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Abstract—We present a novel linearization method to calculate is based on Monte Carlo simulations, only works for a lim-
accurate eye diagrams and bit error rates (BERs) for arbitrary jted range of BERS, beyond which the BER must be extrapo-
optical transmission systems and apply it to a dispersion-managed |10 [4]. Standard extrapolation methods to date assume that the

soliton (DMS) system. In this approach, we calculate the full . . . .
non”nea(lr evo)luti)é)n using Montepgarlo methods. However. we NOiSe power after narrow-band filtering is Gaussian distributed.

analyze the data at the receiver assuming that the nonlinear This assumption often yields good agreement between simula-
interaction of the noise with itself in an appropriate basis set tions and experiments [5], but it is not always reliable. To make
is negligible during transmission. Noise—noise beating due to progress with the difficult problem of calculating BERs, almost

the quadratic nonlinearity in the receiver is kept. We apply this 4 srevious work, aside from Monte Carlo simulations, is based

approach to a highly nonlinear DMS system, which is a stringent . . . . o
test of our approach. In this case, we cannot simply use a Fourier " the linearization assumption. This assumption is that the non-

basis to linearize, but we must first separate the phase and timing linear beating of the noise with itself during the fiber transmis-
jitters. Once that is done, the remaining Fourier amplitudes of the  sion can be neglected. We note that is it not generally assumed
noise obey a multivariate Gaussian distribution, the timing jitter is  that nonlinear interactions between the signal and the noise can
Gaussian distributed, and the phase jitter obeys a Jacob® distri- e janored. Also, the nonlinear interaction of the noise with it-

bution, which is the periodic analogue of a Gaussian distribution. If in th - due to th | detection i I
We have carefully validated the linearization assumption through Sell In the receiver due 1o the square-law detection Is usually

extensive Monte Carlo simulations. Once the effect of timing jitter KEPt. An early application of this approach was to use soliton
is restored at the receiver, we calculate complete eye diagramssystems. The BER in standard soliton systems is dominated
and the probability density functions for the marks and spaces. py timing jitter. Gordon and Haus [1] and Haus [2] used lin-

This new method is far more accurate than the currently accepted earization to calculate the timing jitter and, hence, the BER.

approach of simply fitting Gaussian curves to the distributions - . .
of the marks and spaces. In addition, we present a deterministic Under the assumption that the amplitude of the marks is con-

solution alternative to the Monte Carlo method. stant, that the amplitude of the spaces is strictly zero, that the

Index Terms—Amplifier noise, error analysis, Karhunen—Logve noise power is white when it arrives at the receiver, that an ideal

transforms, linear approximation, Monte Carlo methods, nonlin- ~ Optical bandpass filter is used right before the receiver, and that

earities, optical fiber dispersion, optical fiber theory, simulation.  an ideal integrate-and-dump circuit follows after a square-law
detector in the receiver, Marcuse [6] and Humblet and AZizog

|. INTRODUCTION [7] showed that the pdf of the power in the marks obeys a non-

. , o ... central chi-square distribution, whereas the pdf of the spaces
N current optical fiber communications systems, amplifigy

However, the fiber's Kerr nonlinearity leads to a complex Inteﬁi'nearization assumption holds. Despite the restrictive assump-

zﬁtﬁgg:;m%??égij:%m:rﬁrtirrze ?r?ésﬁl;z? tr:t;hzt?oorlse SQ%Crfs, this work is highly significant. The central chi-square
" 9! Propagation.  istribution has an exponential tail and, hence, falls off much

The traditional method of computing the probability dlsmbufnore slowly than a Gaussian, indicating that the Gaussian ap-
tion function (pdf) of the electrical signal in the receiver, which roximation fails even in this ,hi hlv idealized setting. Simil
p ghly idealized setting. Similar

results can be obtained for any system in which the transmis-
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the spectral components due to the significant four-wave mixistantial adaptation and is still an unsolved problem in optical
between the signal and the noise. Later work has extended fiier communications. From this standpoint, the work presented
result by applying this approach to WDM systems [11] and Hyere is a key step in solving the complete problem of calculating
adding the noise calculated assuming a CW signal to modulatbd BERs in optical fiber communications systems.
data [12]-[14]. The DMS system that we study in this paper [5], [16] is
All of the work just cited used relatively simple analyticakimpler than many modern-day communications systems in an
forms for the signal when calculating the noise power. limportant respect. The soliton pulse durations do not change
general, however, the signal evolution in realistic opticanough to lead to a significant overlap with their neighbors,
communications systems is quite complex due to the combingalthat there is no interaction with neighboring bits. Moreover,
effects of the Kerr nonlinearity and the dispersion in opticahis system is a single-channel system, so that there is no possi-
fibers. The use of simple analytical approximations for thigility of interchannel interactions. Because neither intrachannel
signal when calculating the noise may not yield sufficient accaeor interchannel interactions occur between bits, there are no
racy. Recently, Grigoryast al.[15] showed that it is possible pattern dependences, and it is sufficient to study the behavior
to linearize around a computationally determined signal. They a single mark and a single space to determine the pdfs for
used this approach to calculate the timing and amplitude jitteoth. Extending our approach to take into account pattern de-
for NRZ, return-to-zero (RZ), and dispersion-managed solitgrendences will be a nontrivial undertaking. At the same time,
(DMS) pulses. They validated their results with comparison this system is far more nonlinear than are modern-day commu-
Monte Carlo simulations in all cases and to experiments in theations systems and, hence, represents a stringent test of the
case of DMS pulses. Calculation of the timing and amplitudmearization assumption. In this paper, we will show that the
jitter is, however, not sufficient, in most cases, to determine thinearization assumption works well and is consistent with ex-
BER [16]. periments [5] over 24 000 km, once phase and timing jitter are
In this work, we use the linearization assumption to calculapgoperly taken into account. These results bode well for this ap-
the full pdf for the marks and spaces in the experimental DM8oach in practical contexts with less nonlinearity.
system described by Met al. [5], taking into account the full ~ The utility of the linearization assumption stems from two
nonlinear and dispersive evolution of the signal and its interakey mathematical results. The first is the Karhunen—Loéve
tion with noise. We then calculate the optimal decision threshdldeorem [23], which states that a combination of signal and
and the BER as a function of the decision threshold. On the omeise over any finite time can be expanded in an orthonormal
hand, it is possible to view our work as an extension of previobsisis whose coefficients are independent random variables.
work on linearization. On the other hand—and perhaps madr¢hen the noise is white, any orthonormal basis will satisfy the
usefully—it can be viewed as an extension of the Monte Carkarhunen—Loéve theorem. In optical fiber communications sys-
approach. As we noted previously, it is currently the standareims, the ASE noise is effectively white when it is contributed
practice to simply fit a Gaussian distribution to the rails of a nisy the amplifiers, but it only remains white for short distances
merically determined eye diagram when calculating the BEBver which the nonlinear interaction between the signal and
With no additional computational effort, our approach allowthe noise can be neglected. Over longer distances, the noise
the user to take into account the non-Gaussian effects, leadirgomes correlated, and the Karhunen—Loéve basis becomes
to greatly improved pdfs for the marks and the spaces. unique. The second mathematical result is Doob’s theorem
Itis possible to criticize the linearization assumption becauf®4], which states that when the system is linearizable, each
it is liable to break down just at the point where it is most imef these independent random variables is Gaussian. Thus, it
portant to calculate the pdfs—on the tails of the distributiosuffices, in principle, to determine the Karhunen—Loéve modes,
function. Indeed, work by Menyuk [17] and by Georges [18fs well as the mean and variance of its coefficients, to calculate
[19] has shown, in the case of timing jitter for solitons, that thihe effective noise pdf. We emphasize that this powerful result
breakdown of the linearization assumption can lead to signiiflows the signal to interact nonlinearly with itself and with
cant changes in the BER. In response, we first note that therdhie noise; it only requires that the noise not interact with itself.
no experimental evidence that the linearization assumption fdits practice, one must use an approximate static basis from
in any practical context, in contrast to the far cruder Gaussiamich to compute the Karhunen-Loéve modes. The standard
fitting method in common use today, for which there is certainlijourier basis naturally suggests itself, and we will use it with
experimental evidence that it fails [20, Fig. 10.14]. Second, tla@ important caveat. In the case of standard solitons, it has long
increased use of forward error correction (FEC) implies that rdveen known that it is not appropriate to use Fourier modes to
error rates in the optical fiber transmission as high@s® are linearize around a soliton solution because a perturbation can
often now acceptable, so that systems decreasingly operatecfange the soliton parameters, as well as add to the background
out on the tails of the pdfs where the linearization assumpti¢®], [25]. For the DMS system that we are considering, we
is expected to be less reliable. Finally, and perhaps most impbave found that it is necessary to explicitly calculate the phase
tant from a conceptual standpoint, it may be possible to fulpnd timing jitter of the soliton and to separate them from the
account for the nonlinear interaction of the noise with itself bsemainder of the noise calculation. When the linearization
using large deviation techniques [21], such as importance saassumption holds, the pdf of the timing jitter is Gaussian, and
pling [22], but these techniquesquirethe prior solution of the the pdf of the phase jitter is a Jacabifunction, which is the
problem using the linearization assumption as a starting poiperiodic analogue of a Gaussian distribution. We validate this
Applying these techniques in any new situation requires sudissumption using extensive Monte Carlo simulations. Thus,
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we can account for the effect of the timing jitter in the finathe physical time ang, is the inverse group velocity. The nor-
eye diagram. The phase jitter does not matter in square-lavalized gain coefficieng(z) is

detectors. The entire description given in this paper will apply

to one optical polarization only, which is appropriate for the 9(2) = {gm(?«“% Zm <2< Zm " @)
DMS system that we are using as an example [5]. Moreover, -, elsewhere

this choice somewhat simplifies the theoretical development, . . L
There is no reason to doubt that this formalism can be extend¥g€egm represents the narmalized gain coefficient inside the

to take into account polarization effects. mth amplifier, which we assumgto be_gin@i: Zm anq tp be of

After separating the phase and timing jitter, using a procknN9thLamp, andy, is the normalized fiber loss coefficient. The
dure that we will describe in the body of this paper, we compuf¥iantity I” represents the ASE white noise contribution with
the evolution of the covariance matri&;; = (aza;), where 2€70 mean(£'(z,t)) = 0 and autocorrelation
ar = a r+tay 1 is the amplitude of théth Fourier mode, and A A
ax, g anday, 7 are its real and imaginary components. When the <F(z,t)F*(z’,t’)> =2m6(z — 2)o(t — 1) ®3)
linearization assumption holds, thg r anda;, ; obey a multi-
variate Gaussian pdf that can be determined from the covariaMdeeren = nspgmhwoLpy/To with Planck’s constant =
matrix. It is possible to compute the covariance matrix in twb0545 x 1073 kg m? /s, andn,, is the spontaneous emission
ways. First, we can estimate it using Monte Carlo simulation&ctor. We assume,,, = 1.4 inside the amplifiers and,,, = 0
Second, we derive an ordinary differential equation (ODE) fd the optical fiber. The angular brackets denote the noise en-
the K, from which it can be obtained directly. It is the pri-Semble average, and the asterisk denotes complex conjugation.
mary purpose in this paper to demonstrate the validity of tiéigher order dispersion, as well as filter terms, are neglected
linearization assumption in the highly nonlinear DMS systeliﬁ (1)
over 24000 km. The Monte Carlo simulations allow us to use Our initial goal is to derive a differential equation that de-
standard statistical methods to both validate the linearizatig@fibes the signal-noise beating. We write- wo + éu as a sum
assumption and estimat&;;. Thus, we focus on the Monte ©f @ noise-free signako = (u) and accumulated transmitted
Carlo approach here, although we discuss the ODE appro&gisedu. The difference of (1) and the statistical average of (1)
briefly. The ODE approach offers substantial computational adien yields the evolution equation féu
vantages, and a more detailed discussion of it will be the subject 95 D&%
of a future publication. P __2“ 4 226w 4+ uo (6u)* = igou+ . (4)

The remainder of this paper is organized as follows. We derive 0z 2 o
the theory of our linearization approach in Section II. In Seerhe third and fourth terms on the left-hand side contain the
tion Ill, we apply this theory to our DMS system. We computgeating of the signal with the noise, whereas the noise—noise
the phase and timing jitter and the covariance makfi¥(z) beating is quadratic ifiw and is omitted. Equation (4) describes
from Monte Carlo simulations. We then calculate the pdfs fere noise growth iu < wo and we neglect any influence of

the marks and spaces. In Section IV, we compare these resgltsn . We can expand, ands« as a Fourier series
to a direct numerical solution of the ODE for tl#&,,(z). Sec-

tion V contains the conclusions. N/2-1
ug = Z A (2) expliwpt) (5a)

Il. THEORY n=—N/2

A. Linearization Approach Nt
' ] } PP _ ) Su = Z an(2) exp(iwpt) (5b)

In our simulation model, we consider the normalized non- ne N2

linear Schrédinger equation with a Langevin noise term
5 ) 52 wherew,, = 2rnTy/T, andT is the period. After substituting
ia“ + §D(z)8_t1; + ulPu = ig(z)u+ F(z,#). (1) (5a)and (5b) into (4), we find
z
. . day, D
Here, the pulse envelope is normalizedias E+/vLp, where A _ <g — i5w2> ag
L is the electric field envelope; = nowo/(Aerc) is the non-

linear coefficient, and. , is a characteristic length. The quantity ) N .

n2 = 2.6 x 10716 cm? /W is the Kerr coefficientwy = 27 x te Z (240 At am bt k—m

193.23 THz is the central angular frequency.g = 47 pm? n,lm=—N/2

is the effective fiber core area, ands the speed of light. The + AnAla:(nén—f—l,k-f—rn] —il'k(2) (B)

characteristic dispersion lengfhy, equalsig /|3y |, whereTy

is the characteristic time scale afifl is the scaling dispersion. Where thel’; are the Fourier coefficients of the white noise
We choosél} = 5.67 ps, which roughly equals the root meannput ', andé is Kronecker's delta. The correlation of tiig
square soliton duration, am§ = —0.1 ps?/km, which approx- S (Ux(2)I'7,(2)) = (2nTo/T)6(z — 2 )bk, m, Wheren is again
imate|y equa|s the path average dispersion_ The distarise Z€ro outside of the amplifiers. We define the complex column
normalized as: = Z/Lp, whereZ is physical distance. The VECtorse = (a_nya,...,an/2-1)" anda® = (a* ), ...,
retarded time is normalized as= (t, — 3Z)/To, wheret, is @}y, ;)" aswellad = (I'_yys, ..., Un/2-1)", where the
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superscriptl” indicates the transpose operation. Then, we cavith the real symmetrie N x 2N covariance matrixC
rewrite (6) in matrix form as T T

K =((a—(a)(a’ —(a)"))

da T T
= Ba + Ea* — I @) _ [/ | ®r®r CROy
dz < [ a0 aaj (13)

where the complex matricé&andE are defined as where all vector products above are outer products. This def-
D inition of X embodies the full covariance information 4iv?
Bm = <g - i;wi) Okm + 2iZAnA75n—z,k—m (8a) real numbers of whichiV(2N + 1) are independent, whereas
.l the complexV x N matrix (a,a}) = (aa')s, where thet de-
B, =i Z A Attt gt (8b) notes the conjugate transpose, contains anly real numbers
of which N2 are independent, and, thyg, a} ) lacks some in-

L _ ~ formation. From (9) and (10), we now find thitevolves over
The matrixE is symmetriq( E,, = Emi), Whereas the matrix distance according to

B is anti-Hermitian(B;,, = —Bn.x) if g is zero. The sum d
in B is circulant and, thus, corresponds to a convolution in

the time domain, whereds can be termed anticirculant. (A dz
matrix M is circulant if there is a vectot with My,,, = zx_,). WherenandI are defined after (3) and (5b), respectively. Equa-
The number of operations required to evaluatendE grows tion (14) is a Lyapunov equation [26] and the fundamental linear
like N3. Equation (6) depends on both, and a, so that evolution equation of the covariance matrix that describes the
the linearized problem becomes non-Hermitian [8], [9]. Outatistical dependence of tiag. The right-hand side of (14) is
probability space is spanned by theV real variablesa;, r  Symmetric becauseRK)” = KTR” = KR”, so thatk re-

and ay, ;. It is, therefore, convenient to split (6) into its reamains symmetric as it evolves overnitially, K is zero because

and imaginary parts and consider the resulting system %€ launched signal is noise free. The mafixs distance de-
equations. Introducing the rea@lV vectora = (ag,ar)= pendent and includes amplification—attenuation as well as the

n,l

K(z) = RK + KRY + ”TTOI (14)

(G- N/2.Rs - s ANJ2 1 Ry G NJ2.Ts - - -» aN/Qfl,I)T as a parti- beating of the signal with the noise. The last term describes the
tioned vector of the real and imaginary partaxpfnd similarly White noise input and is only nonzero inside the optical ampli-
w = (I';,—T'r)T, we can rewrite (7) as fiers. Newly added noise only contributes to the diagonal ele-
mentsK;. In addition to being symmetrid is also positive
da =R(2)a + w(?) definite, so that its determinant is positive.
dz We note that the direct derivation of (14) from (9) is only one
R = |:BR +Er -Br+ Er} ) possible way of determining the evolution; one can show that the
Br+Er Bgr-—Ergr pdf in (12), where the covariance matifX ») is described by

whereR is a real N x 2V block matrix and we have used the(14), represents the exact solution of the Fokker—Planck equa-

) . : tion corresponding to the Langevin equation (9). Yet another
notationB = By, + iB; andE = Eg + iE;. We may formally . .
write the solution to (9) as [26] approach to derive (14) uses Itd’s method [28]. All of these

methods are, of course, equivalent.

a(z) = V(z, z0)a(20) +/ V(2,2 yw(z')d2’ (10) . Separation of Phase and Timing Jitters

Zo
. . _ In order to properly account for the phase and timing jitters,
whereW(z, ¢) is a propagator matrix that obeys the foIIowmg:We must treat them separately. We do so by removing their
d contribution to the covariance matrix, keeping track of their
@‘I’(zv Q) =R(2)¥(z,¢) V(=T V¢ (11) magnitude. If these contributions are not treated separately, they

distort the distribution functions so that the Fourier magnitudes

whereZ is the identity matrix. Equation (9) describes the SP%;, » andas ; are no longer Gaussian distributed. The phase
tial evolution of the noise Fourier modes. Neglecting, for now,. ’

! - N tter makes no contribution to the electrical eye diagrams and,
the necessity of separating the phase and timing jitters, the lifisnce no contribution to the BER in systems with a square-law

earization assumption, along with Doob’s theorem [24], impliggstector like the one that we are considering. Hence, once the
_that thea(z) satlsfyamultlvquat_e Gaussian dlstrlbutlon,wh|cibhase jitter is separated, it can be ignored. By contrast, the
is completely described by its first two moments. The mean E?Fning jitter does affect the eye diagrams and the BER and

a(z) is, by definition, zero, whereas the second moments g{gst pe taken into account explicitly when calculating these
given by the covariance matri. Hence, its pdf may be written g aniities. In this subsection, we will show how to separate the

as [27] phase and timing jitters from the calculation of the covariance
. 1 B matrix. In Section 1I-C, we will show how to calculate eye
fala,z) = (2m)™N \/det K—1(2) exp {—§GT’C 1(2)4 (12)  diagrams while accounting for the timing jtter.
The method that we use to separate the phase and timing jit-

1in the rest of this paper, we will use the sans serif font to denote complexrg differs depending on whether we are calculating the covari-
N x N matrices likeB, the script font for rea N x 2N matrices likeR, and !

the bold font for rea N vectors such as. The only exception will ber, which ~@NC& Matrix by using Monte Carlo simulations or by directly
is a complexV vector. solving (14).
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For the Monte Carlo simulations, we focus on the receive@. Derivation of the Eye Diagram

signalu(t) = uo(t) + bu(t), whereuo = (u) is the signal | this section, we derive the pdf of the filtered output cur-
average over all noise realizations, andis one particular re- ont of o square-law detector. A similar pdf has already been
alization of the accumulated, propagjetgdlnoise at the receiyglyi,ed by Leeet al. [29], Boscoet al. [30], and Forestieri [31].
The Fourier expansion afis u(t) = k:/—N/Q By exp(iwt), \We use this pdf to compute an electrical eye diagram that is not
whereB;, = Ax + ax andwy, = 2rkTy/T, conforming to (5a) produced, as is traditional in simulations, by overlaying a fi-

and (5b). For single-pulse transmission, we apply the nonlingate number of traces of “1”s and “0”s with different noise real-

transformation izations, but displays the continuous probability densities. The
_ ) inputs we need are the pdf of the timing jittér, the Fourier
Ap + ar, =By = By expli(p + wi7)] modes of the transformed noise-free sigAgl and the reduced
=(Ay + 1) expli(p + wi)] (15) covariance matrix().

B B _ o The receiver first converts the input signal plus noise to an
whereA;, = (By) and(ry) = 0. For each noise realization, weelectrical current/() in a photodetector. We assume that the
determinep andr by fitting the linear functiony + Swy to the  photodetector is an ideal square-law detector Withc |u?.

phase of theB;, using the least-squares criterion We will apply the transformation (15) and, hence, start by de-
scribing{(¢) in the absence of timing jitter. Using (17), we now
e Bris 2 obtain
H = min Z | By | {arctan B = — a0 — Pwy, (16)
A kR I(t) =rluo(t) + su(t)|?
. N/2—-1
whereBy, = By r + 4By 1, and then setting = « andr = 3. . - N* ) g _
We have found that the linear phase assumption of (16) is good _:l_z_:]\w (Ak + 7’“) (Al + ”) explit(wr — wi)l

aslong as the receiver is placed at the chirp-free maximum pulse

compression point of the dispersion map. Ifthe phase and timing (19)

jitter are small.A = (B) = (B) = A, and we can decomposeyhere is the receiver responsivity and the are the residual

the total noise in the new basis, exp[—i(¢ + wyT)], as noise coefficients. The electrical curreitt) then passes
) - ) through a low-pass electrical filter. The filter operation can be
ay, exp|—i(p + wiT)] :“}k — Ar exp[—i(p + wiT)] + 7 written in Fourier space as a multiplication with a complex
~AR {1 — exp[—i(@ + wpT)|} + 7 self-adjoint filter matrixF. Hence, we can write the filtered
~pcy + Tdi + T (17) currenty(t) as
where i Ay, anddy, = iwi Ag. The termpcy, is responsible Nes
Crp = 1Ay k= Wy Ay, Ck _ 1 y i
for a phase shift(t) = uo(t) exp(i¢), whereas the component u(t) = . IE:N/2(A’“ ) Wi (@A) (20)

Tdy, produces the time shifi(t) = wo(¢ + 7) and, thus, leads
to timing jitter. The residual noise;, is orthogonal to the,  with Wy, () = k exp [it(wi — wi)] Fra, SO thatW is a complex
andd; with the scalar productl/2) >, (vxr, +7ivk) = 0, self-adjointV x N matrix. We introduce the partitioned vector
wherevy = cj Or vy = - The vectorsy, andd;, will only .be. A= (A NjaRiee s ANjrt s A_nyags - Axja11)" 1O
orthogonal to each other if the signal is an even function in timgswrite 4(¢) as
Our simulation shows thdtp) = (1) = 0.

We will show in the Appendix that (16) and (17) are consis- y(t) =(A+7)"W(A+7)
tent for arbitrary pulse shapes. Note that even thoughnd Wgr —W; T
7 are orthogonal, the quantitiesandr; are not statistically W= {Wz Wg } =W (21)
independent becausedepends on the pulse power due to the
nonlinear phase rotation. A noise realization in which the noidé'® minus sign in the last line appears becatfds antisym-
increases the pulse power will tend to have both largeand metric. The right-hand side of (21) is a symmetric bilinear form,
largey, leading to a correlation. On the other hand, our simul®ut, due to filtering, it is not necessarily positive. In order to ob-
tions indicate that the correlation betweeandry, is negligible. tain an eye diagram, we must derijg(y), the pdf ofy (). Our

We compute the pdfs af andr by averaging over all Monte derivation off,(y) is a generalization of Marcuse’s [6]. How-
Carlo noise realizations. With the real partitior®#d vectorr =  €Ver, we mustfirst find a functional basis that diagonalizes both

(P N/2,Rs -2 TN 21, Ro T NJ2, T - ,ny2-1.1)" and, analo- the square-lgw detectign ff)ﬂclnwed by the filtering and th’e_i?—

gously,B = (B_ya r, - .)*, we can define a reduced covari-verse covariance matrv;i(’) - Because bothV and{CW

ance matrixC™ as are symmetric matrices and, in additiéé”)  is positive def-
inite, we can apply the theorem of simultaneous diagonaliza-

K — <ﬁT> — <§><§>T = <TTT>_ (18) tion [32], which states that there is a real matfbsatisfying

K™ = ¢7¢ andW = CTAC. One procedure that may be

We will use (18) in Section 1II-B. The quantity obeys a mul- used to obtair\ andC is to solve the generalized eigenproblem

tivariate Gaussian distribution, and we repladey  andX by W¢C ! = KT e1A. The matrixA is diagonal, and we write

K in (12). itasA = diag A1, ..., \2n ), Where the\, are real. Note that
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if the impulse response of the filter can become negative, astny, and we cannot use it to simplify (25). The characteristic

the case of a Bessel filter, some of thewill be negative. With  function corresponding tg, is

the definitionsQ;, = Ci;A; and theg,, = Cyyry at each offset oo
B¢t = [

7, we simplify (21) to O, ~—0(¢, ) fr-(t — T)dT. (26)

y(t) =(A+r)TCTAC(A+ ) Because the timing jitter is Gaussian distributed, we use a nu-
=(Q+ ¢ AQ +q) merical Gauss—Hermite integration [33] to solve (26). Additive
oN oON noise sources such as electrical noise can, in principle, be ac-

= Z Ak (Qi +2Quqn + qg) = ng (22) counted for by multiplying?, with the appropriate character-
1 1 istic functions [29]. Becausg is phase independent, the phase

. variation does not contribute tb,,.
where they;, represent a new set of random variables. The tranS'Froméy, we obtainf, [23]

formationC yields what may be termed electrical Karhunen—

Loéve modes, namely the signal modgs and the indepen- ; :i /°° & . i
dent noise modeg,. The noise pdf (12), witl replaced byr, fo(u?) P2 oGt exp(=duC)dC
can be factored into independent Gaussian pdfs 1= J e d y
=5 [ e
2N

/ - 1
fr =)™/ det £ ! exp |—=rfctcr )
2 . ) 20202
1 2N X €Xp —'L(Zl—ynf)C—C Zm
=(2m) ™V det KO exp [—5 ) Qi] 2N =
k=1

1
—_— 27
2n X kl;[l NI we @7)
=1 fo (@) (23) .
k=1 wherey, = > i, )\in is the noise-free electrical current

and the quantities\, and @, are taken at the time. If the
electrical Karhunen-Loéve basis equals the Fourier basis (the
fnatrix ¢ equals the identity in this case) and a)l are equal,

and, hencef, (a) = exp(—qi/2)/V2r = N(0,1) is
a normal distribution with zero mean and unit varianc

Equation (22) is a sum 02N random variables. The pdf ;7)is identical to [6, (20)]. Due to the complicated dependence
fy of y, therefore, involves @N-dimensional convolution, ot 57y on¢, we cannot evaluate the Fourier transform in (27)

but this convolution can be transformed into simple multis,ayytically. Howeverp(¢) can be computed numerically using
plications using characteristic functions. The characteristicqiscrete Fourier transform.

function ¢,(¢) of a random variabley is the expectation
Elexp(i¢g)] = jfooo fqexp(iCg)dg [23]. With the help of the D. Gain Saturation

derived distribution identityfy, dgy. = fg, dax, we can write In the DMS system, we must include gain saturation in order

® to obtain good agreement with the experimentally observed evo-
00 lution [5]. The basic assumption of our linearization approach is
= / exp[i€gr(qr)] fo. da thatuy = (u)—namely, that the average of the received signal,
—oo including the noise, equals the noise-free transmission. How-

1 =~ @G . 2 2 ever, one must be careful in the presence of saturable amplifiers
= — — =2 4+ il (@ + 2Qrak ) | dax ! X o . e
V27 /,Oo eXp[ 2 +iCh (Q" + 26+ q") 0 because the noise power that the amplifiers add to the signal in-

1 2)\2 2 2

ep( ROHS

creases the total power oft) = wuo(t) + du(t), according to
——==xp | - .
V1= 2iC 1 =20 (llll®) = Nluoll* + (llowll*) (28)

at each offset. Again, note that the integration variables are au,hererHQ = (1/T) fT | f(2)|2dt for any functionf(t). The
real. The first term in the last exponent describes the influe m <||5u||2> is alwayos finite and positive. Saturable ampli-

of the signal-noise beating, while the second term stems frot\. tand to keep the power of signal plus ndjséi? constant;
noise—noise beating in the receiver. The characteristic functiﬁgnce' when more noise is added to the signal, the signal power
®, ;- of the electri%fjl\lr curreny in the absence of timing jitter yecreases. If one attempts to compugeby simply switching
satisfies®y -—o = [[;—1 Pg.- off the ASE noise input in the simulation of the saturated er-
The relationship of the final pdf, that includes timing jitter pjum-doped fiber amplifiers (EDFAs), the gains and hence the
and fy =0, the pdf with zero timing jitter corresponding tomagnitude of the resulting field will be too large. Fortunately,
by, r=0, 18 EDFA saturation is a slow process that happens on a time scale
o0 of 1 ms, corresponding to 10—40 million bit periods in modern
fylyt) = / fyr=0(y, ) f=(t — 7)dT (25) systems. Consequently, the amplifier gains adapt to the constant
B average powef]|u||?) and cannot follow variations in the noise.
wheref, is the pdf of the timing jitter that we will obtain in Sec-Hence, the effect of amplifier saturation is a mere gain renormal-
tion llI-A. The integral in (25) is a convolution with respectto ization. Setting the amplifiers to match these reduced gains in a
and, hence, can be expressed as a product of characteristic fgtatic gain model (static gain corresponds to infinite saturation
tions; however®, -_q is a characteristic function with respectpower), we can obtain the correct zeroth-order solutign

—wa@%) (24)
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I1l. M ONTE CARLO SIMULATION 800

A. Phase Jitter, Timing Jitter, and Residual Noise

In this section, we will employ Monte Carlo simulations
to verify that the phase jitter obeys a Jacébidistribution, 400
whereas the timing jitter is Gaussian distributed. We will also
verify that the real and imaginary parts of the residual noise
Fourier coefficients, after the jitter is separated, are multivariate
Gaussian distributed. Our simulated transmission line consists
of 225 periods of a dispersion map of length 106.7 km [5]. Each 0
map contains a normal span ok&25 km and dispersiop,, =
—1.03 ps/nm-km and an anomalous span of 6.7 km and
D, = 16.7 ps/nm-km. The average dispersiby,. equals 0.08
ps/nm-km. Third-order dispersion is not relevant in this system 2000
[5] and is set to zero. The carrier wavelength is 1551.49 nm,
matching the experimental value. The fiber loss is compensated
by five EDFAs. One follows each of the four 25-km segments
of normal-dispersion fiber, and the fifth follows the segment of
anomalous-dispersion fiber. There is a 2.8-nm optical bandpass
filter in each map period to reduce the amount of noise. In
accordance with Section 1I-D, the amplifiers are modeled as 0
EDFAs with static gain, as opposed to explicitly including gain
saturation. We carefully adjusted the static gains so that they

1000

equal the effective gains one would obtain using EDFAs with 800! . T T r
a saturation time of 1 ms and a saturation power of 10 mW, (C) * @
similar to [5]. The spontaneous emission factonis = 1.4. R A O

After each amplifier, we add a random amount of lumped noise
separately to the real and imaginary part of the signal in the
Fourier domain. This noise input is Gaussian distributed with
zero means and variances /2, wherep?, = (G,, — 1)1, and

G = fj;“‘““" gmdz is the gain associated with theth
amplifier [5]. All other quantities are defined in Section IIl. We

chose a Box—Mueller generator [34] to obtain the Gaussian-dis- 05 ' Of7 059
tributed random variables; the generator takes its inputs from a B, g(mW')
48-bit random number generator. The launched pulses have a

Gaussian shape with a minimum full-width at half-maximurfiig- 1. (&) Histogram of the phase offseind (b) histogram of the time offset
(FWHM) duration that equals the equibriu value of 9 ps, anfy o it mlations wih Sgnalpeak poudty =5 mandr =

the signal is injected and received in the chirp-free midpoint of = 0 andws = 2x x 25 GHz, respectively, after the phase and time offsets
the anomalous span. We simulated th two dferent peak poweiSTonowedly T, T SoL e 1o e e o e
Poeax = 5 MW andPue,x = 13 mW. With the definition o :

a nonlinear scale length,; = 1/(yPeax), the distance of e

24 OOO_km Is 250 or 650 times larger th.ﬁnl’ respe_ctlvely_. We_ the distribution of the phase offset is a Jacob® function,

transmit the four-bit sequence 1-0-0-0 in a total simulation time, . |~ - : :
. ) . . . ._Which is the periodic analogue of a Gaussian [33], with

window of T" = 400 ps; hence, there is no interpulse interaction.

The receiver is modeled as an ideal square-law detector with 9 = 9

subsequent electrical low-pass fifth-order Bessel filter with a O (npr 05, 2m) = Z N (o + 27k, 07) (29)

bandwidth of 8.6 GHz. We use the split-step Fourier method k=—eo

to solve the scalar nonlinear Schrodinger equation, which onjhere N (11, o2) is a Gaussian (normal) distribution of mean

takes into account one polarization. In the recirculating loop thamd variancer. The © function is the natural choice for the

we are modeling, the polarization dependent loss is large and giease fit because is only determined modul@r.

polarization controllers are optimized to pass the signal with Fig. 1(a) and (b) shows histograms @fand 3 for two dif-

minimum loss. Consequently, the orthogonal polarization ferent signal peak powet3,. The two histograms are approxi-

suppressed. mations tof..(¢) andf-(7), respectively. Each simulation con-
Using the least-squares method outlined in Section 1I-B, vgists of 10 000 Monte Carlo runs. The phase distribufiofy)

now show that the central time offset of the pulsésas well converges to the Jacoki-function, andf, (r) converges to a

as that the§n7R andBnJ are individually Gaussian distributed,Gaussian distribution. We note that the variancéréf can be

whereB,, = BnyR + z‘BnJ, and theB,, are the transformed determined more elegantly from a linearized moment approach

Fourier coefficients defined in (15). Furthermore, we show th§t5] without the need for Monte Carlo simulations.

400} .
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The linear phase fit of (16) turns out to be very good
even at the large transmission distance of 24 000 km. Pulses
are launched at. = 50 ps. Fig. 1(c) shows histograms
of By r and B; r at the angular frequencies, = 0 and
ws = 27 x 25 GHz, respectively. The simulated data agree
very well with the Gaussian fit. The way we removed the linear
part of the signal phase causes the imaginary parts adBthte
be close to zero; so, they are not shown here. We verified that
all the By, g in our simulation are Gaussian distributed using a
chi-square statistical test [35].

B. Computation of the Covariance Matrix From Monte Carlo
Simulations

We employ Monte Carlo simulations to compute the reduced
covariance matri¥C(") according to (18). In this section, we
present the resultingC("™ for the DMS system that we are
studying, and we compare the resulting pdfs for the marks and
the spaces. We then calculate the BER as a function of the de-
cision threshold and determine the BER at the optimal decision
point. According to (13)K(" is a block matrix consisting of
2 x 2 blocks of sizeV x N each. We will name the four blocks
RR, RI, RI, and I, where RR is the blockxza%), Rl is
(ara¥), and so on. Becaus€™ is symmetric(RI)* = IR.

In the following, we will index the elements of the matrix
K by the frequencies whose covariance is contained at each

element, so that the upper left matrix eIemenIﬂgj\),/2 _ N2 el = ..,,,';f,n

(r)

N/2—1,n/2—1 @nd the center element is_ _
’ Fig.2. (a)3-D plotofthe RR block df (") forw,, in the range: = [—15, 15].

K(()T). (b) Three slices througkl("}. The open circles show the principal diagonal

Fig. 2(a) displays the block RR in a three-dimensione(IK,E,;> and the triangles the secondary diagord{(%_, _, , orthogonal to
(3-D) form. The ridge along the principal diagonal representis principal diagonal). The symbod denotes matrix values on a parallel to
the variancesK(”?' all other elements correspond to Cros%\g)prmcmal diagonal K« x41). Note the minima in the lower curves where

‘ kk ] ; becomes negative, corresponding to trenches on both sides of the principal

covariances. The CW entry lies At = 0. Fig. 2(b) portrays diagonal that are hard to see in (a).
three slices through the matrix, along the principal diagonal,
orthogonal to that (starting from the indicés-15,15) and
ending at(15,—15)), and along a parallel to the principal
diagonal. The last two slices reveal that the valueiféff,z o
at small|k| and|!| are actually negative, leading to elongated
minima along both sides of the principal diagonal. The shape
of the graph ofK,(j,;) is due to the optical inline filtering in the
recirculating loop, as well as signal-noise beating. Because of
the inline fiIters,K(’,;) vanishes for largék|. In the absence
of inline filters, KE’,;) would converge for larggk| to the
finite value )", p2,/2, where the sum runs over all optical
amplifiers. At small k|, the signal-noise beating emerges as a 5
peak of a shape similar to the signal power spectig?. ~15

Fig. 3 shows the block RI whose maximum is about one order
of magnitude smaller than that in RR and Il. The RI and IRig. 3. 3-D plot of the RI block ok:", similar to Fig. 2. The values in Rl are
blocks are point symmetric around the center, whereas RR anahller than those in RR by about an order of magnitude, but not zero. Note the
Il obey a mirror symmetry. point symmetry of RI, as opposed to the mirror symmetry of RR.

We briefly revisit the modeling of gain saturation. In the
present DMS system, we compared the average power of the covariance matrix, because we only propagate one pulse
signal and noisé||u||?), that we obtain using saturated EDFAsin the relatively short time window of 400 ps, and noise power
to the simulated signal power in the absence of ASE noise inpaatriations would have an exaggerated effect on the solution.
|0, 5at])%, Which yields||uo «at||?/{]|u||?) = 1.17. As discussed Because we are modeling a recirculating loop and the signal
in Section I1-D,u <. iS not the proper zeroth-order solution tgpasses each amplifier many times, we have to record the static
linearize around. We modeled the amplifiers with static gaimggins for each amplifier and each round trip. This procedure
rather than employing a saturated EDFA model [5] to compuémables us to compute the correct zeroth-order solutjon

the lower right one ig¢

x 11}

1
Mloddes
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Fig. 5. (a) Eye diagram, taking its input directly from the Monte Carlo
Fig. 4. (a) Probability density function of the filtered currerafter square-law simulation of the DMS simulation. The probability density of the curngiig
detection and an 8.6-GHz Bessel filter. The solid lines are the pdfs calculatiisplayed as a contour plot. The dashed line at 50 ps shows the location
using linearization at the center of the bit window of the marks (“1"s) and thef the pdf in Fig. 4. The logarithm of the pdf is displayed as different shades
spaces (“0"s); the dashed lines are Gaussian fits. Note the bump in the left taibbfyray. (b) Accurate eye diagram produced by our linearization approach. To
the marks pdf. The circles are direct results from the Monte Carlo simulation aoltain a more readable diagram, we only plot probability densities in the range
can be thought of as a slice through an electrical eye diagram. Particularly for fheé =%, 10']. However, our approach allows us to find the probability density
spaces, the agreement with the pdf obtained by linearization is much better takany point(t, v), thereby enabling us to calculate accurate BERs.
with the Gaussian fit. (b) BER as a functionifThe functionP; 4 () is shown
as a solid line, and(y) is shown dashed. The BER equals half the sum of . .
the two. The optimal decision level liesgt= 0.55 near the intersection of the that the error probability density would be lower there than for a

graphs [see the vertical dash—dotted line in (a)] and yields a BER«df0 ~*.  Gaussian pdf, in agreement with [6]. We conclude that the strong
From the Gaussian fits, we obtairthafactor of 13.5, implying an optimal BER

of 10— instead. nonlinearity in some optical systems can lead to an increased eye
penalty due to timing jitter that must be taken into account. Note
. that the onset of the bump in our system occurs at a low prob-
C. Calculating the BER b y P

ability density. In the range that can be explored by a standard

Fig. 4(a) shows the pdf, of the filtered curreny(t) defined Monte Carlo simulation, denoted by the circles, the agreement
in (21) that corresponds to the output of the electrical receiveetween the pdf and its Gaussian fit is still very good. However,
The calculation is performed as explained in Section II-C in twe impact on the optimal BER is large.
different bit slots, corresponding to the 1 and the central 0 in theThe knowledge of the separate pdfs of the marks and spaces
1-0-0-0 pattern that we are simulating, so that we obtain the péififows us to calculate the bit error probabilities. We define the bit
for the marks and the spaces separately. The effect of the timigor probability at the decision levgasBER(y) = [P1o(y)+
jitter is included in the calculation of the pdfs, as shown in (26, (y)]/2 [6]. Here, the quantity?,|o(y) is the probability of
Note that the Gaussian fits are a good approximation over abdetecting a mark when a space was transmitted, using the deci-
two orders of magnitude, but deviate strongly at low probabiliion levely, and is defined aByo(y) = fy"o fu(y/ s t1)dy’ . Sim-
densities. We can show mathematically that the pdf in the spagesly, the probability of detecting a space when a mark was sent
can be regarded as a generalization ottwralchi-square dis- is defined asy1 (y) = [ f,(v',to)dy’. The quantityf, (y.t,)
tribution [27]; its exponential decay results from the quadratig the pdf ofy, taken at the central time in a bit windawwhen
noise term in the receiver [6]. The pdf of the marks can be re-mark is received, anf], (v, ) is taken at the central time in a
garded as a generalizadncentrakthi-square distribution and is bit window when a space is receivegl, The BER becomes min-
controlled by the noncentrality parameter, which is proportionghal at the optimal decision level,,.. Fig. 4(b) showsP, ()
toue(t), and the degree of freedod. The effective value a¥4  and Py, (y), as well as the BER as a functiongfWe find that
depends on the bandwidth ratio of the optical and the electrieal, ., = 0.55, the BER is5 x 10~*%. From the Gaussian fits, we
filters and is usually quite smé&ll/ ~ 2-6). For larger values of obtain aQ-factor of 13.5, implying an optimal BER afo—+
M, the noncentral chi-square pdf converges to Gaussian as a ¢astead.
sequence of the central limit theorem. At small valueg,dghe Fig. 5 shows the corresponding eye diagram. It is a contour
pdf of the marks is dominated by timing jitter, leading to a visplot of the pdf fory(¢) at each time. We note that this way of
ible bump. This bump exists because the timing jitter broadepiotting the eye diagram is closer to what is measured experi-
the signal, widening the pdf of the marks inside the eye, towandentally than the current, standard numerical practice of simply
smallery. Without this bump, the left tail of the accurate pdf folsuperimposing,(¢) in the different bit windows. The optimal
the marks would cross the Gaussian fit and then run inside, decision point for our system lies close to one half, normalized
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T plitude margins for a given BER requires less accuracy and, in
T .! our case, 100 Monte Carlo realizations is sufficient. We note that

Foy (a) ] the values for the optimal BER and the decision level both drop
x 2, 1 as the averaging proceeds. We find that the statistical fluctua-
ﬁ'; W0 4, . 1 tions inK(™, that vanish as the number of realizations increases,
E 4%, 4 ‘AA ] tend to decrease the BER, irrespective of their signs. Thus, the
& ] A, ISRV ! square-law detector with its dependencefgfy) on £ cor-

107 RS .fffu. 1 responds to a biased estimator [36].
F A °.800000°;3°A6 NETTY ]
lr :°° ° . ¢ " IV. DIRECT SOLUTION OF THE NOISE ODE
T N lttf o 1031, i 10* As mentioned in Section II-B, a Monte Carlo simulation is
B umber o noise realizations only one way to obtain the reduced covariance makifx).
9Py If we find a way to solve (14) in parallel with (1), we can re-

° place the time-consuming Monte Carlo method by a determin-
=) 85 (b) - istic method. We solve (1) using the standard split-step method.
B %°0 Simultaneously, we must comput z). The propagation of the
é Sk': . o - accumulated noise is governed by (4), which is a linear equation
g |4 °° %o and is homogeneous except at the amplifiers because0 in
o7tk e - the fiber. Its Fourier transform must be linear and homogeneous
ol oo "o oo as well, and we can write it in terms afas in (9)

t AAA Ae L, oo_‘::zxgoé T da .
P A L Y VYV IV = R(z)a (30)
T i ”";:f e where we set the ASE terim(z) to zero. We write the solution
Number of noise realizations of (30) asa(z) = ¥(z)a(0), consistent with (10). We infer that

Fig. 6. (a) Convergence of optimal BER values, resulting frkiti> and the evolution ofkC over one fiber span, followed by an EDFA,
A, obtained from a Monte Carlo simulation, as a function of the number ¢§ given by
noise realizations. The symbdla\), (e), and(o) pertain to three simulations

that were started with different random seeds. (b) Convergence of the optimal T n1o
decision levely,,;. Both BER andy.,: converge after about 2000 Monte Kouw = YKy ¥* + TI (31)
Carlo realizations.

where;,, equalskK at the beginning of the spalt,,,; equals

to the location of the peak of the marks pdf. Gaussian extrapoﬁ-ﬁ}ﬂe::the. ampllfler,I_ IS t.hetrlldentlty mat?'xg 'S_;Ee lper;l(t)d
tions usually yield optimal decision levels that are much small@} € Fourier expansiom, 1S the same as in (3). The last term
than 0.5 in normalized units [6]. represents the lumped ASE noise input. We choose a perturba-

We now consider the off-diagonal elementsif). Although tive method to comput& rather than solving (30) directly. Let

) e i . o uo(t, 0) anduo(t, L) be the noise-free optical field at the begin-
K" is diagonally dominant, we found that the off-diagonal ele ing and end of a fiber span of length We then perturb the

ments have a large impact on the resulting BER. To quantify this, o ) -
we compared the optimal BER to a computation in which we S@pdent field in thek-th frequency mode so that™)(¢,0) =

X t,0) + Aexp(iwrt), solve (1) again for the perturbed field
the off-diagonal elements to zero. It turns out that the spreadvi ( ) . i %)
the pdf of the spaces is reduced, as one might expect, wher%as(t’ 0). %nigq?&%l? _(t’(f’)) .tTEe resulttlrig nvtvs?hvec;qf_ d
the spread in the pdf of the marks is increased, leading toaloﬁ%f)reSpon S (t) = u'™(t, L) —uo(t, L). We then divide

Yopt aNd an optimal BER that deviates from the true value by of- by A.’ which yields thekth column of the matrixt. This
ders of magnitude. Therefore, we conclude that the nonlinearpterturb"’mve approach corresponds to the Lyapunov method de-

can lead to a substantial deviation of the Karhunen—Loéve ba%%/ ibed by Bennetiet al. [37]. We find that the value ot is

from the Fourier basis and it is, in fact, necessary to keep tral ependent ol over a wide range and that the entire method

of off-diagonal elements ity IS very stable and accurate up to a propagation distance of about

Next, we turn to the question of the accuracy of the BER a 00 kr_n, as vyell as very efficientin cpmparison with the Monte
the decision level that we obtain by employing a Monte Car arlo S|mulat|o_n. 'Bey'ond 300.0 km, itis necessary tq separate
simulation to comput& (™). Fig. 6 shows the convergence of th(% € phase and 'tlmlng J|t.te.r cont|r_1uously from thg covariance ma-
BER and the optimal decision levgl,. as the simulation pro- rix. Once thatis done, it is possible to extend this approach over

ceeds. Bothc(™) andy,,; CONverge as we average over moréhe full 24 000 km. We will discuss this issue in more detail in

noise realizations. The convergence requires on the order dt ter publication. . . . .
few thousand realizations. Looking at the BER is a very strig% e also attempted a direct solution of (14) using the matrix

gent test of the accuracy, because a small deviation in the v PE solver package, variable-coefficient ODE solver written in
ance of the pdf curves, that might be barely visible in a pl
such as Fig. 4(a), leads to a large variation of the BER close to
Yopt- ON the other hand, a deviation in the BER from the true
value is often tolerable, as long as the BER is well below a givenWe extend the linearization method that describes the noise
threshold such as0~?. Note also that the computation of am-evolution in an optical transmission system and apply it to a

(CVODE) [38], but the solution was numerically inefficient.

V. CONCLUSION
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highly nonlinear DMS system over a transmission distance whereB;, = By r + 1By 1 = Ar+ a; are the Fourier modes of
24000 km. This system is well characterized both theoreticallyz). First, we would like to determine the relationshipgf. in
and experimentally [5], [16]. We are able to accurately calculaf82) anda in (16) toy in (17), and analogously the relationship
the optical noise distribution at the receiver and from that obtagtfi 3 to r, for small noise. The Taylor expansion of the signal
accurate eye diagrams and bit error rates (BERs). We compphase at frequency mode using the identity! arctan z /dz =
these results to the standard Monte Carlo simulation techniqge+ x%)~1, is

To retain the linearity of the system, we find that we must sepa- B Ab o A

rate the phase and timing jitter from the remainder of the noisearctan =L = o 4 L 2RR 7 R | (a2) (33)
Our simulation confirms that the timing jitter is Gaussian dis- k.R | Ax[?

tributed [15], and the phase jitter is distributed according to\ghereq, = arctan(Ax 1/Ax ). Using (33), we linearize the
Jacobi© function, the periodic analogue of a Gaussian. Aftggast-squares criterion (16) as

separating the jitter, the remaining noisy signal is multivariate

Gaussian distributed with finite cross correlations. This result _ N/2-1 1
extends and corrects previous work that neglected fiber tradé-= un Z [EWE
mission effects and assumed ideal pulse and filter profiles [6], T k=—N/2
i it i 1 2
[7]. We reintroduce the effect of the jitter in the computation of % [ak,IAk,R — ax.pdrg — (b + /3wk)|Ak|2] (34)

the BER and show that it leads to an additional eye penalty, al-
though this penalty only affects the pdfs at low probability derwhereéa = o — «p. The stationary points of the sum in (34)
sities and is, therefore, very hard to see using standard Mowih respect tax and/3 are given by

Carlo simulations. Neglecting this additional penalty leads to a SH
substantial underestimate of the BER. We note that itis unlikely o = 2 Z [ar, 1Ak, R — o, R Ak 1
to be necessary to treat the jitter separately from the rest of the « k
noise in systems that are less nonlinear than ours, as is the case — (8o + Buwr)|Axl?] =0 (35a)
in all commercial systems. The success of the linearization ap- SH
proach in our highly nonlinear system bodes well for its future. o3 =-2 Z “k [akJAk,R — ax,RAR 1
The central statistical quantity in our calculations is the co- k
variance matrix describing the multivariate Gaussian distribu- — (8c + Buwr)|Ar|’] = 0. (35b)

tion. We present two methods for calculating the evolution %e

this matrix. One is based on standard Monte Carlo simulatio?;sdr;eff;?’; : dfﬁ J;eTgs" Jtrhg“ ;v;?oiﬁaTeéAgr?r?gdgnZIiiWk;:fétions
and the other is based on solving its linear evolution equation. P 9 y
% ) = (d, 'r) = 0 as Zk [Tk,IAk,R — 7’k,RAk,I] = 0 and

We show that the Monte Carlo method works well over the entit& " : .

length of 24 000 km, corresponding to the experimental systefk “* [rk.14k,r — 7k,rA),1] = 0, from which we infer

We validated the linearization by comparison of its predictions _ _ 2

to 10000 realizations of the Monte Carlo method. We showed Z[ak’IAk’R anr ] = %:W Frwn)ldi]

that less than 2000 realizations are necessary to accurately cal- (36a)
culate the elements of the covariance matrix. Itis also possible to 5
directly calculate the covariance matrix by solving the ODE that Z wilon,14kR = ar,r Ak = Z Wil + Twr) | Ax[”.
governs its evolution. However, to do so over the entire length ¥ k

of 24 000 km, it is necessary to continuously separate the time (36Db)

and phase jitter from the rest of the covariance matrix. We Wilomparing the last two identities with (35a) and (35b), we find
discuss this issue in detail in a future publication. that the sums in (35a) and (35b) vanish with the chéige= ¢
The main limitation of our current approach is the absence gfq 3 — . This result shows that our definition of an average

interpulse interactions since we only propagate a single pulsg,se (32) is reasonable and consistent with the least-squares fit
in a single wavelength channel. This assumption is appropri i%)_

for the particular experimental system that we studied, but is not
appropriate for most commercial systems. In the future, we will

study generalizations of our method to multiple pulses and also
apply it to different modulation formats, such as CRZ and NRz, The authors would like to thank D. Marcuse, J. Zweck, and B.
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