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Abstract—We present a novel linearization method to calculate
accurate eye diagrams and bit error rates (BERs) for arbitrary
optical transmission systems and apply it to a dispersion-managed
soliton (DMS) system. In this approach, we calculate the full
nonlinear evolution using Monte Carlo methods. However, we
analyze the data at the receiver assuming that the nonlinear
interaction of the noise with itself in an appropriate basis set
is negligible during transmission. Noise–noise beating due to
the quadratic nonlinearity in the receiver is kept. We apply this
approach to a highly nonlinear DMS system, which is a stringent
test of our approach. In this case, we cannot simply use a Fourier
basis to linearize, but we must first separate the phase and timing
jitters. Once that is done, the remaining Fourier amplitudes of the
noise obey a multivariate Gaussian distribution, the timing jitter is
Gaussian distributed, and the phase jitter obeys a Jacobi-� distri-
bution, which is the periodic analogue of a Gaussian distribution.
We have carefully validated the linearization assumption through
extensive Monte Carlo simulations. Once the effect of timing jitter
is restored at the receiver, we calculate complete eye diagrams
and the probability density functions for the marks and spaces.
This new method is far more accurate than the currently accepted
approach of simply fitting Gaussian curves to the distributions
of the marks and spaces. In addition, we present a deterministic
solution alternative to the Monte Carlo method.

Index Terms—Amplifier noise, error analysis, Karhunen–Loève
transforms, linear approximation, Monte Carlo methods, nonlin-
earities, optical fiber dispersion, optical fiber theory, simulation.

I. INTRODUCTION

I N current optical fiber communications systems, amplifier
spontaneous emission (ASE) noise sets the lower limit on

the allowed system power [1], [2]. At the receiver, ASE noise
causes intensity fluctuations and timing jitter, leading to a dete-
rioration of the bit error rate (BER). The ASE noise spectrum
may be considered white at the point that it is contributed [3]
because it is always much broader than any channel’s spectrum.
However, the fiber’s Kerr nonlinearity leads to a complex inter-
action between the signal and the noise, so that the noise spec-
trum does not remain white during the fiber propagation.

The traditional method of computing the probability distribu-
tion function (pdf) of the electrical signal in the receiver, which
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is based on Monte Carlo simulations, only works for a lim-
ited range of BERs, beyond which the BER must be extrapo-
lated [4]. Standard extrapolation methods to date assume that the
noise power after narrow-band filtering is Gaussian distributed.
This assumption often yields good agreement between simula-
tions and experiments [5], but it is not always reliable. To make
progress with the difficult problem of calculating BERs, almost
all previous work, aside from Monte Carlo simulations, is based
on the linearization assumption. This assumption is that the non-
linear beating of the noise with itself during the fiber transmis-
sion can be neglected. We note that is it not generally assumed
that nonlinear interactions between the signal and the noise can
be ignored. Also, the nonlinear interaction of the noise with it-
self in the receiver due to the square-law detection is usually
kept. An early application of this approach was to use soliton
systems. The BER in standard soliton systems is dominated
by timing jitter. Gordon and Haus [1] and Haus [2] used lin-
earization to calculate the timing jitter and, hence, the BER.
Under the assumption that the amplitude of the marks is con-
stant, that the amplitude of the spaces is strictly zero, that the
noise power is white when it arrives at the receiver, that an ideal
optical bandpass filter is used right before the receiver, and that
an ideal integrate-and-dump circuit follows after a square-law
detector in the receiver, Marcuse [6] and Humblet and Azizog˜lu
[7] showed that the pdf of the power in the marks obeys a non-
central chi-square distribution, whereas the pdf of the spaces
obeys a central chi-square distribution. From these pdfs, it is
possible to calculate the optimal decision threshold and the BER
at any threshold. These assumptions correspond with the as-
sumption that the transmitted signal consists of ideal nonre-
turn-to-zero (NRZ) pulses, neglecting fiber nonlinearity, and as-
suming that the net dispersion in the fiber is zero. Because non-
linearity during the transmission is completely neglected, the
linearization assumption holds. Despite the restrictive assump-
tions, this work is highly significant. The central chi-square
distribution has an exponential tail and, hence, falls off much
more slowly than a Gaussian, indicating that the Gaussian ap-
proximation fails even in this highly idealized setting. Similar
results can be obtained for any system in which the transmis-
sion nonlinearity is neglected. Later work by Huiet al. [8], [9]
and Carenaet al. [10] used the linearization assumption, taking
into account both the fiber nonlinearity and dispersion, but ne-
glecting the data modulation when calculating the noise power.
In effect, they assumed a continuous wave (CW) signal. They
found that the power is not uniformly distributed among all of
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the spectral components due to the significant four-wave mixing
between the signal and the noise. Later work has extended this
result by applying this approach to WDM systems [11] and by
adding the noise calculated assuming a CW signal to modulated
data [12]–[14].

All of the work just cited used relatively simple analytical
forms for the signal when calculating the noise power. In
general, however, the signal evolution in realistic optical
communications systems is quite complex due to the combined
effects of the Kerr nonlinearity and the dispersion in optical
fibers. The use of simple analytical approximations for the
signal when calculating the noise may not yield sufficient accu-
racy. Recently, Grigoryanet al. [15] showed that it is possible
to linearize around a computationally determined signal. They
used this approach to calculate the timing and amplitude jitter
for NRZ, return-to-zero (RZ), and dispersion-managed soliton
(DMS) pulses. They validated their results with comparison to
Monte Carlo simulations in all cases and to experiments in the
case of DMS pulses. Calculation of the timing and amplitude
jitter is, however, not sufficient, in most cases, to determine the
BER [16].

In this work, we use the linearization assumption to calculate
the full pdf for the marks and spaces in the experimental DMS
system described by Muet al. [5], taking into account the full
nonlinear and dispersive evolution of the signal and its interac-
tion with noise. We then calculate the optimal decision threshold
and the BER as a function of the decision threshold. On the one
hand, it is possible to view our work as an extension of previous
work on linearization. On the other hand—and perhaps more
usefully—it can be viewed as an extension of the Monte Carlo
approach. As we noted previously, it is currently the standard
practice to simply fit a Gaussian distribution to the rails of a nu-
merically determined eye diagram when calculating the BER.
With no additional computational effort, our approach allows
the user to take into account the non-Gaussian effects, leading
to greatly improved pdfs for the marks and the spaces.

It is possible to criticize the linearization assumption because
it is liable to break down just at the point where it is most im-
portant to calculate the pdfs—on the tails of the distribution
function. Indeed, work by Menyuk [17] and by Georges [18],
[19] has shown, in the case of timing jitter for solitons, that the
breakdown of the linearization assumption can lead to signifi-
cant changes in the BER. In response, we first note that there is
no experimental evidence that the linearization assumption fails
in any practical context, in contrast to the far cruder Gaussian
fitting method in common use today, for which there is certainly
experimental evidence that it fails [20, Fig. 10.14]. Second, the
increased use of forward error correction (FEC) implies that raw
error rates in the optical fiber transmission as high as are
often now acceptable, so that systems decreasingly operate far
out on the tails of the pdfs where the linearization assumption
is expected to be less reliable. Finally, and perhaps most impor-
tant from a conceptual standpoint, it may be possible to fully
account for the nonlinear interaction of the noise with itself by
using large deviation techniques [21], such as importance sam-
pling [22], but these techniquesrequirethe prior solution of the
problem using the linearization assumption as a starting point.
Applying these techniques in any new situation requires sub-

stantial adaptation and is still an unsolved problem in optical
fiber communications. From this standpoint, the work presented
here is a key step in solving the complete problem of calculating
the BERs in optical fiber communications systems.

The DMS system that we study in this paper [5], [16] is
simpler than many modern-day communications systems in an
important respect. The soliton pulse durations do not change
enough to lead to a significant overlap with their neighbors,
so that there is no interaction with neighboring bits. Moreover,
this system is a single-channel system, so that there is no possi-
bility of interchannel interactions. Because neither intrachannel
nor interchannel interactions occur between bits, there are no
pattern dependences, and it is sufficient to study the behavior
of a single mark and a single space to determine the pdfs for
both. Extending our approach to take into account pattern de-
pendences will be a nontrivial undertaking. At the same time,
this system is far more nonlinear than are modern-day commu-
nications systems and, hence, represents a stringent test of the
linearization assumption. In this paper, we will show that the
linearization assumption works well and is consistent with ex-
periments [5] over 24 000 km, once phase and timing jitter are
properly taken into account. These results bode well for this ap-
proach in practical contexts with less nonlinearity.

The utility of the linearization assumption stems from two
key mathematical results. The first is the Karhunen–Loève
theorem [23], which states that a combination of signal and
noise over any finite time can be expanded in an orthonormal
basis whose coefficients are independent random variables.
When the noise is white, any orthonormal basis will satisfy the
Karhunen–Loève theorem. In optical fiber communications sys-
tems, the ASE noise is effectively white when it is contributed
by the amplifiers, but it only remains white for short distances
over which the nonlinear interaction between the signal and
the noise can be neglected. Over longer distances, the noise
becomes correlated, and the Karhunen–Loève basis becomes
unique. The second mathematical result is Doob’s theorem
[24], which states that when the system is linearizable, each
of these independent random variables is Gaussian. Thus, it
suffices, in principle, to determine the Karhunen–Loève modes,
as well as the mean and variance of its coefficients, to calculate
the effective noise pdf. We emphasize that this powerful result
allows the signal to interact nonlinearly with itself and with
the noise; it only requires that the noise not interact with itself.
In practice, one must use an approximate static basis from
which to compute the Karhunen–Loève modes. The standard
Fourier basis naturally suggests itself, and we will use it with
an important caveat. In the case of standard solitons, it has long
been known that it is not appropriate to use Fourier modes to
linearize around a soliton solution because a perturbation can
change the soliton parameters, as well as add to the background
[2], [25]. For the DMS system that we are considering, we
have found that it is necessary to explicitly calculate the phase
and timing jitter of the soliton and to separate them from the
remainder of the noise calculation. When the linearization
assumption holds, the pdf of the timing jitter is Gaussian, and
the pdf of the phase jitter is a Jacobi-function, which is the
periodic analogue of a Gaussian distribution. We validate this
assumption using extensive Monte Carlo simulations. Thus,
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we can account for the effect of the timing jitter in the final
eye diagram. The phase jitter does not matter in square-law
detectors. The entire description given in this paper will apply
to one optical polarization only, which is appropriate for the
DMS system that we are using as an example [5]. Moreover,
this choice somewhat simplifies the theoretical development.
There is no reason to doubt that this formalism can be extended
to take into account polarization effects.

After separating the phase and timing jitter, using a proce-
dure that we will describe in the body of this paper, we compute
the evolution of the covariance matrix , where

is the amplitude of theth Fourier mode, and
and are its real and imaginary components. When the

linearization assumption holds, the and obey a multi-
variate Gaussian pdf that can be determined from the covariance
matrix. It is possible to compute the covariance matrix in two
ways. First, we can estimate it using Monte Carlo simulations.
Second, we derive an ordinary differential equation (ODE) for
the from which it can be obtained directly. It is the pri-
mary purpose in this paper to demonstrate the validity of the
linearization assumption in the highly nonlinear DMS system
over 24 000 km. The Monte Carlo simulations allow us to use
standard statistical methods to both validate the linearization
assumption and estimate . Thus, we focus on the Monte
Carlo approach here, although we discuss the ODE approach
briefly. The ODE approach offers substantial computational ad-
vantages, and a more detailed discussion of it will be the subject
of a future publication.

The remainder of this paper is organized as follows. We derive
the theory of our linearization approach in Section II. In Sec-
tion III, we apply this theory to our DMS system. We compute
the phase and timing jitter and the covariance matrix
from Monte Carlo simulations. We then calculate the pdfs for
the marks and spaces. In Section IV, we compare these results
to a direct numerical solution of the ODE for the . Sec-
tion V contains the conclusions.

II. THEORY

A. Linearization Approach

In our simulation model, we consider the normalized non-
linear Schrödinger equation with a Langevin noise term

(1)

Here, the pulse envelope is normalized as , where
is the electric field envelope, is the non-

linear coefficient, and is a characteristic length. The quantity
cm W is the Kerr coefficient,

THz is the central angular frequency, m
is the effective fiber core area, andis the speed of light. The
characteristic dispersion length equals , where
is the characteristic time scale and is the scaling dispersion.
We choose ps, which roughly equals the root mean
square soliton duration, and ps km, which approx-
imately equals the path average dispersion. The distanceis
normalized as , where is physical distance. The
retarded time is normalized as , where is

the physical time and is the inverse group velocity. The nor-
malized gain coefficient is

elsewhere
(2)

where represents the normalized gain coefficient inside the
th amplifier, which we assume to begin at and to be of

length , and is the normalized fiber loss coefficient. The
quantity represents the ASE white noise contribution with
zero mean and autocorrelation

(3)

where with Planck’s constant
kg m s, and is the spontaneous emission

factor. We assume inside the amplifiers and
in the optical fiber. The angular bracketsdenote the noise en-
semble average, and the asterisk denotes complex conjugation.
Higher order dispersion, as well as filter terms, are neglected
in (1).

Our initial goal is to derive a differential equation that de-
scribes the signal-noise beating. We write as a sum
of a noise-free signal and accumulated transmitted
noise . The difference of (1) and the statistical average of (1)
then yields the evolution equation for

(4)

The third and fourth terms on the left-hand side contain the
beating of the signal with the noise, whereas the noise–noise
beating is quadratic in and is omitted. Equation (4) describes
the noise growth if and we neglect any influence of

on . We can expand and as a Fourier series

(5a)

(5b)

where , and is the period. After substituting
(5a) and (5b) into (4), we find

(6)

where the are the Fourier coefficients of the white noise
input , and is Kronecker’s delta. The correlation of the
is , where is again
zero outside of the amplifiers. We define the complex column
vectors and

, as well as , where the
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superscript indicates the transpose operation. Then, we can
rewrite (6) in matrix form as

B E (7)

where the complex matricesB andE are defined as1

(8a)

(8b)

The matrixE is symmetric , whereas the matrix
B is anti-Hermitian if is zero. The sum
in B is circulant and, thus, corresponds to a convolution in
the time domain, whereasE can be termed anticirculant. (A
matrixM is circulant if there is a vector with ).
The number of operations required to evaluateB andE grows
like . Equation (6) depends on both and , so that
the linearized problem becomes non-Hermitian [8], [9]. Our
probability space is spanned by the real variables
and . It is, therefore, convenient to split (6) into its real
and imaginary parts and consider the resulting system of
equations. Introducing the real vector

as a parti-
tioned vector of the real and imaginary parts of, and similarly

, we can rewrite (7) as

B E B E
B E B E

(9)

where is a real block matrix and we have used the
notationB B B andE E E . We may formally
write the solution to (9) as [26]

(10)

where is a propagator matrix that obeys the following:

(11)

where is the identity matrix. Equation (9) describes the spa-
tial evolution of the noise Fourier modes. Neglecting, for now,
the necessity of separating the phase and timing jitters, the lin-
earization assumption, along with Doob’s theorem [24], implies
that the satisfy a multivariate Gaussian distribution, which
is completely described by its first two moments. The mean of

is, by definition, zero, whereas the second moments are
given by the covariance matrix. Hence, its pdf may be written
as [27]

(12)

1In the rest of this paper, we will use the sans serif font to denote complex
N �N matrices likeB, the script font for real2N � 2N matrices likeR, and
the bold font for real2N vectors such asaaa. The only exception will be���, which
is a complexN vector.

with the real symmetric covariance matrix

(13)

where all vector products above are outer products. This def-
inition of embodies the full covariance information in
real numbers of which are independent, whereas
the complex matrix , where the de-
notes the conjugate transpose, contains only real numbers
of which are independent, and, thus, lacks some in-
formation. From (9) and (10), we now find thatevolves over
distance according to

(14)

where and are defined after (3) and (5b), respectively. Equa-
tion (14) is a Lyapunov equation [26] and the fundamental linear
evolution equation of the covariance matrix that describes the
statistical dependence of the. The right-hand side of (14) is
symmetric because , so that re-
mains symmetric as it evolves over. Initially, is zero because
the launched signal is noise free. The matrixis distance de-
pendent and includes amplification–attenuation as well as the
beating of the signal with the noise. The last term describes the
white noise input and is only nonzero inside the optical ampli-
fiers. Newly added noise only contributes to the diagonal ele-
ments . In addition to being symmetric, is also positive
definite, so that its determinant is positive.

We note that the direct derivation of (14) from (9) is only one
possible way of determining the evolution; one can show that the
pdf in (12), where the covariance matrix is described by
(14), represents the exact solution of the Fokker–Planck equa-
tion corresponding to the Langevin equation (9). Yet another
approach to derive (14) uses Itô’s method [28]. All of these
methods are, of course, equivalent.

B. Separation of Phase and Timing Jitters

In order to properly account for the phase and timing jitters,
we must treat them separately. We do so by removing their
contribution to the covariance matrix, keeping track of their
magnitude. If these contributions are not treated separately, they
distort the distribution functions so that the Fourier magnitudes

and are no longer Gaussian distributed. The phase
jitter makes no contribution to the electrical eye diagrams and,
hence, no contribution to the BER in systems with a square-law
detector like the one that we are considering. Hence, once the
phase jitter is separated, it can be ignored. By contrast, the
timing jitter does affect the eye diagrams and the BER and
must be taken into account explicitly when calculating these
quantities. In this subsection, we will show how to separate the
phase and timing jitters from the calculation of the covariance
matrix. In Section II-C, we will show how to calculate eye
diagrams while accounting for the timing jitter.

The method that we use to separate the phase and timing jit-
ters differs, depending on whether we are calculating the covari-
ance matrix by using Monte Carlo simulations or by directly
solving (14).
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For the Monte Carlo simulations, we focus on the received
signal , where is the signal
average over all noise realizations, andis one particular re-
alization of the accumulated, propagated noise at the receiver.
The Fourier expansion of is ,
where and , conforming to (5a)
and (5b). For single-pulse transmission, we apply the nonlinear
transformation

(15)

where and . For each noise realization, we
determine and by fitting the linear function to the
phase of the using the least-squares criterion

(16)

where , and then setting and .
We have found that the linear phase assumption of (16) is good
as long as the receiver is placed at the chirp-free maximum pulse
compression point of the dispersion map. If the phase and timing
jitter are small, , and we can decompose
the total noise in the new basis, , as

(17)

where and . The term is responsible
for a phase shift , whereas the component

produces the time shift and, thus, leads
to timing jitter. The residual noise is orthogonal to the
and with the scalar product ,
where or . The vectors and will only be
orthogonal to each other if the signal is an even function in time.
Our simulation shows that .

We will show in the Appendix that (16) and (17) are consis-
tent for arbitrary pulse shapes. Note that even thoughand

are orthogonal, the quantitiesand are not statistically
independent becausedepends on the pulse power due to the
nonlinear phase rotation. A noise realization in which the noise
increases the pulse power will tend to have both largeand
large , leading to a correlation. On the other hand, our simula-
tions indicate that the correlation betweenand is negligible.

We compute the pdfs of and by averaging over all Monte
Carlo noise realizations. With the real partitioned vector

and, analo-
gously, , we can define a reduced covari-
ance matrix as

(18)

We will use (18) in Section III-B. The quantityobeys a mul-
tivariate Gaussian distribution, and we replaceby and by

in (12).

C. Derivation of the Eye Diagram

In this section, we derive the pdf of the filtered output cur-
rent of a square-law detector. A similar pdf has already been
derived by Leeet al. [29], Boscoet al. [30], and Forestieri [31].
We use this pdf to compute an electrical eye diagram that is not
produced, as is traditional in simulations, by overlaying a fi-
nite number of traces of “1”s and “0”s with different noise real-
izations, but displays the continuous probability densities. The
inputs we need are the pdf of the timing jitter, the Fourier
modes of the transformed noise-free signal, and the reduced
covariance matrix .

The receiver first converts the input signal plus noise to an
electrical current in a photodetector. We assume that the
photodetector is an ideal square-law detector with .
We will apply the transformation (15) and, hence, start by de-
scribing in the absence of timing jitter. Using (17), we now
obtain

(19)

where is the receiver responsivity and the are the residual
noise coefficients. The electrical current then passes
through a low-pass electrical filter. The filter operation can be
written in Fourier space as a multiplication with a complex
self-adjoint filter matrixF. Hence, we can write the filtered
current as

(20)

with , so thatW is a complex
self-adjoint matrix. We introduce the partitioned vector

to
rewrite as

W W
W W

(21)

The minus sign in the last line appears becauseW is antisym-
metric. The right-hand side of (21) is a symmetric bilinear form,
but, due to filtering, it is not necessarily positive. In order to ob-
tain an eye diagram, we must derive , the pdf of . Our
derivation of is a generalization of Marcuse’s [6]. How-
ever, we must first find a functional basis that diagonalizes both
the square-law detection followed by the filteringand the in-
verse covariance matrix . Because both and
are symmetric matrices and, in addition, is positive def-
inite, we can apply the theorem of simultaneous diagonaliza-
tion [32], which states that there is a real matrixsatisfying

and . One procedure that may be
used to obtain and is to solve the generalized eigenproblem

. The matrix is diagonal, and we write
it as diag , where the are real. Note that
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if the impulse response of the filter can become negative, as in
the case of a Bessel filter, some of thewill be negative. With
the definitions and the at each offset

, we simplify (21) to

(22)

where the represent a new set of random variables. The trans-
formation yields what may be termed electrical Karhunen–
Loève modes, namely the signal modes and the indepen-
dent noise modes . The noise pdf (12), with replaced by ,
can be factored into independent Gaussian pdfs

(23)

and, hence, is
a normal distribution with zero mean and unit variance.
Equation (22) is a sum of random variables. The pdf

of , therefore, involves a -dimensional convolution,
but this convolution can be transformed into simple multi-
plications using characteristic functions. The characteristic
function of a random variable is the expectation

[23]. With the help of the
derived distribution identity , we can write

(24)

at each offset . Again, note that the integration variables are all
real. The first term in the last exponent describes the influence
of the signal–noise beating, while the second term stems from
noise–noise beating in the receiver. The characteristic function

of the electrical current in the absence of timing jitter
satisfies .

The relationship of the final pdf that includes timing jitter
and , the pdf with zero timing jitter corresponding to

, is

(25)

where is the pdf of the timing jitter that we will obtain in Sec-
tion III-A. The integral in (25) is a convolution with respect to
and, hence, can be expressed as a product of characteristic func-
tions; however, is a characteristic function with respect

to , and we cannot use it to simplify (25). The characteristic
function corresponding to is

(26)

Because the timing jitter is Gaussian distributed, we use a nu-
merical Gauss–Hermite integration [33] to solve (26). Additive
noise sources such as electrical noise can, in principle, be ac-
counted for by multiplying with the appropriate character-
istic functions [29]. Because is phase independent, the phase
variation does not contribute to .

From , we obtain [23]

(27)

where is the noise-free electrical current
and the quantities and are taken at the time. If the
electrical Karhunen–Loève basis equals the Fourier basis (the
matrix equals the identity in this case) and all are equal,
(27) is identical to [6, (20)]. Due to the complicated dependence
of (27) on , we cannot evaluate the Fourier transform in (27)
analytically. However, can be computed numerically using
a discrete Fourier transform.

D. Gain Saturation

In the DMS system, we must include gain saturation in order
to obtain good agreement with the experimentally observed evo-
lution [5]. The basic assumption of our linearization approach is
that —namely, that the average of the received signal,
including the noise, equals the noise-free transmission. How-
ever, one must be careful in the presence of saturable amplifiers,
because the noise power that the amplifiers add to the signal in-
creases the total power of , according to

(28)

where for any function . The
term is always finite and positive. Saturable ampli-
fiers tend to keep the power of signal plus noise constant;
hence, when more noise is added to the signal, the signal power
decreases. If one attempts to computeby simply switching
off the ASE noise input in the simulation of the saturated er-
bium-doped fiber amplifiers (EDFAs), the gains and hence the
magnitude of the resulting field will be too large. Fortunately,
EDFA saturation is a slow process that happens on a time scale
of 1 ms, corresponding to 10–40 million bit periods in modern
systems. Consequently, the amplifier gains adapt to the constant
average power and cannot follow variations in the noise.
Hence, the effect of amplifier saturation is a mere gain renormal-
ization. Setting the amplifiers to match these reduced gains in a
static gain model (static gain corresponds to infinite saturation
power), we can obtain the correct zeroth-order solution.
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III. M ONTE CARLO SIMULATION

A. Phase Jitter, Timing Jitter, and Residual Noise

In this section, we will employ Monte Carlo simulations
to verify that the phase jitter obeys a Jacobi-distribution,
whereas the timing jitter is Gaussian distributed. We will also
verify that the real and imaginary parts of the residual noise
Fourier coefficients, after the jitter is separated, are multivariate
Gaussian distributed. Our simulated transmission line consists
of 225 periods of a dispersion map of length 106.7 km [5]. Each
map contains a normal span of 425 km and dispersion

ps/nm-km and an anomalous span of 6.7 km and
ps/nm-km. The average dispersion equals 0.08

ps/nm-km. Third-order dispersion is not relevant in this system
[5] and is set to zero. The carrier wavelength is 1551.49 nm,
matching the experimental value. The fiber loss is compensated
by five EDFAs. One follows each of the four 25-km segments
of normal-dispersion fiber, and the fifth follows the segment of
anomalous-dispersion fiber. There is a 2.8-nm optical bandpass
filter in each map period to reduce the amount of noise. In
accordance with Section II-D, the amplifiers are modeled as
EDFAs with static gain, as opposed to explicitly including gain
saturation. We carefully adjusted the static gains so that they
equal the effective gains one would obtain using EDFAs with
a saturation time of 1 ms and a saturation power of 10 mW,
similar to [5]. The spontaneous emission factor is .
After each amplifier, we add a random amount of lumped noise
separately to the real and imaginary part of the signal in the
Fourier domain. This noise input is Gaussian distributed with
zero means and variances , where , and

is the gain associated with theth
amplifier [5]. All other quantities are defined in Section II. We
chose a Box–Mueller generator [34] to obtain the Gaussian-dis-
tributed random variables; the generator takes its inputs from a
48-bit random number generator. The launched pulses have a
Gaussian shape with a minimum full-width at half-maximum
(FWHM) duration that equals the equilibrium value of 9 ps, and
the signal is injected and received in the chirp-free midpoint of
the anomalous span. We simulated the two different peak powers

mW and mW. With the definition of
a nonlinear scale length , the distance of
24 000 km is 250 or 650 times larger than , respectively. We
transmit the four-bit sequence 1-0-0-0 in a total simulation time
window of ps; hence, there is no interpulse interaction.
The receiver is modeled as an ideal square-law detector with
subsequent electrical low-pass fifth-order Bessel filter with a
bandwidth of 8.6 GHz. We use the split-step Fourier method
to solve the scalar nonlinear Schrödinger equation, which only
takes into account one polarization. In the recirculating loop that
we are modeling, the polarization dependent loss is large and the
polarization controllers are optimized to pass the signal with
minimum loss. Consequently, the orthogonal polarization is
suppressed.

Using the least-squares method outlined in Section II-B, we
now show that the central time offset of the pulses,, as well
as that the and are individually Gaussian distributed,
where , and the are the transformed
Fourier coefficients defined in (15). Furthermore, we show that

Fig. 1. (a) Histogram of the phase offset' and (b) histogram of the time offset
� for two different simulations with signal peak powersP = 5mW andP =
13 mW. (c) Histogram of the two real Fourier coefficients�B and �B at
! = 0 and! = 2� � 25 GHz, respectively, after the phase and time offsets
are removed(P = 5 mW). The solid lines are fits of the Jacobi-� function in
(a) and Gaussians in (b) and (c). The simulation consists of 10 000 Monte Carlo
runs.

the distribution of the phase offset is a Jacobi- function,
which is the periodic analogue of a Gaussian [33], with

(29)

where is a Gaussian (normal) distribution of mean
and variance . The function is the natural choice for the
phase fit because is only determined modulo .

Fig. 1(a) and (b) shows histograms ofand for two dif-
ferent signal peak powers . The two histograms are approxi-
mations to and , respectively. Each simulation con-
sists of 10 000 Monte Carlo runs. The phase distribution
converges to the Jacobi-function, and converges to a
Gaussian distribution. We note that the variance of can be
determined more elegantly from a linearized moment approach
[15] without the need for Monte Carlo simulations.
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The linear phase fit of (16) turns out to be very good
even at the large transmission distance of 24 000 km. Pulses
are launched at ps. Fig. 1(c) shows histograms
of and at the angular frequencies and

GHz, respectively. The simulated data agree
very well with the Gaussian fit. The way we removed the linear
part of the signal phase causes the imaginary parts of theto
be close to zero; so, they are not shown here. We verified that
all the in our simulation are Gaussian distributed using a
chi-square statistical test [35].

B. Computation of the Covariance Matrix From Monte Carlo
Simulations

We employ Monte Carlo simulations to compute the reduced
covariance matrix according to (18). In this section, we
present the resulting for the DMS system that we are
studying, and we compare the resulting pdfs for the marks and
the spaces. We then calculate the BER as a function of the de-
cision threshold and determine the BER at the optimal decision
point. According to (13), is a block matrix consisting of
2 2 blocks of size each. We will name the four blocks
RR, RI, RI, and II, where RR is the block , RI is

, and so on. Because is symmetric, .
In the following, we will index the elements of the matrix

by the frequencies whose covariance is contained at each
element, so that the upper left matrix element is ,

the lower right one is and the center element is

.
Fig. 2(a) displays the block RR in a three-dimensional

(3-D) form. The ridge along the principal diagonal represents
the variances ; all other elements correspond to cross
covariances. The CW entry lies at . Fig. 2(b) portrays
three slices through the matrix, along the principal diagonal,
orthogonal to that (starting from the indices and
ending at ), and along a parallel to the principal
diagonal. The last two slices reveal that the values of
at small and are actually negative, leading to elongated
minima along both sides of the principal diagonal. The shape
of the graph of is due to the optical inline filtering in the
recirculating loop, as well as signal–noise beating. Because of
the inline filters, vanishes for large . In the absence
of inline filters, would converge for large to the
finite value , where the sum runs over all optical
amplifiers. At small , the signal–noise beating emerges as a
peak of a shape similar to the signal power spectrum .

Fig. 3 shows the block RI whose maximum is about one order
of magnitude smaller than that in RR and II. The RI and IR
blocks are point symmetric around the center, whereas RR and
II obey a mirror symmetry.

We briefly revisit the modeling of gain saturation. In the
present DMS system, we compared the average power of the
signal and noise , that we obtain using saturated EDFAs,
to the simulated signal power in the absence of ASE noise input

, which yields . As discussed
in Section II-D, is not the proper zeroth-order solution to
linearize around. We modeled the amplifiers with static gains
rather than employing a saturated EDFA model [5] to compute

Fig. 2. (a) 3-D plot of the RR block ofK for! in the rangek = [�15; 15].
(b) Three slices throughK . The open circles show the principal diagonal
K and the triangles the secondary diagonal (K , orthogonal to

the principal diagonal). The symbol� denotes matrix values on a parallel to
the principal diagonal(K ). Note the minima in the lower curves where
K becomes negative, corresponding to trenches on both sides of the principal
diagonal that are hard to see in (a).

Fig. 3. 3-D plot of the RI block ofK , similar to Fig. 2. The values in RI are
smaller than those in RR by about an order of magnitude, but not zero. Note the
point symmetry of RI, as opposed to the mirror symmetry of RR.

the covariance matrix , because we only propagate one pulse
in the relatively short time window of 400 ps, and noise power
variations would have an exaggerated effect on the solution.
Because we are modeling a recirculating loop and the signal
passes each amplifier many times, we have to record the static
gains for each amplifier and each round trip. This procedure
enables us to compute the correct zeroth-order solution.
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Fig. 4. (a) Probability density function of the filtered currenty after square-law
detection and an 8.6-GHz Bessel filter. The solid lines are the pdfs calculated
using linearization at the center of the bit window of the marks (“1”s) and the
spaces (“0”s); the dashed lines are Gaussian fits. Note the bump in the left tail of
the marks pdf. The circles are direct results from the Monte Carlo simulation and
can be thought of as a slice through an electrical eye diagram. Particularly for the
spaces, the agreement with the pdf obtained by linearization is much better than
with the Gaussian fit. (b) BER as a function ofy. The functionP (y) is shown
as a solid line, andP (y) is shown dashed. The BER equals half the sum of
the two. The optimal decision level lies aty = 0:55 near the intersection of the
graphs [see the vertical dash–dotted line in (a)] and yields a BER of5�10 .
From the Gaussian fits, we obtain aQ factor of 13.5, implying an optimal BER
of 10 instead.

C. Calculating the BER

Fig. 4(a) shows the pdf of the filtered current defined
in (21) that corresponds to the output of the electrical receiver.
The calculation is performed as explained in Section II-C in two
different bit slots, corresponding to the 1 and the central 0 in the
1-0-0-0 pattern that we are simulating, so that we obtain the pdfs
for the marks and the spaces separately. The effect of the timing
jitter is included in the calculation of the pdfs, as shown in (26).
Note that the Gaussian fits are a good approximation over about
two orders of magnitude, but deviate strongly at low probability
densities. We can show mathematically that the pdf in the spaces
can be regarded as a generalization of thecentralchi-square dis-
tribution [27]; its exponential decay results from the quadratic
noise term in the receiver [6]. The pdf of the marks can be re-
garded as a generalizednoncentralchi-square distribution and is
controlled by the noncentrality parameter, which is proportional
to , and the degree of freedom,. The effective value of
depends on the bandwidth ratio of the optical and the electrical
filters and is usually quite small – . For larger values of

, the noncentral chi-square pdf converges to Gaussian as a con-
sequence of the central limit theorem. At small values of, the
pdf of the marks is dominated by timing jitter, leading to a vis-
ible bump. This bump exists because the timing jitter broadens
the signal, widening the pdf of the marks inside the eye, toward
smaller . Without this bump, the left tail of the accurate pdf for
the marks would cross the Gaussian fit and then run inside, so

Fig. 5. (a) Eye diagram, taking its input directly from the Monte Carlo
simulation of the DMS simulation. The probability density of the currenty is
displayed as a contour plot. The dashed line att = 50 ps shows the location
of the pdf in Fig. 4. The logarithm of the pdf is displayed as different shades
of gray. (b) Accurate eye diagram produced by our linearization approach. To
obtain a more readable diagram, we only plot probability densities in the range
[10 ; 10 ]. However, our approach allows us to find the probability density
at any point(t; y), thereby enabling us to calculate accurate BERs.

that the error probability density would be lower there than for a
Gaussian pdf, in agreement with [6]. We conclude that the strong
nonlinearity in some optical systems can lead to an increased eye
penalty due to timing jitter that must be taken into account. Note
that the onset of the bump in our system occurs at a low prob-
ability density. In the range that can be explored by a standard
Monte Carlo simulation, denoted by the circles, the agreement
between the pdf and its Gaussian fit is still very good. However,
the impact on the optimal BER is large.

The knowledge of the separate pdfs of the marks and spaces
allows us to calculate the bit error probabilities. We define the bit
error probability at the decision levelas

[6]. Here, the quantity is the probability of
detecting a mark when a space was transmitted, using the deci-
sion level , and is defined as . Sim-
ilarly, the probability of detecting a space when a mark was sent
is defined as . The quantity
is the pdf of , taken at the central time in a bit windowwhen
a mark is received, and is taken at the central time in a
bit window when a space is received,. The BER becomes min-
imal at the optimal decision level . Fig. 4(b) shows
and , as well as the BER as a function of. We find that
at , the BER is . From the Gaussian fits, we
obtain a -factor of 13.5, implying an optimal BER of
instead.

Fig. 5 shows the corresponding eye diagram. It is a contour
plot of the pdf for at each time. We note that this way of
plotting the eye diagram is closer to what is measured experi-
mentally than the current, standard numerical practice of simply
superimposing in the different bit windows. The optimal
decision point for our system lies close to one half, normalized
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Fig. 6. (a) Convergence of optimal BER values, resulting fromK and
A obtained from a Monte Carlo simulation, as a function of the number of
noise realizations. The symbols(4), (�), and(�) pertain to three simulations
that were started with different random seeds. (b) Convergence of the optimal
decision levely . Both BER andy converge after about 2000 Monte
Carlo realizations.

to the location of the peak of the marks pdf. Gaussian extrapola-
tions usually yield optimal decision levels that are much smaller
than 0.5 in normalized units [6].

We now consider the off-diagonal elements in . Although
is diagonally dominant, we found that the off-diagonal ele-

ments have a large impact on the resulting BER. To quantify this,
we compared the optimal BER to a computation in which we set
the off-diagonal elements to zero. It turns out that the spread in
the pdf of the spaces is reduced, as one might expect, whereas
the spread in the pdf of the marks is increased, leading to a lower

and an optimal BER that deviates from the true value by or-
ders of magnitude. Therefore, we conclude that the nonlinearity
can lead to a substantial deviation of the Karhunen–Loève basis
from the Fourier basis and it is, in fact, necessary to keep track
of off-diagonal elements in .

Next, we turn to the question of the accuracy of the BER and
the decision level that we obtain by employing a Monte Carlo
simulation to compute . Fig. 6 shows the convergence of the
BER and the optimal decision level as the simulation pro-
ceeds. Both and converge as we average over more
noise realizations. The convergence requires on the order of a
few thousand realizations. Looking at the BER is a very strin-
gent test of the accuracy, because a small deviation in the vari-
ance of the pdf curves, that might be barely visible in a plot
such as Fig. 4(a), leads to a large variation of the BER close to

. On the other hand, a deviation in the BER from the true
value is often tolerable, as long as the BER is well below a given
threshold such as . Note also that the computation of am-

plitude margins for a given BER requires less accuracy and, in
our case, 100 Monte Carlo realizations is sufficient. We note that
the values for the optimal BER and the decision level both drop
as the averaging proceeds. We find that the statistical fluctua-
tions in , that vanish as the number of realizations increases,
tend to decrease the BER, irrespective of their signs. Thus, the
square-law detector with its dependence of on cor-
responds to a biased estimator [36].

IV. DIRECT SOLUTION OF THE NOISE ODE

As mentioned in Section II-B, a Monte Carlo simulation is
only one way to obtain the reduced covariance matrix .
If we find a way to solve (14) in parallel with (1), we can re-
place the time-consuming Monte Carlo method by a determin-
istic method. We solve (1) using the standard split-step method.
Simultaneously, we must compute . The propagation of the
accumulated noise is governed by (4), which is a linear equation
and is homogeneous except at the amplifiers because in
the fiber. Its Fourier transform must be linear and homogeneous
as well, and we can write it in terms ofas in (9)

(30)

where we set the ASE term to zero. We write the solution
of (30) as , consistent with (10). We infer that
the evolution of over one fiber span, followed by an EDFA,
is given by

(31)

where equals at the beginning of the span, equals
after the amplifier, is the identity matrix, is the period

of the Fourier expansion, is the same as in (3). The last term
represents the lumped ASE noise input. We choose a perturba-
tive method to compute rather than solving (30) directly. Let

and be the noise-free optical field at the begin-
ning and end of a fiber span of length. We then perturb the
incident field in the -th frequency mode so that

, solve (1) again for the perturbed field
, and obtain . The resulting noise vector

corresponds to . We then divide
by , which yields the th column of the matrix . This

perturbative approach corresponds to the Lyapunov method de-
scribed by Bennetinet al. [37]. We find that the value of is
independent of over a wide range and that the entire method
is very stable and accurate up to a propagation distance of about
3000 km, as well as very efficient in comparison with the Monte
Carlo simulation. Beyond 3000 km, it is necessary to separate
the phase and timing jitter continuously from the covariance ma-
trix. Once that is done, it is possible to extend this approach over
the full 24 000 km. We will discuss this issue in more detail in
a later publication.

We also attempted a direct solution of (14) using the matrix
ODE solver package, variable-coefficient ODE solver written in
C (CVODE) [38], but the solution was numerically inefficient.

V. CONCLUSION

We extend the linearization method that describes the noise
evolution in an optical transmission system and apply it to a
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highly nonlinear DMS system over a transmission distance of
24 000 km. This system is well characterized both theoretically
and experimentally [5], [16]. We are able to accurately calculate
the optical noise distribution at the receiver and from that obtain
accurate eye diagrams and bit error rates (BERs). We compare
these results to the standard Monte Carlo simulation technique.
To retain the linearity of the system, we find that we must sepa-
rate the phase and timing jitter from the remainder of the noise.
Our simulation confirms that the timing jitter is Gaussian dis-
tributed [15], and the phase jitter is distributed according to a
Jacobi- function, the periodic analogue of a Gaussian. After
separating the jitter, the remaining noisy signal is multivariate
Gaussian distributed with finite cross correlations. This result
extends and corrects previous work that neglected fiber trans-
mission effects and assumed ideal pulse and filter profiles [6],
[7]. We reintroduce the effect of the jitter in the computation of
the BER and show that it leads to an additional eye penalty, al-
though this penalty only affects the pdfs at low probability den-
sities and is, therefore, very hard to see using standard Monte
Carlo simulations. Neglecting this additional penalty leads to a
substantial underestimate of the BER. We note that it is unlikely
to be necessary to treat the jitter separately from the rest of the
noise in systems that are less nonlinear than ours, as is the case
in all commercial systems. The success of the linearization ap-
proach in our highly nonlinear system bodes well for its future.

The central statistical quantity in our calculations is the co-
variance matrix describing the multivariate Gaussian distribu-
tion. We present two methods for calculating the evolution of
this matrix. One is based on standard Monte Carlo simulations,
and the other is based on solving its linear evolution equation.
We show that the Monte Carlo method works well over the entire
length of 24 000 km, corresponding to the experimental system.
We validated the linearization by comparison of its predictions
to 10 000 realizations of the Monte Carlo method. We showed
that less than 2000 realizations are necessary to accurately cal-
culate the elements of the covariance matrix. It is also possible to
directly calculate the covariance matrix by solving the ODE that
governs its evolution. However, to do so over the entire length
of 24 000 km, it is necessary to continuously separate the time
and phase jitter from the rest of the covariance matrix. We will
discuss this issue in detail in a future publication.

The main limitation of our current approach is the absence of
interpulse interactions since we only propagate a single pulse
in a single wavelength channel. This assumption is appropriate
for the particular experimental system that we studied, but is not
appropriate for most commercial systems. In the future, we will
study generalizations of our method to multiple pulses and also
apply it to different modulation formats, such as CRZ and NRZ,
that are directly relevant to commercial systems.

APPENDIX

At the chirp-free maximum pulse compression point in the
loop, we define the average signal phase

(32)

where are the Fourier modes of
. First, we would like to determine the relationship of in

(32) and in (16) to in (17), and analogously the relationship
of to , for small noise. The Taylor expansion of the signal
phase at frequency mode, using the identity

, is

(33)

where . Using (33), we linearize the
least-squares criterion (16) as

(34)

where . The stationary points of the sum in (34)
with respect to and are given by

(35a)

(35b)

We recall with and
from (17) and express the associated orthogonality relations

as and
, from which we infer

(36a)

(36b)

Comparing the last two identities with (35a) and (35b), we find
that the sums in (35a) and (35b) vanish with the choice
and . This result shows that our definition of an average
phase (32) is reasonable and consistent with the least-squares fit
(16).
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