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Influence of the Model for Random
Birefringence on the Differential Group Delay of

Periodically Spun Fibers
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Abstract—We consider the two Wai–Menyuk models of birefrin-
gence in periodically spun fibers, and we show that the differential
group delay differs significantly for the two models when the spin
period approaches or exceeds the fiber beat length. When the fiber
correlation length is large, we explain this difference quantitatively,
and we explain it qualitatively for any fiber correlation length.

Index Terms—Differential group delay (DGD), fiber birefrin-
gence, polarization mode dispersion (PMD), spun fiber.

I. INTRODUCTION

SPUN FIBERS were first used in sensors about 20 years ago,
but in more recent years they have been increasingly used in

telecommunication systems to reduce polarization mode disper-
sion (PMD), [1]–[4]. The authors of [2]–[4] mainly investigated
the effects of periodic spin functions in the “short-period” limit,
i.e., the regime in which the spin periodis shorter than the beat
length . Moreover in [2] and [3], the authors assumed that the
fiber birefringence is deterministic, corresponding to an infinite
correlation length . In [4], the birefringence was random, as
is the case in real telecommunications fibers and was modeled
with a fixed strength and varying orientation, according to the
first physical model [fixed modulus model (FMM)] proposed by
Wai and Menyuk in [5].

However, we remark that many experiments have shown
that the birefringence strength is not fixed, but instead, it varies
at random [6], validating the second model proposed in [5]
[random modulus model (RMM)]. Therefore, it is important
to study the behavior of randomly birefringent spun fibers
according to the RMM and to understand the differences
between the two models. The authors of [4] showed that their
results were consistent with the RMM by means of numerical
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simulations in the short-period limit, but it is important to
investigate all regimes.

In this letter, we show that when the spin period is of the
same order of magnitude as the beat length, spun fibers which
obey the two different fiber models, but which have the same
basic fiber parameters, have substantially different values of the
mean differential group delay (DGD). This result implies that
the two different models will lead to substantially different PMD
behavior, in contrast to unspun fibers, where the expected DGD,
and hence, the PMD behavior is model-independent.

After a brief description of the two birefringence models, we
report a comparison between them in the regime , ob-
tained by means of Monte Carlo simulations. Finally, we pro-
vide a physical explanation for the difference between the two
models in computing the DGD of a spun fiber. We stress that
the use of the simpler FMM may lead to results that do not re-
produce a real fiber’s behavior when the fiber is spun.

II. THEORETICAL BACKGROUND

PMD characteristics are completely described by the polar-
ization dispersion vector whose modulus is equal to
the DGD [7]. The evolution of as a function of distance
is governed by the dynamical equation [8]

(1)

where is the local birefringence vector.
Both the FMM and the RMM assume that fibers are

linearly birefringent. Then, according to the FMM,
the linear local birefringence vector may be written

, where is the
fixed birefringence strength, is the birefringence orien-
tation that varies with rate so that , and is
a Gaussian white noise process with zero mean and variance

. Alternatively, according to the RMM, the two
components of the local birefringence of the unspun fiber are
independent Langevin processes [5]

(2)

where and are independent, delta-correlated white
noise processes with zero mean and . With a suit-
able choice of the initial condition, and are independent
wide-sense-stationary Gaussian processes with zero mean and
variances . Therefore, the modulus
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of birefringence is a Rayleigh random variable with a proba-
bility density function

(3)

and the first two statistical moments are

(4)

For both models, after introducing the assumption that
, the mean square DGD of the unspun fiber, is

[5]

(5)

Finally, when a fiber is spun according to a spin function ,
no circular birefringence is induced and the only effect is a ro-
tation of the local birefringence vector [1]

(6)

III. SIMULATION RESULTS

In order to investigate the spin effects when the short-period
assumption is not satisfied, we implement the FMM and the
RMM and perform Monte Carlo simulations, solving (1), using
the wave-plate model for a set of 6000 fibers for each of the
two birefringence models. We choose a sinusoidal spin function

with a period m and a wave-plate
length equal to 10 mm. We fix the beat length m, while
we vary the spin amplitude and the correlation length .
For each value of , we consider a fiber length
so that the transient behavior has completely died out, and we
calculate thespin-induced reduction factor(SIRF), i.e., the ratio
between the mean DGD of the spun and unspun fiber [4]. We
remark that the results that we present are qualitatively similar
to those when , even though they have been obtained in
the case .

Fig. 1(a) shows the SIRF as a function of the spin amplitude
obtained using the FMM. The curves, from the upper curve to
the lower curve, refer to , 1, 3, 16, and 50 m, respec-
tively. For small values of , the spin is not very effective in
reducing the mean DGD because the intrinsic random fluctua-
tions of birefringence are faster, but as soon asincreases, the
reduction factor shows the same behavior as in the limit where
the period is short [4]. In particular, for , there exist
values of for which the reduction factor vanishes, although
such resonant amplitudes do not coincide with those predicted
in [2] and [4], since the period is not short. Moreover, when

m, the SIRF is already very close to the deterministic
limit.

For comparison, Fig. 1(b) reports the SIRF for the same spin
and fiber parameters, but obtained with the RMM. There is

Fig. 1. Evolution of the SIRF as a function of the spin amplitudeA for a
sinusoidal spin function with periodp = 4m and withL = 5m. The different
curves, from the upper to the lower correspond toL = 0:5, 1, 3, 16, and
50 m, respectively. Plots (a) and (b) correspond to the FMM and the RMM,
respectively.

agreement between the two models for small values of, but
when increases, the SIRF obtained with the RMM is sub-
stantially different from the one estimated with the FMM. In
particular, when , we find with the RMM that there
are spin amplitude values that correspond to relative minima,
but the SIRF never goes to zero. Moreover, the positions of the
relative minima do not coincide with those obtained using the
FMM. Hence, the prediction of mean DGD by means of the
FMM leads to incorrect results when the spin period and beat
length are of the same order, and, in particular, one can overes-
timate the benefit of spinning in reducing the mean DGD of the
fiber.

IV. EXPLANATION OF THE DIFFERENCE

The key to understanding the difference between Fig. 1(a) and
(b) is that in the FMM the modulus of the birefringence is fixed,
while in the RMM it varies randomly along each fiber realiza-
tion. It is easiest to understand the impact of the varying bire-
fringence in the limit , while keeping the fiber length

. In this limit, each fiber realization can be viewed as
a concatenation of long fiber sections, in which the length is
of order and the birefringence is constant. Since an ergodic
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Fig. 2. Evolution of the SIRF as a function of the spin amplitudeA forL =

5m andL = 50m. The dashed line is obtained with the FMM. The solid line
corresponds to the RMM and is obtained by weighting the FMM data according
to the Rayleigh distribution of the local birefringence. The dashed–dotted line
is the same reported in Fig. 1(b) forL = 50 m.

Fig. 3. Evolution of the SIRF as a function of the spin amplitudeA and of
the ratiop=L in the caseL = 50 m for the FMM.

theorem holds for an ensemble of optical fibers, so that the en-
semble average is equivalent to a long spatial average over a
single realization [5], [9], it follows that the SIRF in the RMM
must equal the sum of the SIRFs for each different birefringence
modulus in the FMM, weighted by its probability of occurring.
This probability, given by (3), is Rayleigh-distributed. The re-
sult is to smooth out the SIRF and to eliminate the zeros. In
Fig. 2, we compare the SIRF for the FMM and the RMM with

m and m for m. The smoothing is
clearly visible. When is small, a similar smoothing is ex-
pected to occur. However, there is no longer a simple relation-
ship between the FMM and the RMM.

Why then is there no difference between the FMM and the
RMM in the short-period limit? The explanation is that the SIRF
is independent of the fiber beat length in the short-period limit
as shown in [2] and [4]. To better understand this point we calcu-
late the SIRF for the first model of birefringence for m
as a function of the spin amplitude and of the ratio . We
show the result in Fig. 3, where the gray scale corresponds to dif-
ferent SIRF values, so that black refers to SIRF0. In Fig. 3,
we use the sinusoidal spin function ;
we then fix m and vary from 0.3 m up to approx-
imately 300 m. The horizontal axis shows the ratio on
a logarithmic scale. One sees that when , the zones
corresponding to any given value of the SIRF are straight lines
parallel to the horizontal axis, confirming their independence
of .

Thus, since the SIRF in the FMM is independent of, when
we average over the different values of in the FMM to obtain
the RMM, we obtain exactly the same curve that we started out
with. By contrast, if , then the SIRF zeros or any other
fixed SIRF values are no longer parallel to the horizontal axis,
indicating that the SIRF in the FMM now depends on. Thus,
we obtain the smoothing effect that is visible in Fig. 2.

V. CONCLUSION

We have shown that the effect of spin on the fiber DGD
depends significantly on the model that is assumed for the
fiber’s local birefringence when . This behavior
contrasts strongly with unspun fibers, in which the PMD is
model-independent. In particular, the use of the FMM can
overestimate the benefit of spinning in reducing PMD. In the
limit , we have shown that it is possible to calculate
the DGD in the RMM as an appropriate average over the
SIRF of the FMM at different values of , resulting in a
smoothing of the SIRF function. When is small, we have
found numerically that a similar smoothing is present. Finally,
the model dependence of the DGD has strong implications for
the effectiveness of spinning in minimizing fiber PMD. The
analysis presented in this letter shows that previously developed
techniques for prediction of fiber PMD lead to correct results
only in the case because they have been derived for
fixed birefringence or for the FMM, while the birefringence of
real fibers is closer to the RMM.
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