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Efficient and Accurate Computation of Eye Diagrams
and Bit-Error Rates in a Single-Channel CRZ System

Ronald Holzlöhner, Curtis R. Menyuk, William L. Kath, and Vladimir S. Grigoryan

Abstract—We use linearization to compute the noise evolution
in a 10-Gb/s single-channel chirped return-to-zero (CRZ) system
propagating over 6100 km, transmitting 32 bits. Linearization al-
lows us to efficiently and accurately compute eye diagrams and bit
error rates (BERs) without the use of Monte Carlo simulations.
Phase jitter prevents the successful application of linearization un-
less it is removed, and we describe a method to separately remove
it from each pulse in the signal. We show that the BER in our test
system is dominated by the bit pattern that leads to the smallest
eye opening in a noise-free simulation.

Index Terms—Amplifier noise, linear approximation, Monte
Carlo methods, optical fiber communication, optical kerr effect,
phase jitter, receivers, spectral analysis.

I. INTRODUCTION

NOISE in optical communications systems deteriorates the
bit-error-rate (BER) and sets the lower limit on the signal

power. BERs are commonly estimated by running Monte Carlo
simulations and extrapolating the results under the assumption
that the electrical power at the receiver after narrow-band fil-
tering is Gaussian distributed in the marks (ONES) and spaces
(ZEROS) [1]. This method is time consuming and not always re-
liable. In this letter, we report on the application of lineariza-
tion to calculate the eye diagrams and BER in a single-channel
chirped return-to-zero (CRZ) system propagating 32 bits over
6100 km. We focused on this system because it is well-charac-
terized in simulations [2], and it is similar to one of the channels
in some commercial wavelength-division-multiplexing (WDM)
submarine systems [3]. We have also successfully applied this
approach to a CRZ system with multiple channels, and we will
report on these results in a future publication.

Previous study of a dispersion-managed soliton (DMS)
system [4] showed that it is possible to use linearization to
calculate the effects of accumulated noise, but only if the phase
and timing jitter are handled separately from the other noise
components. This separation is necessary because the nonlinear
equations that govern the fiber transmission [4] imply that
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small amounts of amplitude and frequency noise can lead to
large amounts of phase and timing jitter respectively, which can
invalidate the linearization. However, these nonlinear equations
are also phase and time invariant, which implies that phase and
timing jitter can be removed from the standard Fourier basis
without affecting the subsequent evolution, in which case the
coefficients of the modified Fourier basis, along with the phase
and timing jitter, remain multivariate-Gaussian distributed far
longer than the original Fourier coefficients [4].1 This result
is well known in the theory of solitons, where it is standard to
use a basis set that consists of discrete as well as continuous
components, rather than the usual Fourier basis, when studying
the effects of perturbations and noise [5]–[7].

In this letter, we use a direct solution of the linearized evo-
lution equation to obtain the covariance matrix; we previously
used Monte Carlo simulations [4]. For the CRZ system that we
are studying here, we have found that it is necessary to remove
the phase jitter, but not the timing jitter. The basic approach that
we use is to follow the standard Fourier basis, projecting out and
removing the contribution to the phase from the Fourier coeffi-
cients at each amplifier, before the phase fluctuations have had
the opportunity to grow beyond the range of validity of the lin-
earization. At the end of the transmission line, there is a square
law receiver which is insensitive to the phase, so we do not keep
track of it.

We note that our approach assumes that noise–noise interac-
tions are negligible during transmission, but we take them into
account in the receiver, which we also assume has a realistic
narrow-band electrical Bessel filter. Thus, our work is a gen-
eralization of [8], in that the noise that enters the receiver is
not white, but is determined by the actual transmission, and we
apply realistic electrical filtering.

Our approach is fully deterministic and does not rely at all on
Monte Carlo simulations, which allows us to greatly increase
the accuracy at small BERs at a fraction of the computational
cost. We extend previous work [4] by showing that it is possible
to remove the phase jitter from the covariance matrix at each
amplifier and for each signal pulse separately, allowing us for
the first time to deal with strings containing many overlapping
bits. To validate our results, we compare them to standard Monte
Carlo simulations.

II. SIMULATION PROCEDURE

Our simulated transmission line consists of 34 dispersion map
periods each of length 180 km, for a total distance of 6,120 km.
Each map period contains a 160-km span of normal dispersion

1We note that the phase is only Gaussian distributed if we track the phase
change on the infinite line. If we only track it in the range [0, 2�], then it is Ja-
cobi-� function distributed. This function is the periodic analogue of a Gaussian
distribution.
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fiber with 2.5 ps/nmkm, followed by a 20-km span of anoma-
lous dispersion fiber with 16.5 ps/nmkm. We use precompen-
sating and postcompensating fibers, each of which has a total
dispersion of 916 ps/nm. The loss is compensated every 45 km
by an erbium-doped fiber amplifier (EDFA) with a spontaneous
emission factor of . The signal pulses are copolar-
ized and have a full-width at half-maxiumu (FWHM) duration
of 28 ps with a chirped raised-cosine shape of the form

where is the envelope of the optical field at time,
with the bit spacing ps and the chirp pa-

rameter is [9]. The initial optical peak power is
mW before entering the precompensating fiber. We

transmit 32 bits, corresponding to a pseudorandom bit sequence
of 2 bits plus an additional zero bit, thereby ex-
hausting all possible bit patterns of length five. Fig. 1 shows the
narrow-band filtered noise-free receiver voltage after 6100 km
of transmission.

We proceed by first expressing the optical field enve-
lope as , where is the noise-free
field and represents accumulated noise. We next write

, where and
represent the real and imaginary noise Fourier

coefficients and with the period . We
define the real vector

of length 2 , where the symbol denotes the transpose. The
vector spans the low frequency modes from to

and we choose and
in this work. The evolution of the noise covariance
matrix over one fiber leg from to , in
which no noise is added, followed by an EDFA with gain, is
given by

(1)

where is a propagator matrix, is the identity matrix, and
equals half the average amplified spontaneous emission (ASE)
noise power per frequency mode. We choose a perturbative
method to compute . We first let and be the
noise-free optical field at the beginning and end of the fiber
span, respectively. We then perturb in a single fre-
quency mode by a small amount and launch the perturbed
signal . At , we
obtain by solving our nonlinear transmission equa-
tion and calculate the deviation
and its Fourier space vector . The elements of are given
by We find that the perturbation method is
numerically stable and its result are independent of the value of

over several orders of magnitude. By successive application
of (1), we can propagate the covariance matrix from amplifier
to amplifier.

The phase jitter separation is a crucial step, and its
application to the present system is the key new con-
tribution of this letter. We define the average phase of
a pulse that is confined to a bit slot beginning at as

[4]. If the

noise is small, then the component of the noise vectorthat
will rotate the phase of the signalis proportional to , where

is the real Fourier expansion vector of defined
analogously to . We remove the phase jitter that was produced
in the fiber span by projecting it out of to obtain a residual
noise vector defined by

(2)

where denotes the scalar product between real vectors. The
vector is now used instead of to compute , and hence
the phase jitter that is produced during the propagation is no
longer included in the covariance matrix.

Each pulse in the signal has a different phase. In a system
in which pulses do not overlap, such as a soliton system, these
pulse phases evolve independently and must be removed sepa-
rately from each other. To deal with nonoverlapping pulses, (2)
can be generalized by decomposing the signal into a sum
of mutually orthogonal pulses, that is , where

for , and oth-
erwise. Then the vectors and are computed for each
separately and (2) is applied.

In the present system, the maximum FWHM pulse duration
is 210 ps, leading to a significant overlap of adjacent pulses. We
find that the phase jitter can still be removed separately for each
pulse after applying artificial dispersion compensation. We pass
a copy of the signals and through an ideal
linear and lossless fiber whose total dispersion is , where

is the total accumulated dispersion at the pointL in the
transmission system. This procedure separates the pulses and is
fully reversible [2]. Then we compute by applying (2) to
each of the pulses separately and send the signal corresponding
to back to the pointL through an ideal fiber with total dis-
persion . One might argue that the phases of overlapping
pulses will not evolve independently, and hence might become
correlated; however, we find by comparison to Monte Carlo sim-
ulations that the procedure just described leads to accurate BERs
in the present system, indicating that the coupling of the signal in
one pulse to the phase jitter in an overlapping pulse is negligible.

We now summarize the algorithm for propagatingover one
fiber span from to , followed by an EDFA. First,
propagate the field using a standard Fourier split-step
algorithm, yielding . Then return to and repeat
the following for each :

1. compute by perturbing in
the -th frequency mode and propagating
it to ;

2. separate the pulses in the signal by
passing through a linear and
lossless fiber with total dispersion

;
3. compute the perturbation vector and
apply the phase jitter removal (2) sepa-
rately to each pulse, yielding the vector

of the dispersion compensated signal;
4. invert step 2 to compute at point
L. Evaluate the propagator matrix ele-
ments .
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Fig. 1. Narrow-band filtered noise-free receiver voltage of the signal at
6100 km. The 32 pdfs are computed at the points in time indicated by the dots.

Finally, compute according to (1).
At the receiver, we assume that there is an ideal square law

detector followed by a fifth-order Bessel filter with a FWHM
bandwidth of 8.6 GHz. In this case, the receiver will produce a
generalized chi-square distribution for both the marks and the
spaces [4].

III. RESULTS

We compute a pdf of the narrow-band filtered receiver voltage
at the center of each bit slot as indicated in Fig. 1 by the dots
in the noise-free signal. The variation in the peak power is due
to nonlinear pulse-to-pulse interactions during the transmission,
highlighting the importance of bit patterns.

Fig. 2(a) shows the average pdfs of the receiver voltage that
result from the linearization approach as solid lines in compar-
ison with a histogram from a traditional Monte Carlo simula-
tion, consisting of 86 000 noise realizations represented by the
dots. The voltage is normalized to the mean of the pdf of the
marks. The dashed lines show a Gaussian fit to the Monte Carlo
data, using the mean and variance. The large deviation between
the solid and dashed curves is obvious, especially in the spaces.
On the other hand, the agreement between the linearization ap-
proach and the Monte Carlo results is excellent. By integrating
the pdfs we obtain optimal BERs of 1.710 from the lin-
earization approach and 9.910 from the Gaussian fit of
the Monte Carlo data; the latter corresponds to a-factor of
6.71 . Note that the relatively small difference between these two
BERs occurs because the Gaussian fit overestimates the pdf of
the marks and underestimates it in the spaces. The dash-dotted
line shows the pdf of the marks that we obtain if we do not sep-
arate the phase jitter, which is clearly wrong.

The left solid curve in Fig. 2(b) shows the error probability
of detecting a “1,” using a given decision level, when a

“0” was sent, corresponding to the left pdf in Fig. 2(a), and the
right solid curve is the probability of detecting a “0” when
a “1” was sent. The dashed lines show the same, except that
only the mark with the lowest voltagein the noise-free signal
and the space with the highest voltage were taken into account,
respectively. The error rates near the optimum decision level
are dominated by the worst mark and space, respectively. This
result indicates that in our system it is sufficient to apply the
linearization method only to the patterns that exhibit the worst
behavior in the absence of noise to obtain a good approximation
of the average pdfs and the BER.

IV. CONCLUSION

We applied the deterministic noise linearization method to
a 10-Gb/s single-channel CRZ system with a transmission dis-
tance of 6100 km. Extending previous work [4], we were able

Fig. 2. (a) Solid lines: Average pdfs from the linearization approach. Dots:
Histogram from a Monte Carlo simulation. Dashed lines: Gaussian fit to the
dots using the mean and variance. Dash-dotted line: Average pdf from the
linearization approach without phase jitter separation. (b) Solid lines: Error
probabilitiesP andP corresponding to the solid lines in (a). Dashed
lines:P andP for the worst noise-free mark and space only.

to compute the accurate pdfs and the BER of a signal with
32 strongly overlapping bits. The crucial step in the lineariza-
tion is the removal of the phase jitter, which must be performed
separately for each pulse. Our results also indicate that at least in
the present test system, it is sufficient to apply the linearization
to the worst noise-free patterns in a bit string which significantly
reduces the computational cost of the simulation.
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