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Abstract—We completely describe the covariance matrix
method for the first time, and we use it to compute the noise
evolution in a 10-Gb/s single-channel dispersion-managed soliton
system propagating over 24 000 km. The linearization assumption
upon which the covariance matrix method is based breaks down,
unless we explicitly separate the phase and timing jitter of each
pulse from the noise. We describe a procedure for carrying out
this separation.

Index Terms—Amplifier noise, linear approximation, Monte
Carlo methods, optical fiber communication, optical Kerr effect,
phase jitter, receivers, spectral analysis.

I. INTRODUCTION

A MPLIFIED spontaneous emission (ASE) noise that optical
amplifiers add to the signal gives rise to bit errors and sets

the lower limit on the signal power. One traditional way of com-
puting bit error rates (BERs) and eye diagrams is to run Monte
Carlo simulations and extrapolate the results under the assump-
tion that the electrical power at the receiver after narrow-band
filtering is Gaussian distributed in the marks (ones) and spaces
(zeros). This method leads to large statistical fluctuations in the
tails of the probability density function (pdf) and is, hence, ineffi-
cient. As a consequence, system designers often use a simplified
approach in which they assume that the optical noise spectrum at
the receiver is white, effectively neglecting the nonlinear signal-
noise interaction. This simplification is often inappropriate for
long-haul optical communications systems. In this letter, we re-
port on the application of the covariance matrix method to calcu-
late the pdfs of the received voltage in a 10-Gb/s single-channel
dispersion-managed soliton (DMS) system with a transmission
distance of 24 000 km [1]. This method is based on the lineariza-
tion assumption that the noise does not interact with itself during
propagation through the fiber in an appropriate basis set [2], [3].
The pulses in the DMS system considered here are periodically
stationary and the signal propagation is highly nonlinear. Hence,
this system poses a stringent test of our approach.
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Previous study of the same system [2] showed that the lin-
earization assumption breaks down unless we use a basis set
for the covariance matrix in which phase and timing jitter are
separated from the other noise components. This separation is
necessary because the nonlinear equations that govern the fiber
transmission imply that small amounts of amplitude and fre-
quency noise can lead to large amounts of phase and timing
jitter, respectively, which in turn lead to a breakdown of the
linearization assumption in the standard Fourier basis. By con-
trast, if we modify the basis to separate out the noise compo-
nents whose first-order contribution generates phase and timing
jitter, we find that the coefficients of the modified Fourier basis,
along with the jitter, obey the linearization assumption and re-
main multivariate Gaussian distributed far longer than the orig-
inal Fourier coefficients [2]. This result is similar to one that is
well known in the theory of solitons, where it is standard to use
a basis set that consists of discrete as well as continuous com-
ponents, rather than the usual Fourier basis, when studying the
effects of perturbations and noise [4].

In this letter, we show how to apply the linearization assump-
tion to directly calculate the covariance matrix for a highly non-
linear DMS system. This work extends previous work in which
we used extensive Monte Carlo simulations to calculate the co-
variance matrix for the same DMS system that we describe here
[2], except that the path average dispersion is lower in this sim-
ulation, leading to a lower timing jitter. The Monte Carlo ap-
proach to calculating the covariance matrix, as described in [2],
serves to validate the linearization assumption, but it requires an
order of magnitude more computational time than the direct ap-
proach described here and is inherently less accurate. This work
also extends previous work in which we directly calculated the
covariance matrix for a chirped return-to-zero system [3]. In this
earlier work, it was not necessary to separate the timing jitter
from the other noise modes, which significantly simplifies the
algorithm. Thus, this work contains the first complete descrip-
tion of the covariance matrix method.

The basic approach that we use is to follow the evolution of
the standard Fourier basis, projecting out the contribution to the
phase and the central time shift from the Fourier coefficients at
each amplifier. At the end of the transmission line, there is a
square law receiver that is insensitive to the phase, so we do not
need to keep track of the phase. We reintroduce the effect of the
timing jitter by applying a convolution, as described in [2]. The
phase and timing jitter could in principle be separated from the
covariance matrix at the end of the transmission line. There is
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a loss of numerical accuracy unless the jitter is incrementally
separated.

Our approach is fully deterministic and does not rely at all on
Monte Carlo simulations, which allows us to greatly increase the
accuracy at small BERs at a fraction of the computational cost
of Monte Carlo simulations. To validate our results, we compare
them to standard Monte Carlo simulations. The nonlinearity in
the DMS system is significantly higher than in the majority of
all modern transmission systems and, hence, we expect our ap-
proach of use in almost any system.

II. SIMULATION PROCEDURE

The simulated 10-Gb/s transmission line models a recircu-
lating loop and consists of 225 periods of a dispersion map
106.7 km long. A complete description of the system and the
simulation is given in [1]. Each map contains a fiber span
100.24 km long and normal dispersion of1.096 ps/nm km
and a span of length 6.71 km and anomalous dispersion of
16.696 ps/nm km. The path average dispersion equals the ex-
perimental value of 0.02 ps/nmkm; we previously simulated a
system with 0.08 ps/nmkm [2]. Third-order dispersion is not
relevant in this system [1] and is set to zero. The carrier wave-
length is 1551.49 nm, matching the experimental value. The
fiber loss of 0.21 dB/km is compensated by five erbium-doped
fiber amplifiers (EDFAs). We assume an effective fiber area of
49 ( m) for both fiber types. One EDFA follows each of the
four 25-km segments of normal-dispersion fiber, and the fifth
follows the segment of anomalous-dispersion fiber. There is a
2.8-nm (350-GHz) optical bandpass filter in each map period
to reduce the amount of noise.

We model the amplifiers as EDFAs with static gain, as op-
posed to explicitly including gain saturation. We carefully ad-
just the static gains so that they equal the effective gains one
would obtain using EDFAs with a saturation time of 1 ms and a
saturation power of 10 mW in accordance with [2]. The sponta-
neous emission factor is . The launched pulses have
a Gaussian shape with a full-width at half-maximum duration
of 9 ps and a peak power of mW. The peak pulse
power at the beginning of the normal span is 3.1 mW. The signal
is injected and received at the chirp-free point near the middle
of the anomalous span. We transmit the 8-bit pseudorandom
bit sequence 11101000 in a total simulation time window of

ps, which includes all possible three-pulse sequences.
Since the solitons do not spread significantly during the trans-
mission, there is no need to study longer sequences of marks
and spaces. The average signal power is4.2 dBm. We model
the receiver as an ideal square law detector followed by an elec-
trical low-pass fifth-order Bessel filter with a one-sided 3-dB
bandwidth of 4.3 GHz.

To assess the degree of system nonlinearity, we define a non-
linear scale length as the length over which a nonlinear
phase rotation of occurs. We may write
with the nonlinearity coefficient (W km) . The
transmission distance of 24 000 km is 400 times larger than,
showing that the DMS system is highly nonlinear. By contrast,
commercial systems are 3–5 times the nonlinear length scale at
most [5].

We use the split-step Fourier method to solve the scalar non-
linear Schrödinger equation, which only takes into account one
optical polarization. In the recirculating loop that we are mod-
eling, the polarization dependent loss is large and the polariza-
tion controllers are optimized to pass the signal with minimum
loss. Consequently, the signal is dominated by one polarization,
and the orthogonal polarization can be neglected.

We proceed by first expressing the optical field enve-
lope as , where is the noise-free
field, and represents accumulated noise. We next write

, where and
are real and imaginary noise Fourier coefficients

and .1 We define the real vector
of

length , where the symbol denotes the transpose. We
choose and in this work.

The evolution of the noise covariance matrix
over one fiber leg from to , in which no noise

is added, followed by an EDFA with gain, is given by

(1)

where is a propagator matrix, is the identity matrix, and
equals half the average ASE noise power per frequency mode.
We compute using numerical differentiation, specifically the
Lyapunov method [6]. We first let and be the
noise-free optical field at the beginning and end of the fiber
span, respectively. We then perturb in a single fre-
quency mode by a small amount and launch the perturbed
signal . At , we ob-
tain by solving our nonlinear transmission equation
and calculate the deviation and
its Fourier space vector . The elements of are given by

. We find that the Lyapunov method is numer-
ically stable and its results are independent of the value of
over several orders of magnitude. By successive application of
(1), we can propagate the covariance matrix from amplifier to
amplifier.

The next step is the separation of the phase and timing jitter.
Each pulse in the signal has a different phase and central
time . Pulses do not overlap in our test system; hence, these
pulse phases evolve independently and must be removed sep-
arately from each other. We decompose the signal into
a sum of the four marks, writing , where

within the bit slot of the th mark, and ,
otherwise. We consider the eight modes and and
their real -dimensional Fourier space vectorsand , re-
spectively. Note that for a general signal ,
where denotes the scalar product between real vectors.2

Consider the transformed covariance matrix

(2)

where is an orthonormal matrix and is the covariance ma-
trix at the end of the transmission line. We constructso that
the modes form the first four columns, and the modes

1In [2] and [3],! should be replaced by�! .
2Except for specially constructed examples,(vvv ; www ) vanishes only in the

case of even pulses.
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form the following four columns. We fill the remaining
columns with columns of the -dimensional identity matrix.
Next, we make orthonormal by using the Gram–Schmidt
procedure [7]. The phase jitter of pulseis given by

. The jitter in any other mode can be computed anal-
ogously. In the DMS system, we find a relative amplitude jitter
of 17.4%, a phase jitter of , and a timing jitter of

ps. These values are the standard deviations of the
fluctuations averaged over the four pulses and agree with our
traditional Monte Carlo simulations.

We separate the phase and timing jitter by computing the ma-
trix that equals , except that the first eight rows and
columns are set to zero. Then we invert the transformation (2),
yielding the matrix . Using and ,
we compute the pdf of the electrical narrow-band filtered re-
ceiver voltage [2].

In order to avoid roundoff errors, we compute by sep-
arating the jitter at every amplifier, rather than only once at
the end. To each of the noise vectors we apply the two-
step Gram–Schmidt orthogonalization procedure [8] to obtain
residual noise vectors given by

(3a)

(3b)

The vectors are now used instead of to compute ,
and, hence, the phase and timing jitter that are produced during
the propagation are separated from the covariance matrix. The
method described in (3a) and (3b) is mathematically equivalent
to removing the jitter at the end of the transmission line.

We must reintroduce the effect of the timing jitter on the pdf
of the electric current at the receiver. The photodiode produces
the current , which we express as

, where is a time offset due to timing
jitter, and is the optical noise field described by .
We first set and compute the pdf of , and we
then convolve this pdf with the pdf of. We have found that
is Gaussian distributed with variance [2]. We assume that
is independent of , thereby neglecting the cross correla-
tions between the and the other modes in. Our simulations
show that the correlation betweenand is negli-
gible, justifying this procedure.

III. RESULTS

Fig. 1 shows the average pdfs of the receiver voltage that re-
sult from the linearization approach as solid lines in comparison
with a histogram from a traditional Monte Carlo simulation, con-
sisting of 39 000 noise realizations represented by the dots. The
voltage is normalized to the mean of the pdf of the marks. The
dashed lines show a Gaussian fit to the Monte Carlo data, using
the mean and variance. The large deviation between the solid and
dashed curves is obvious, especially in the spaces. On the other
hand, the agreement between the covariance matrix method and
the Monte Carlo results is excellent in the range shown.

Fig. 1. Solid lines: average pdfs from the linearization approach. Dotted lines:
histogram from a traditional Monte Carlo simulation. Dashed lines: Gaussian
fit to the dots using the mean and variance.

IV. CONCLUSION

In this letter, we completely describe the covariance matrix
method for the first time. We apply this method to a highly non-
linear 10-Gb/s single-channel DMS system with a transmission
distance of 24 000 km. Extending previous work [2], we are able
to compute the pdfs of the received voltages of this system over a
large range with a substantial reduction in computational time.
A crucial step in this approach is the separation of the phase
jitter and timing jitter, which we perform at every amplifier and
separately for each mark. The computational cost of our method
equals that of a Monte Carlo simulation with only noise re-
alizations, where is the number of relevant complex Fourier
modes; in this work, we used . It is our view that this
approach will be of use in a wide range of commercial and ex-
perimental systems.
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