and the short dashed line shows the
fit to the spaces using (13).

DMS’s. The simulations accurately matched the experimental
data, yielding insights into the key physical effects and funda-
mental limitations on long-distance propagation in this system.
We found that gain saturation in the EDFA’s plays a key role
in stabilizing the initial transient pulse evolution. By contrast,
third-order dispersion and saturable absorption do not play a sig-
nificant role. We accurately determined the steady-state dynam-
ical evolution of the DMS’s, and we found that the stretching
factor increases dramatically as reaches zero and becomes
negative. The increased stretching factor leads to interpulse in-
teractions that in turn limit the minimum attainable. We
then examined the accumulation of ASE noise and its impact on
the behavior of the DMS’s. We calculated the timing jitter for
the DMS solitons in our system. We found excellent agreement
with the experiments and showed that timing jitter does not limit
the propagation distance. We then calculated the voltage mar-
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gins, assuming a Gaussian distribution of the noise power, at an
error rate of , and we again found excellent agreement with
the experiments. These results indicated that the principal lim-
itation on the propagation distance in our system is the growth
of amplified spontaneous emission noise in the spaces. We be-
lieve that our modeling approach will be of use for a wide array
of systems—systems using RZ and NRZ—as well as systems
using DMS.
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