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Abstract—We studied the efficiency of different implementa- 7 — z/v, is the retarded time, whereis physical time and, is
tions of the split-step Fourier method for solving the nonlinear  the group velocity. Even though (1) does not provide a complete
tSchro\njl\}nger equat(ijo%that efmploy diffefrfr:‘t %t_?fp-sizte_selclaction tcri- physical description of a system, it is the basis for modeling op-
eria. We compared the performance of the different implementa- ) C .
tions for a variF:aty of pulge formats and systems, includ?ng higher tlcal-'flber commuplcatlons S){stems. Indeed, one can modify the
order solitons, collisions of soliton pulses, a single-channel period- NoNlinear Schrodinger equation (1) to incorporate the effects of
ically stationary dispersion-managed soliton system, and chirped fiber loss, third-order dispersion, amplification, amplified spon-
return to zero systems with single and multiple channels. We in- taneous emission noise, and polarization mode dispersion to ob-
troduce a globally third-order accurate split-step scheme, in which - tain a more realistic model of optical-fiber transmission [2]-[4].

a bound on the local error is used to select the step size. In many Equation (1) with3” < 0 has a well-known analytical soliton

cases, this method is the most efficient when compared with com- uti ith t of kabl i hich ai d
monly used step-size selection criteria, and it is robust for a wide solution with a se€t of remarkable properties, which gives deep

range of systems providing a system-independent rule for choosing insightinto the nature of the dispersive and nonlinear effects [5].
the step sizes. We find that a step-size selection method based orHowever, in almost all cases, (1) and its modifications cannot

limiting the nonlinear phase rotation of each step is not efficientfor - be solved analytically and one has to use numerical approaches.
many optical-fiber transmission systems, although it works wellfor  The most commonly used numerical scheme for solving (1) is

solitons. We also tested a method that uses a logarithmic step-size . . S . LI
distribution to bound the amount of spurious four-wave mixing. the split-step Fourier method, which is convenient for its sim-

This method is as efficient as other second-order schemes in thePliCity and flexibility in dealing with higher order dispersion,
single-channel dispersion-managed soliton system, while it is not the Raman effect, and filtering [2].

effici_ent in other cases inc!uding multichannel sir_nulations. We find_ In this paper, we focus on the split-step Fourier method. The
that in most cases, the simple approach in which the step size 'Sef‘ficiency of the split-step method depends on both the time-do-

held constant is the least efficient of all the methods. Finally, we - . . L
implemented a method in which the step size is inversely propor- Main (or frequency-domain) resolution and on the distribution of

tional to the largest group velocity difference between channels. Stepsizesalongthefiber. Insimulations of optical-fiber transmis-
This scheme performs best in multichannel optical communica- sion systems, the time and frequency resolutions are determined

tions systems for the values of accuracy typically required in most py the bandwidth of the signal and the number of bits that are to be
transmission simulations. propagated through the system, respectively. Consequently, the
Index Terms—Adaptive algorithms, numerical analysis, optical properties of the signal determine the minimum required number
fiber communication simulation, optical propagation, optical  of Fourier modes. Although the number of Fourier modes affects
solitons, software peformance, split-step Fourier method (SSFM), he accuracy of the numerical solution, as we will discuss later, it
time-frequency analysis. o . . .
does not change the qualitative behavior of the spatial step-size
selection algorithm. In this paper, we focus on the accuracy and
|. INTRODUCTION efficiency of different spatial step-size selection criteria.

HE NONLINEAR Schrédinger equation, which can be A_vari_e_ty of step-size selection criteria, most based on phys-
ical intuition, have been proposed for optimizing the split-step

written as . . S
9 " 52 method. The figure of merit for each criterion is the computa-
2 ﬂ__f; + ylulPu=0 (1) tional cost for a given resulting global accuracy. Historically, in
0z 2 ot numerical methods used to solve (1), the step-size distribution

has been shown to govern the propagation of light in a lossleggs optimized for simulating soliton propagation. However, this
optical fiber with second-order dispersion [1]. In (L)js the optimization is not necessarily appropriate for modeling modern
complex field envelope; is distance” is the second-order transmission systems, which often feature both high and low
dispersion, and is the nonlinear coefficient. The quantity=  dispersion and relatively small nonlinearity, by which we mean
that the nonlinear length scale is long compared to typical dis-
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due to nonlinearity does not exceed a certain limit. This methedhere D = —i(3”/2)9%/0t2 is the dispersion operator and
was designed with soliton propagation in mind. The second, thgu] = iv|u|? is the nonlinear operator. Although the following
logarithmic step-size methpid designed to efficiently suppressdiscussion is for the nonlinear Schrédinger equation (1), the ar-
spurious FWM, by employing a logarithmic distribution of theyuments and conclusions also apply to the modified versions of
step sizes [6]. In the third method, thelk-off methodthe step (1) that model realistic optical-fiber transmission systems and to
size is chosen to be inversely proportional to the product of tgeneral reaction-diffusion equations. In the symmetric split-step
absolute value of dispersion and the spectral bandwidth of théheme, the solution to (2) is approximated by
signal. The idea behind this criterion is to resolve the collisions b X h b
between pulses in different channels or at least to have a mggz+h, t) ~ exp (—D) exp {hN [u (z+—, f)] } exp (—D).
sure for the violation of this criterion. This method was designed 2 2 2 ()
for low power, multichannel systems. In the fourthe con-  gjnce the dispersion and nonlinear operators do not commute in
stant step-size methptihe step sizes are kept constant along thganeral, the solution (3) is only an approximation to the exact so-
whole transmission path. lution. An argument based on the Baker—Campbell-Hausdorff
Finally, we implement a method we call thecal-error  ¢5:mja shows that thiecal error, which is the error incurred in
method in which the step size is selected by bounding thegingie step of the symmetric split-step scheme, has a leading-
relative local error of the step. In addition, in this method, qar term that is of third order in the step sizd.e, the error
we obtain a higher order solution that is globally third-ordgg, O(h3) [10]. When we state that an error@h™), we mean
accurate. The method is inspired by and closely related #t it is bounded by’h™ for some constart. Since the total

widely used algorithms for adaptively controlling the step SiZ|’?umber of steps in a fiber span is inversely proportional to the

in ordinary differential equation solvers [7]. In particular, W%verage step size, tigtobal erroraccumulated over a fiber span
have adopted the well-known techniques of step-doubling Ocecond order in, the step siggh?)

estimate the local error and linear extrapolation to obtain theFinding an optimal step-size distribution depends on the par-

higher ordt_ar solution. .TO the b(?St of our "".‘OW'edge' althouﬁ”&ular optical transmission system. We will review several cri-
they are widely used in other fields, techniques such as th?ge

have not been previously used in simulations of optical-fiberrla for choosing the step size in the split-step Fourier method

o . ) . and we will introduce a new criterion based on a measure of the
transmission systems or even seriously investigated. As,Is

typically the case for higher order schemes, our scheme haslfhceal error.
advantage that it is much more computationally efficient tha
second-order scheme when the global accuracy is high [7], [3].
On the other hand, it can be less efficient at low accuracy. ThisThe nonlinear phase-rotation method is a variable step-size
behavior is consistent with the results of Fornberg and Driscéilethod that is designed for systems in which nonlinearity plays
[9], who compared split-step methods of order 2, 4, and 6 wighmajor role. For a step of size the effect of the nonlinear
several higher order linear multistep methods. For a two-soliteperatorNV is to increment the phase ofby an amountx;, =
collision, Fornberg and Driscoll showed that for the globay|u|*h. If we impose an upper limit7* on the nonlinear phase
error range of 10°~10 2, the second-order split-step schem@crementpxy,, we obtain the bound on the step size

Nonlinear Phase-Rotation Method

is more efficient than the fourth- and sixth-order schemes. max
However, for global errors smaller than1Q the higher order h < ’VEIT 4)

schemes become more efficient. We found similar qualita-

tive behavior for the second-order schemes and third-ordehis criterion for selecting the step size was originally applied to

local-error method that we study here. simulate soliton propagation and is widely used in optical-fiber
For typical realistic optical-fiber transmission systems, wi&ansmission simulators. However, as we will show later, this

will demonstrate that the walk-off method is the most efficierdpproach is far from optimal for many modern communications

of the four methods in the range of accuracy of commercial isystems.

terest. Nevertheless, the local-error method is still competitive

in this accuracy range, and moreover, itis robust for a wide ranGe Spurious Four-Wave Mixing and Logarithmic Step-Size

of systems. Distribution

The remainder of the paper is organized as follows. First, we 5, improper distribution of the step sizes may lead not only

revigwthgbs pli';]—st?p ”?e‘hIOd andthe erro;aﬁsoci?ted withit. I\t‘fﬁiﬁ general reduction of accuracy but also to numerical artifacts.
we describe the five implementations of the split-step met rghieri [11] demonstrates that the power of the four-wave

Next, We_discuss simglation_results comparing the performa%%(ing (FWM) products can be greatly overestimated by a con-
of these implementations. Finally, the conclusion follows. step-size method, since FWM is a resonance effect. To ef-
ficiently suppress this numerical artifact, Bos#tal.[6] used a

ll. THEORY logarithmic distribution of the step sizes to keep the spurious
A. Origin of the Split-Step Error FWM components below a certain level. For a fiber span of
To estimate the local and global errors in the split-step Fouri'@ﬁgthé and loss coefficierT, the step size of theth step Is
method it is convenient to represent (1) in the form given by
8“('27 t) 2 \J = _i i
o, - P F Nululz) @ b= = ox [ ) ©
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wheres = [1 —exp(—2T'L)| /K andK is the number of steps some constanf’. Next, we return toz and compute the fine
per fiber span. We will call this implementation of the split-stepolutionu; at the same distance+ 2k using two steps of size
method thdogarithmic step-size method. h. As done previously, the fine solution is related to the true
solution by
D. Walk-Off Method 5 .
In many optical-fiber communications systems, chromatic up = e + 2607 + O(h7). )

dispersion is the dominant effect and nonlinearity only playsg; taking an appropriate linear combination of the fine and
secondary role, particularly in multichannel systems in whickyarse solutions we can obtain an approximate solution at
the wavelength channels cover a broad spectrum. In this cagghich the leading order error term is of fourth order in the

it can be reasonable to use thelk-off methodin which the  giep) si7¢[7]. From (7) and (8), it follows that this higher order
step size is determined by the largest group velocity differengg ;ion is given by

between channels. The basic idea is to choose the step size to be 4 1

smaller than a characteristic walk-off length. In a multichannel Uy = SUF — —Uc = Ug + O(h*) 9)
system with large local dispersion, pulses in different channels . 3 . 3 .

move through each other very rapidly. To resolve the coIIisioP{\éShICh we take as the input to the nex_t stt_ep of Sah_e

between pulses in different channels, the step size in the walk/!n the local-error method, the step size is adaptively chosen so
off method is chosen so that in a single step, two pulses in thit the local error incurred fromto = + 2/ is bounded within

two edge channels shift with respect to each other by a tirﬂespemﬁed_ range. N_ow the relative local erégrof the higher
that is a specified fraction of the pulse width. Consequently, tQgder solution is defined by

step size is given by 5y = llua — ue| (10)

C el
= (6) : . 5\ /2
AV, where the normi|u|| is defined ag|u|| = (f lu(t)] dt)

where AV, is the largest group velocity difference betweef!OWeVer, since we cannot compute the true solutipm prac-
channels and” is a constant that can vary from system tgice, we cannot compute the local error using (10). Instead, we

h

system. In any system\V, = |D2)\2 — Dy \|, wherep, define therelative local errorof a step to be the local error in
and D, are the dispersions corresponding to the smallest afi coarse solution relative to the fine solution
largest wavelength&; and \s. Since AV, is constant in any _ ey — el

. : AL S . g - 6= . (11)
particular kind of fiber, in a given type of fiber, the step size is [leer]l

constant. The walk-off method can be applied to single-channbtice thats is a measure of the true local errrsinces can
as well as multichannel systems by chooshgand; at the be obtained fron8s, by replacingu; by u;. The step size is
two edges of the signal spectrum. chosen by keeping the relative local erfowithin a specified
. range(1/26¢, 6 ), wheredg is the goal local error. I > 264,
E. Constant Step-Size Method the s‘(a)(lu{ion is dis)carded and the step size is halvetsifn the
The simplest way to implement the split-step Fourier methaenge(s¢, 26¢), the step size is divided by a factor df2 for
is to use a constant step size along the whole transmission p#ib. next step. I§ < 1/2684, the step size is multiplied by a
The global accuracy can be improved only by increasing thactor of2'/3 for the next step.
total number of steps. Note that the walk-off and constant step-Rather than simply computing the fine solution, our method
size methods are identical in systems with only one type of fibgomputes both the fine and coarse solutions. Although it
requires 50% more Fourier transforms than does the standard
F. Local-Error Method symmetric split-step method, the method yields both a higher
In practice, it is desirable to have a general criterion farrder solution, which is globally third-order accurate, and a
choosing the step-size distribution that is close to optimal for ameasure of the relative local error that is used to control the
arbitrary system. Adaptive methods for controlling the step sistep size. However, it is important to understand that the higher
using a measure of the local error are widely used in ordinapyder solutionu, is not always more accurate than the fine
differential equation solvers [7]. We have implemented a sches@utionu ¢, especially when the step size is large, since we are
based on bounding the error in each step using the technideinding the local erraf of the coarse solution relative to the
of step-doubling and local extrapolation. Given the fieldt a fine solution, rather than the true local erfgrof the scheme.
distancer, our aimis to compute the field at+ 2h. Supposethat ~ Since we do not make any assumptions about the physical
we perform one step of siz# in a symmetric split-step scheme properties of the system, such as the amount of nonlinearity or
We will refer to the solution obtained at+ 2/ as the coarse dispersion, we expect the local-error method to work well in an
solution ... Since the local error in the symmetric split-ste@rbitrary system. In order to simulate a system with optimal ef-
scheme is third order, there is a constarsp that ficiency, one first needs to investigate it to ascertain the major
te = s + K(2h)® + O(hY) 7 sources of the split-step error. Assuming that the system i.s dom.-
inated by one source of error, one can select an appropriate cri-
where the true solution; is the exact solution at+2h obtained terion for choosing the step sizes. The local-error method al-
from the given solution at. When we write that, = v+ O(h*) lows us to deal with general systems when the major source of
for some functions: andv, we mean thafu — v| < Ch* for error is unknown or may even change during the propagation,
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of I ’ | ’ o second-order and fifth-order solitons, respectively. The number
1010-7 107 107 107 107 1072 of Fourier modes is 1024 and the simulation time window is

50 ps. We show the performance of the different implementa-
tions of the split-step method applied to the second-order soliton
in Fig. 1(a) and to the fifth-order soliton in Fig. 1(b). In Fig. 1,
we have plotted the number of FFTs versus the global rela-
) . ) ) . ) tive error for the different step-size criteria. Although the per-
or when performing a series of simulations in which the systefg:mance of the local-error method is not significantly better
parameters are varied. The method can be applied to a varietypfi,e range of low accuracy values 70-10~% at high accu-
systems without sacrificing too much computational efficiencyacy, the computational cost of the local-error method is one
or two orders of magnitude less than for other methods. Notice
1. N UMERICAL RESULTS that the nonlinear phase method performs better than the con-
In this section, we compare the efficiency of the five imStant step-size method, consistent with the system’s large non-

plementations of the split-step method described in Section linearity. The slope of the local-error method curve is less than
Since most of the computational time is consumed by evaluatifitpse of the other two methods since the constant step size and
fast Fourier transforms (FFTs), we use the number of FFTs ﬂg}nlinear phase methods are globally second-order accurate,
simulation as a measure of the total computational cost [9]. \Wiile the local-error method is globally third-order accurate.
used the following scheme to compare the different methodd1e walk-off and constant step-size methods are identical since
First, we compute a solution, that is accurate to machine prethis system includes only one type of fiber. The logarithmic
cision using the standard symmetric split-step method (with st&{§P-size method reduces to the constant step-size method be-
sizes on the order of 5 cm). Next, we compute the numerical &use the fiber is lossless and (5) leads to a constant step-size
lution u,, for each of the different split-step implementationsdistribution.

and calculate thglobal relative errore defined by

Global relative error

Fig. 1. Plot of the total number of FFTs versus global relative erréor
(a) second-order and (b) fifth-order solitons.

B. Soliton Collisions

Soliton collisions can be a good test for numerical methods
because the subtle effect of FWM cancellation after the colli-
ﬁ;on is very sensitive to numerical errors [3]. The fiber type and

_ l|tn — wall

Tl 12)

ee initial pulse shape are the same as in Section Ill-A, except

atA = 1. The pulse duration is 4 ps and the peak power is
8.8 mW. We launch two soliton pulses separated in time by
. . 100 ps and with a central-frequency difference of 800 GHz.
A. Higher Order Solitons The number of Fourier modes is 3072 and the simulation time
We start with the propagation of second-order and fifth-ord@findow is 400 ps. We show the performance of the different
solitons. These systems are both highly nonlinear. In additiqethods in Fig. 2. The local error, constant step size, and non-
higher order solitons are very sensitive to numerical errors, thisear phase-rotation methods perform equally well at low ac-
requiring an efficient adaptive algorithm. The exact functionglracy when the global error is in the range 1910~", while
form of the N-soliton solution can be found in [3], [5]. We the local-error method is much more efficient when the global
use an anomalous-dispersion fiber with = —0.1 ps’/km.  error s less than I0'. Global errors less than 10 are required
The initial pulse is a hyperbolic secant of the fomnt) = to estimate the FWM terms correctly and to have them cancel
An(18”|/~) " *sech(nt), where the nonlinear coefficientis=  out after the collision. The nonlinear phase method still works
2.2W~tkm™!, the inverse pulse durationiis= 0.44 ps~',and better than the constant step-size method because the nonlinear
whereA = 2 and A = 5 for the second-order and fifth-orderinteractions are critical in the propagation. As in Section IlI-A,
solitons, respectively. The corresponding FWHM pulse durtie logarithmic step size and walk-off methods reduce to the
tion is 4 ps, and the peak powers are 35 and 220 mW for thenstant step-size method.

where we use the norm defined in Section II-F. We compare t
performance of the different methods by plotting the number gl
FFTs versus the global relative error.
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lision when the targeted range for the local error is (0 B~°, 210 A AN oy - ]
107%), and the initial guess for the step size is 1000 m. Since B3
the local error for this initial step is much less than the targeted o
range of value_s, at egch step, the step sizes are increase_zd_ until "o 107 0t 107 1072 107"
the local error is within the targeted range. The pulse collision Global relative error

O.C.Curs ata dIStan(_:e of 200 km'_ Al thIS. pomt, we observe a S‘g_. 4. Plot of the total number of FFTs versus global relative errar the
nificant decrease in the step size, which is necessary to acgHgle-channel (a) DMS and (b) CRZ systems.
rately resolve the collision. After the collision, the step size is

increased to the same value as before the collision. The last chgﬁzity of the pulse shape as it propagates along the fiber. The

is smaller than the previous step simply because the remainmr%pagation distance is 1280 km. The simulation time window

Z(Iegcctlr(i)tﬂrzf the fiber is shorter than the step size chosen by ?3166400 ps and the number of Fourier modes is 6144. We have

not included a dispersion slope in this system since there is only
a single channel and previous work indicates that higher order
dispersion plays no role [12].

In this section, we study periodically stationary dispersion- The CRZz system is based on a 180 km dispersion map
managed soliton (DMS) and chirped-return-to-zero (CRZbnsisting of 160 km of dispersion-shifted fiber with disper-
systems that resemble experimental systems [12], [13]. T§en —2.44 ps/nrkm followed by 20 km of standard fiber
DMS system is highly nonlinear, meaning that both dispersiqiith dispersion 16.55 ps/n#m [13]. The dispersion slope
and nonlinearity determine the signal evolution, while the CRiZ 0.075 p$/ nmkm and the fiber loss is 0.21 dB/km for
system is quasilinear and the evolution is mostly determined Byth fibers, while the amplifier spacing is 45 km. Symmetric
dispersion [14], [15]. Thus we are studying the four split-stegispersion pre- and postcompensation is performed using fiber
implementations using two different types of systems. Wehans of length 2.0 km, where the dispersion is 93.5 p&imm
include fiber attenuation and gain, but we do not consider aftre slope is—0.2 pgnm-km and the loss is 0.5 dB/km. The
plifier noise. We use random bit strings of length 64 that repeigitial pulses are phase-modulated, raised-cosine pulses with
periodically. We stress that our goal is to test the performangemw peak power and a chirp parameter equak-®6 [14].
of the numerical methods for realistic systems rather than Toe bit rate is 10 Gb/s and the propagation distance is 1800
achieve optimal propagation. Consequently, it is important thah. The simulation time window is 6400 ps and the number of
we have pulse streams rather than single pulses, that we Bs@rier modes is 4096.
dispersion management, and that we include the effects of fibefThe performance of the four split-step implementations for
loss and amplifier gain. the single-channel DMS and CRZ systems is shown in Fig. 4(a)

The DMS systemis based on a 107-km dispersion map, whighd (b), respectively. In both systems, the local-error method
consists of four dispersion-shifted fiber spans, each of 25 kperforms best over the entire range. Due to its higher order of
with normal dispersion equal t61.10 ps/nrrkm, followed by accuracy, the data points for the local-error method lie on a line
7 km of standard single-mode fiber with anomalous dispersioith a smaller absolute slope than those of the other methods,
of 16.6 ps/nrrkm at 1551 nm [12]. The loss in both fibers is 0.2Zas expected. However, all methods become comparable in the
dB/km, and the amplifier spacing is 25 km with an additionaknge of global errors 1G—10"*, the region of most interest in
amplifier after the standard single-mode fiber. We use Gausssimulating fiber-optic links. We note however, that in the CRZ
pulses with a FWHM duration of 9 ps, as is appropriate for a ystem the performance of the logarithmic step-size method is
Gb/s bit rate. The peak power is 8 mW. The signal is launchedmewhat poorer than that of the nonlinear phase and walk-off
in the middle of a span of anomalous fiber to ensure the pemethods.

C. Single-Channel Systems
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In order to compare the split-step implementations for mod-
ellng multichannel co_mmu_nlcatlo_ns systems, .We used the s |ge.6. Step sizé as a function of distance for the local-error method applied
CRZ system as described in Section l1I-C. In Fig. 5, we show th€the muitichannel CRZ system. The upper two plots show the step sizes for
performance of the split-step selection criteria on a five-channke¢ first two and last two periods of the dispersion map, and the lower two plots
CRZ system with a 50-GHz channel spacing As in the singl now the corresponding portions of the dispersion map. Triangles indicate the

! = ositions of amplifiers.
channel case, the local-error method is much more efficient at

,h'gh accuracy. 3Howe¥er, "’,‘t IO_W acguracy, with the g!obal errQﬁzcuracy. The logarithmic step-size method is not efficient in
in the range 10°-10 ", which is typical for most practical Sys-yhe cRz system because the step-size choice is only based
tems, the walk-off method performs best. At low accuracy, thg, limiting spurious FWM, which is only one of the potential
local-error method does not perform as well as the walk-offyrces of error in a multichannel simulation. We also found
method for the following reasons. First, in the multichannght in the logarithmic step-size method, the error grows most
CRZ system, the step size within each fiber in the local-errespigly in fibers with high dispersion. We find that the constant
method varies approximately within a factor of two, and thgiep-size method is inefficient in the multichannel CRZ system.
average value is comparable to the step size in the walk-qfhe reason it performs so poorly is that for a given step size
method for a given global error. However, each pair of stefige global error does not accumulate linearly with distance.
in the local-error method is 50% more expensive than in tinsequently, in some sections of the transmission line the
walk-off method. In addition, when the step size is large anglobal error grows rapidly, while in others the error accumulates
the global accuracy is low, the higher order solutiqrmay not  very slowly and computational effort is wasted.
be as accurate as the fine solution Indeed, we have observed In Fig. 6, we show the step sizes in the local-error method as
that the local-error method performs slightly better at low global function of propagation distance when the targeted range for
accuracy if we keep the fine solutiary instead of the higher the local error is (0.5 10 %, 2x 10™%). The upper two plots
order solutionu, at each step. show the step sizes for the first two and last two periods of the
Next, we observe that the nonlinear phase-rotation methdigpersion map, and the lower two plots show the corresponding
does not perform as well as the walk-off method in the muportions of the dispersion map. The amplifiers, marked by trian-
tichannel CRZ system, although the performance of the tvgtes, are placed after the precompensation fiber and then every
methods is comparable in the single-channel DMS and CRB km. Notice that the step size increases as the signal power
systems. There are two major reasons for this behavior. Fishd the strength of the nonlinear interactions decrease due to
in contrast to the single-channel case, the walk-off criteridhe fiber loss. Also note that step size is smaller in fibers with
becomes more physically relevant in a WDM system, in whidhigher dispersion since the pulses in neighboring channels move
pulses in different channels collide. Second, the step sizefaster with respect to each other.
the nonlinear phase-rotation method is determined by the pealko characterize the dependence of the local-error method on
power in the time domain. In the single-channel CRZ systertihe number of Fourier modes, we modeled the multichannel
the power function contains spikes due to the overlap betwe€RZ system with different numbers of Fourier modésThe
neighboring pulses. However, between amplifiers the pesadsults in Fig. 5 were obtained with = 4096. We also simu-
power decreases monotonically with distance due to fiber attdated the system witl' = 3072, N = 6144, andN = 8192.
uation. By contrast, the peak power of the multichannel systdmeach case, the log—log plots of the number of FFTs versus the
does not decrease monotonically with distance but contaigiebal error have the same slope as for the local-error method
irregular spikes because pulses from different channels rapighpt shown in Fig. 5. However, the curves are slightly shifted
pass through each other. As a consequence, there is a signifiedgtit respect to each other. The number of FFTs required to
proportion of step sizes in the nonlinear phase-rotation methachieve a given global error can increase by a factor of two
that are much smaller than they need to be for a given glolz NV is increased from 3072 to 6144. Since we keep the time

Distance (km)
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- 10° O CRZ 1 chamnel | 5 o® a desired global accuracy. The method parameter is the param-
% O DMS I channel e o©° x o A eterinasplit-step method that we vary to adjust the accuracy of
o g gizr dz r":olﬁ?;: 0O o %o"oﬁ A the method. First, for a given global error, how much does the
E107 X Soliton collision 5 ©° © o 1% & method parameter depend on the particular system? Second, by
é I g & x what factor should the method parameter be decreased to halve
R &X%XCQA x b (a) Local error the global error?
oL — = . To answer the first question, in Fig. 7(a)—(e), we show the
10 0 cal relative errm 107 dependence of the global error on the method parameter for
5 10° , 5 . \ the local error, walk-off, nonlinear phase, logarithmic step, and
5 o ) y DDDJDO constant step-size methods, respectively. Although the walk-off
2 ooo A XSDDOOO method is the most efficient in some cases, it exhibits the
= X . .
=10 ooo A y ED%OO worst system dependence. In particular, for the five systems we
= @pooo x oo B o 1 studied, when the global error is 18 the walk-off parameter
8 AAAA xxxxxo o (b) Walk—off varies over five orders of magnitude, whereas the parameter
©i0t LA . for the other three methods vary only over one to two orders
107 10° 10 107 10 of magnitude. Even omitting the two soliton systems from the
o, Walk—off parameter (a.u.) comparison, the walk-off method has a greater system depen-
= 10 ' ' Q dence than the local-error method. Consequently, each new
§ N @%5@ N system requires a significantly different walk-off parameter to
ks 10 @X%D N A achieve the same global accuracy.
& E%EQFQ?A AAL To answer the second question, we examine the slopes of
% ® @ib;%( N Nonlinear phas the curves in Fig. 7. For the walk-off, nonlinear phase, and
G} 0~ B & A A . ©) OIII fnear phase logarithmic steps methods, the slopes are approximately 2, as
107 02 107! 10° 10! expected, since these three schemes are second order and the
Maximum nonlinear phase increment (a.u.) step sizes depend linearly on the method parameter. Ideally, the
5 10° . . . global error should depend linearly on the local error. However,
5 ox X" o for the local-error method, the slopes of the curves in Fig. 7(a)
E X xx X & <>3‘>g are approximately 1.3 rather than 1. The reason for this discrep-
§ 10" . X 00 o R¥g ancy is that the true local error (10) is unavailable. Instead, we
E 'wxxx 00000 g oF o 1 use an estimate of local error given by (11). In addition, in our
é . gob o (d) Log steps local-error algorithm, the local error (11) is maintained within a
10 g0t : = = , range of values rather than being kept constant.
10 10 10 10° 10
Average step size (m)
5 10" —5 . IS IV. CONCLUSION
=) o o X XX A
o o © e N oo We have studied the performance of different implementa-
ks oele © wg 0&8 tions of the symmetric split-step Fourier method for solving the
& nonlinear Schrddinger equation applied to various optical-fiber
%’ o transmission systems. We developed an implementation of the
5 (e) Constant steps . i Fouri hod that is alobally third-ord
0 N . . ‘ symmetric split-step Fourier method that is globally third-order
10’ 0" 10° 10° 10t 1o° accurate and for which the step sizes are chosen using a cri-
Step size (m) terion that keeps the local error within a specified range. We

showed that the local-error method performs best for modeling

Fig. 7. Plot of the global error as a function of method parameter for (a) Iocabticaj solitons, soliton—pulse interactions, and single-channel
error, (b) walk-off, (c) nonlinear phase, (d) logarithmic step, and (e) constan . ! . o
step methods. transmission systems. Because it is a higher order method, the

local-error method is much more computationally efficient at
high accuracy than the other three methods we considered for

window fixed, the frequency window increasesMsncreases, aII| of the systems we studied. This behavior is expected with

and more high-frequency components contribute to the globa
error. However, if we further increast from 4096 to 8192, l?ugher order schemes [9]. Moreover, even at low accuracy, the

the number of FFTs grows by less than 30%, since the adlgg/l-se;rsc:;rrnnsethod has the advantage that it is robust for arbi-
:Ir?; %Bﬂhsgenllﬁ%y cﬂ?ﬁﬁ;ﬂfﬁﬁ! tgut:;séd:r;{gf bandwidth o We find_that th.e nonlinear pha;e-rqtation meth.od. is inefficient
for modeling typical modern optical-fiber transmission systems,
. although it performs reasonably well for solitons. The loga-

E. Variation of Method Parameters rithmic step-size method, which is based on bounding the spu-

In this section, we address two important questions coneus FWM in each step [6], and the constant step-size method

cerning how the method parameter should be chosen to achiave not efficient for multichannel systems, although they can
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be as efficient as the nonlinear phase and walk-off methods
single-channel systems. Finally, the walk-off method, in whic
the step size is chosen to be inversely proportional to the fik
dispersion, performs well for multichannel systems over the €
curacy range of interest in commercial applications.
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