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Polarization decorrelation in optical fibers with randomly
varying elliptical birefringence
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Polarization decorrelation in single-mode fibers with randomly varying elliptical birefringence is studied. It
is found that the effects of ellipticity on the polarization decorrelation length depend on the relative sizes of
the beat length and the autocorrelation length of the birefringence f luctuations in the fiber. However, the
evolution of the differential group delay remains unaffected by ellipticity. © 2003 Optical Society of America
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Polarization mode dispersion is an important phe-
nomenon in modern long-distance communication
fibers, since it induces signal distortion along the
length of a communication link. The physical origin
of polarization mode dispersion lies in the random,
rapidly varying birefringence present in any optical
fiber, which leads to pulse spreading. This random
birefringence is characterized by two material prop-
erties of the f iber: the average beat length, LB ,
and the autocorrelation length, hfiber. Both of these
parameters depend on environmental conditions and
cabling, and it is often difficult to relate them directly
to phenomena that affect the transmission of data sig-
nals through the system, such as the randomization of
the signal’s polarization state on the Poincaré sphere
and the differential group delay (DGD).

Previous studies of these phenomena have made one
of two simplifying assumptions, representing two lim-
iting cases: (1) Fibers are only linearly birefringent,
arguing that the ellipticity is small enough to be neg-
ligible in actual fibers,1,2 or (2) all birefringences are
equally probable, leading to isotropic diffusion of the
signal’s polarization state on the Poincaré sphere.3 In
both cases, the DGD has the same behavior, but the
randomization of the signal’s polarization state is dif-
ferent. The second birefringence model of Wai and
Menyuk1,2 considers only linear birefringence, and it
is the only model that is consistent with experimental
evidence.4 This model was used to calculate the evolu-
tion of the DGD as a function of propagation distance.
It is known, however, that f ibers have a small ellip-
tical birefringence caused by twisting the f iber.5 In
this Letter we use a stochastic model to systematically
study the effect of this residual ellipticity. We show
that, although the DGD is not affected by the intro-
duction of ellipticity, the randomization of the signal’s
polarization state on the Poincaré sphere is affected.

The key material parameters of the f iber that
are necessary to understand these effects are the
average beat length, LB , and the autocorrelation
length of the birefringence f luctuations in the fiber,
hfiber, which were mentioned above. The extent to
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which the polarization state of a signal is randomized
on the Poincaré sphere as a result of birefringence
f luctuations is described by additional parameters.
In this Letter we concentrate on one such parameter,
the polarization decorrelation length, hE , which is the
length scale over which the electric f ield loses memory
of its initial distribution between the local polariza-
tion eigenstates and can be treated as random. In
certain special cases it is possible to derive analytical
formulas relating hE to LB and hfiber . These cases
include the diffusion limit hfiber ,, LB studied by
Ueda and Kath6 for linearly birefringent fibers and
the weak-coupling limit LB ,, hfiber studied by Poole7

for isotropically birefringent f ibers. Since neither
of these limits necessarily holds in optical fibers,
Wai and Menyuk1 used simulations to determine
the dependence of hE on hfiber and LB for linearly
birefringent fibers. We extend their results to the
case of elliptical birefringence.

After removal of the variation common to both com-
ponents of the electrical field vector of a signal, A, the
z dependence of A is governed by the equation

dA
dz

� i
∑

x1 x2 1 ix3

x2 2 ix3 2x1

∏
A . (1)

The parameters x1, x2, and x3 describe the evolution
of the local birefringence, with x1 and x2 parameter-
izing linear birefringence and x3 parameterizing ellip-
tical birefringence. Our dynamical model for x1, x2,
and x3 is an extension of the second model of Wai
and Menyuk.1,2 In their model, x3 � 0, and the evolu-
tion of x1 and x2 is described by independent Langevin
processes:

dxk�dz �2axk 1 sgk�z� , k � 1, 2 , (2)

where g1 and g2 are independent white-noise processes
with the properties
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E�gk�z�� � 0 , E�gk�z�gk�z 1 u�� � d�u� ,

k � 1, 2 , (3)

with d�u� being the Dirac distribution. We extend this
model by adding an independent Langevin equation for
the third parameter x3, namely,

dx3�dz �2ax3 1 tg3�z� , (4)

where g3 denotes another white noise process satisfy-
ing Eqs. (3), independent of g1 and g2. The ratio of
the noise intensities, t�s, is a measure of the amount
of ellipticity present in our model. When t�s � 0
we recover the second Wai and Menyuk model of lin-
ear birefringence, and when t�s � 1 the birefringence
vector varies isotropically. The fiber characteristics
hfiber and LB can easily be expressed in terms of the
parameters in Eqs. (2) and (4). One can show that
hfiber � 1�a and LB � p�2a��2s2 1 t2��1�2.

To determine the dependence of hE on the ratio
hfiber�LB , we have to simulate the evolution of the
electric f ield. Rather than using Eq. (1), we switch to
the Poincaré sphere representation. In this form, the
evolution of the Stokes vector of the signal is given by

dS�dz � W �z,v� 3 S , (5)

where W�z, v� � �2x1, 2x2, 2x3�t is the local birefrin-
gence vector. Instead of using the fixed coordinate
frame as in Eq. (5), we consider three different co-
ordinate frames. Coordinate frame A is obtained
by a z-dependent rotation about the S3 axis that
transforms the local birefringence vector W�z, v� into
the S1 S3 plane. Coordinate frame B is obtained by
a z-dependent rotation about the S3 axis chosen so
that the initial birefringence vector W�0, v� is in the
S1 S3 plane. Finally, coordinate frame C is obtained
by the same rotation about the S3 axis as in frame A,
followed by a rotation about the S2 axis that trans-
forms the local birefringence vector W�z, v� so that it
is in the direction of the vector �1, 0, 0�t. Notice that
coordinate frames A and B correspond to the ones used
in Refs. 1 and 2. Coordinate frames B and C repre-
sent two limiting situations. In frame C we consider
only the local motion of the signal’s Stokes parameters
relative to the birefringence vector, whereas in frame
B the Stokes parameters move relative to a f ixed
frame. Consequently, we expect the polarization
decorrelation length hE in any other reference frame to
be between these two limits. However, in frame A the
amount of ellipticity is preserved by the rotation, and
therefore this frame is physically more reasonable than
frame C.

We define the polarization decorrelation length hE
as the distance over which the ensemble average of
S1, �S1�z��, drops to 1�e of its initial value. For each
simulation, we define the initial Stokes vector to be
pointing in the direction of the initial local birefrin-
gence vector. In the case t�s � 0, corresponding to
linear birefringence, �S1�0�� � 1. However, for coor-
dinate frames A and B the ensemble average �S1�0��
decreases from a value of 1 when t�s � 0 to a value
of p�4 when t�s � 1. We solved the underlying sto-
chastic differential equation by use of a strong Taylor
scheme of the order of 1.5.8 For Figs. 1 and 2, our en-
semble size is 30,000, and for Fig. 3 we used 60,000
realizations.

We are interested in the behavior of the polarization
decorrelation length as a function of hfiber�LB . Fig-
ure 1 shows the results of our simulations for various
values of the noise intensity ratio, t�s. We find that
the polarization decorrelation length is almost identi-
cal when measured in the two local frames, A and C.
Moreover, for both frames, introducing ellipticity in-
creases the computed values of hE , but only slightly,
by �8%. The resulting behavior of hE as a function of

Fig. 1. Polarization decorrelation length versus hfiber�LB .
The thick solid line represents the results for local coordi-
nate frame A and t�s � 0; on the scale of the figure, the
results for other values of t�s or for coordinate frame C
are indistinguishable. The remaining three curves show
the results for frame B, with t�s ratios 0, 0.5, and 1
represented by the thin solid, dashed, and dashed–dotted
curves, respectively.

Fig. 2. Graphs of �S1�z����S1�0�� versus distance z for
hfiber�LB � 0.1 when measured in coordinate frame B.
The t�s ratios 0, 0.5, and 1 are represented by the solid,
dashed, and dashed–dotted curves, respectively.
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Fig. 3. Polarization decorrelation lengths with ellipticity
versus hfiber�LB , relative to the corresponding lengths
without ellipticity. The circles and the curve with circles
show the results for coordinate frames A and B, respec-
tively, when t�s � 0.5. The corresponding results for the
isotropic case t�s � 1 are shown by crosses and the curve
with crosses, respectively.

hfiber�LB is represented by the thick solid line in Fig. 1.
On the scale used in Fig. 1, the increased ellipticity
leads to no visually detectable change in the graph.
These simulations also show that, with respect to ei-
ther local coordinate system, the polarization decorre-
lation length is proportional to the fiber decorrelation
length, hfiber, independent of the ratio t�s. This re-
sult has important implications for the evolution of the
DGD, as discussed shortly.

As one can see in Fig. 1, the situation is different
in the f ixed coordinate frame, B. In this case an in-
crease in ellipticity can lead to a noticeable decrease in
the polarization decorrelation length. This decrease
can be observed only if the ratio hfiber�LB is less
than 10, as is evident from the three convex curves in
Fig. 1. These curves correspond to ratios t�s of 0,
0.5, and 1. Notice, however, that the curves retain
their general dependence on hfiber�LB . As a typical
example of the observed decrease in the polarization
decorrelation length, in Fig. 2 we show the evolution of
�S1�z����S1�0�� along the f iber for hfiber�LB � 0.1 and
for the ratios of t�s given above. In this case, the
polarization decorrelation length for t�s � 1 is �25%
lower than for t�s � 0. Quantitative information on
the relative changes in the polarization decorrelation
length is given in Fig. 3 for values of hfiber�LB from
0.1 to 10. For local frame A, if we increase t�s
from 0 to 1, we observe a uniform increase in hE ,
independent of hfiber�LB , whereas for f ixed frame B,
as we increase t�s, hE decreases by an amount that
depends on hfiber�LB . The largest decrease in hE is
by �35% and occurs when hfiber 	 LB .
Next we discuss the evolution of the DGD, which is
given by the ensemble average �td

2� � �V1
2 1 V2

2 1
V3

2�, where V � �V1, V2, V3�t denotes the polarization
dispersion vector. Its evolution is governed by

dV
dz

�
≠W
≠v

1 W 3 V . (6)

As in Refs. 2 and 3, we assume that the orientation
of the birefringence axis is a function of z alone
and that the frequency variation of the birefrin-
gence strength is separable from its z variation, i.e.,
W�z, v� � k�v� ? fW�z�. We also suppose that k�v�
is a deterministic function of frequency. Then it is
possible to solve the stochastic differential equation
given by Eqs. (2), (4), and (6) exactly, leading to the
expression

�td
2� � 2hfiber

2�D02� �exp�2z�hfiber� 1 z�hfiber 2 1� ,

(7)

where �D2� denotes the asymptotic value of the bire-
fringence strength.2 Notice that Eq. (7) holds regard-
less of the specif ic ratio t�s, consistent with Refs. 2
and 3. Thus, if all one cares about is the DGD, then
the simplifying assumption that all birefringences are
equally probable yields the correct answer.

In conclusion, we have described the dependence
of the polarization decorrelation length, hE , on the
amount of ellipticity present in an optical fiber.
These results demonstrate in particular that Eq. (7)
remains valid regardless of the strength of ellipticity
and that in a local coordinate frame the polarization
decorrelation length, hE , is proportional to the fiber
autocorrelation length, hfiber. A small ellipticity does
not significantly affect results that are predicted
by a model that assumes that fibers are linearly
birefringent.
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