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Importance Sampling for Polarization-Mode
Dispersion
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Abstract—We describe the application of importance sampling
to Monte-Carlo simulations of polarization-mode dispersion
(PMD) in optical fibers. The method allows rare differential group
delay (DGD) events to be simulated much more efficiently than
with standard Monte-Carlo methods and, thus, it can be used
to assess PMD-induced system outage probabilities at realistic
bit-error rates. We demonstrate the technique by accurately
calculating the tails of the DGD probability distribution with a
relatively small number of Monte-Carlo trials.

Index Terms—Optical fiber communications, polarization-mode
dispersion, simulation.

I. INTRODUCTION

POLARIZATION-MODE dispersion (PMD) has become
one of the major impairments to upgrading current per

channel data rates to 10 Gb/s and beyond in terrestrial wave-
length-division-multiplexed (WDM) systems. A key difficulty
with PMD is that it is a random phenomenon and, therefore, the
penalties it produces change randomly over distance and time
as the ambient temperature and other environmental parameters
vary. In system design, a maximum power penalty is usually
assigned to PMD, and one demands that the outage probability,
(that is, the probability of the PMD-induced penalty exceeding
this allowed value), is very small, typically 10 or less.
Because of this stringent requirement, it has been impossible to
use either Monte-Carlo simulations or laboratory experiments
to determine the outage probability of a system, due to the
extremely large number of system configurations that must be
explored in order to obtain a reliable estimate.

In the absence of effective tools for calculating outage prob-
abilities, system designers have resorted to stopgap techniques.
An important measure of PMD is the polarization dispersion
vector [1]–[3], the magnitude of which is the differential group
delay (DGD). In optical fibers, the DGD is a random variable
with a Maxwellian probability distribution function (pdf) [1].
The tails of the DGD distribution are particularly important,
since the rare events where the DGD is significantly larger than
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its mean are the ones most likely to result in system outages.
Since calculating probabilities in the tails of the pdf with
standard Monte-Carlo techniques is not feasible, one technique
used is to produce artificially large DGD values, determine
the penalties at these large DGDs, and then weight the results
using the Maxwellian distribution. A fundamental problem
with this method, however, is that there is no direct relationship
between the DGD and the power penalty. In addition, different
configurations can give the same DGD but not contribute
equally to the penalty, and, therefore, should be weighted
differently. An alternative approach is to calculate the average
DGD after PMD compensation, and then, assuming that the
compensated DGD still obeys a Maxwellian distribution, to
calculate the distribution of the power penalties, and thus,
obtain the reduction in the outage probability. This approach is
also seriously flawed, however, since the DGD distribution in
compensated systems is typically far from Maxwellian.

In this letter, we use a technique called importance sampling
(IS)[4]–[6] which addresses all of these difficulties and pro-
vides a tool that can be used in numerical simulations [7], and in
principle in experiments, to accurately estimate PMD-induced
system penalties. The technique allows low probability events
to be efficiently simulated by enabling one to concentrate
Monte-Carlo simulations in the most significant regions of the
sample space. Here, we introduce the method and show how
it can be applied to the numerical simulation of PMD-induced
effects generated by a concatenation of birefringent sections.
As a specific example, we calculate the DGD distribution pro-
duced by different PMD emulators. Extensions are immediately
possible, such as the direct calculation of system penalties and
modifications that allow the determination of rare second-order
PMD events.

II. I MPORTANCESAMPLING FOR PMD

A standard technique for simulating PMD effects is the
coarse-step method [7], which approximates the continuous
birefringence variations present in real fibers with a concatena-
tion of fixed length birefringent sections. Many experimental
PMD generation techniques also employ a concatenation of
birefringent elements, such as high-birefringence fibers [8] or
birefringent waveplates [9]. These can be connected by either
polarization scramblers (e.g., polarization controllers [8]) or
rotatable connectors [9]. In all cases, the total polarization
dispersion vector after the st section can be obtained
from the PMD concatenation equation [3]

(1)
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Here, is the polarization dispersion vector aftersections
and , which lies in the equatorial plane of the Poincaré
sphere for linearly birefringent elements [10], is the individual
contribution to the polarization dispersion vector of the st
section. For the case of birefringent waveplates, the Müller
matrix is given by the expression ,
representing a rotation through an angle about the axis

[3]. When polarization scram-
blers are present, combines the above rotation with an
additional rotation that randomly and uniformly scatters the
polarization state and the polarization dispersion vector on the
Poincaré sphere.

Here, we apply IS to Monte-Carlo simulations of the PMD
concatenation (1). The configurations that lead to large DGD
values are the ones in which the individual contributions to
the polarization dispersion vector from each section tend to
be aligned with each other. Thus, the appropriate variables to
control are the angles between and . Suppose we
are interested in determining the probabilitythat a random
variable which depends upon the angles
falls in a given range, where is the total number of sections.
Here, we will study the total DGD, , but the method can
be applied to any random variable, such as the amount of pulse
broadening or the power penalty. The probabilitycan be
represented as the expectation value of an indicator function

, where if the random variable of interest falls in the
prescribed range and otherwise. Using IS, we can write
the Monte-Carlo estimate of the above probability as [4]–[6]

(2)

where is the total number of trials and
is the IS likelihood ratio [4]–[6]. Here is the unbiased joint
probability distribution function for the angles, while is
the biased distribution which is actually used to draw the sam-
ples . If , (2) simply yields the relative number
of trials falling in the range of interest. The problem with this
choice is that, for low probability events, an exceedingly large
number of samples is necessary in order for the desired events
to occur. Using a biased probability distribution allows the de-
sired regions of sample space to be visited more frequently. At
the same time, the likelihood ratio automatically adjusts
the results so that all of the different realizations are correctly
weighted, thus, contributing properly to the final probability.

When polarization scramblers are present, the length and ori-
entation of the successive differential polarization dispersion
vectors can be regarded as fixed, while the output of the
polarization scramblers varies. Therefore, we bias the simula-
tions by making the scramblers preferentially rotatetoward
the direction of . More specifically, we bias the angle

between the polarization dispersion vector at the output of
each scrambler and the next differential polarization dispersion
vector toward zero. This choice does not uniquely determine the
orientation of the polarization dispersion vector at the scrambler
output, because can still be rotated by an arbitrary amount
about while keeping constant. We assume that this
additional rotational angle is uniformly distributed.

In the unbiased case, the anglesare independent random
variables, with uniformly distributed in [ 1,1]. When
applying IS, we choose , where is a
uniform random variable in [0,1] and is a biasing param-
eter. The value reproduces the unbiased case, while in-
creasing values of bias the configuration toward increasingly
large values of DGD. Other choices are possible for the biased
distribution of the ; the effectiveness of the method is not very
sensitive to the particular distribution used. The above choice
yields , where

. We emphasize that different configura-
tions with the same DGD can have likelihood ratios that differ
by orders of magnitude, and, thus, their relative contribution to
the final result can vary substantially. As a consequence, dif-
ferent realizations of the same DGD are expected to give very
different contributions to the power penalty.

In the case of rotatable waveplates, the relative orientations
between sections are the primary variables determining the total
DGD. The biasing toward large DGD values is done by choosing

to be preferentially aligned with the projection of
onto the equatorial plane. Specifically, we choose so
that the angle between it and the projection of is dis-
tributed as described previously.

When simulating rotatable waveplates, the phase retardations
in must also be specified. Recall that each beat

length of a birefringent section generates a 2retardation. In
practice, sections with significant DGDs are many beat lengths
long, and unless the section lengths are precise to within a small
fraction of a beat length, these retardations will vary from sec-
tion to section. Therefore, we choose a random set of retardation
angles between 0 and 2. Once these angles are selected, dif-
ferent DGDs are generated solely by rotating sections relative
to one another. The results do not depend significantly upon the
particular angles used, except for certain clearly pathological
cases such as identical angles with equal to 0 or .

III. N UMERICAL RESULTS AND COMPARISONS

As a simple application, we have calculated the pdf of the
DGD for a PMD emulator comprised of 15 birefringent sec-
tions each with 1 ps of DGD and employing either polarization
scramblers or rotatable waveplates. In both cases, the biasing pa-
rameters were used, with 20 000 realiza-
tions each. As indicated in Fig. 1, each biasing parameter gen-
erates DGDs in a particular range, with larger DGDs produced
by larger s. Each value of , therefore, allows us to sample
a different portion of the DGD’s pdf, and the outputs obtained
from different s combine to reconstruct the entire curve. The
simulations are combined by sorting the DGD values into bins
and using the likelihood ratios [12]. The final pdfs are shown in
Fig. 2.

When polarization scramblers are present, the evolu-
tion of the polarization dispersion vector is equivalent to a
three-dimensional (3-D) random walk, and an exact solution
is available for the pdf that can be compared against the
simulations [11], [13]. The numerically calculated pdf for
the case of scramblers agrees extremely well with the exact
solution (solid line under the data). An analytic expression for
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Fig. 1. Segments of the importance-sampled DGD pdf obtained using� =

1 (triangles),� = 4 (squares) and� = 12 (circles) for a 15 section PMD
emulator with polarization scramblers, 1 ps of DGD per section, and 20 000
realizations for each�. Solid curve: Maxwellian pdf withhDGDi = 3:6 ps.
Inset: Angular biasing pdfs,p (cos �).

Fig. 2. Importance-sampled pdf for 15 1 ps DGD sections with polarization
scramblers (circles) or birefringent waveplates (squares). Dashed curve:
Maxwellian distribution with hDGDi = 3:6 ps. Solid line: Exact and
asymptotic solutions from [12]. Inset: Linear scale.

the pdf in the case of waveplates is not available, but IS allows
it to be calculated quite easily. In both cases, the accuracy of
the numerically determined pdf improves as the number of
simulations (and the number of bins) is increased. It should be
noted, however, that very good results are obtained even with
the 100 000 Monte-Carlo simulations employed here. In partic-
ular, a good approximation is achieved even for probabilities
below 10 . To obtain comparable accuracy with unbiased
Monte-Carlo simulations, at least 10or 10 trials would be
required. Thus, for these cases IS provides a speedup of several
orders of magnitude.

For moderate values of the DGD, the pdf
is well approximated by a Maxwellian distribution

, where
with , and where the are the individual
DGDs of each section. The degree of agreement, of course,
improves as the number of sections is increased [13]. The

emulator using rotatable sections yields better agreement
with the Maxwellian approximation than the emulator with
polarization scramblers. Note, however, that a concatenation
of equal length rotatable birefringent sections is known to be
a poor model for real fibers due to artificial periodicities of
the polarization dispersion vector’s autocorrelation function in
the frequency domain [8], [14]. The frequency behavior is not
considered here.

IV. CONCLUSION

We have shown how importance sampling can be applied to
Monte-Carlo simulations of PMD that use birefringent sections
connected by either polarization scramblers or rotatable con-
nectors. Importance sampling biases the Monte-Carlo simula-
tions so that large DGD configurations occur more frequently
than they would normally; as a result, the method allows rare
differential group delay (DGD) events to be simulated much
more efficiently than with standard methods. Importance-sam-
pled Monte-Carlo techniques, therefore, provide a natural and
effective means to assess PMD-induced impairments in optical
transmission systems at realistic bit-error rates.
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