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We apply the multicanonical Monte Carlo (MMC) method to compute the probability distribution of the re-
ceived voltage in a chirped return-to-zero system. When computing the probabilities of very rare events, the
MMC technique greatly enhances the efficiency of Monte Carlo simulations by biasing the noise realizations.

Our results agree with the covariance matrix method over 20 orders of magnitude.

The MMC method can

be regarded as iterative importance sampling that automatically converges toward the optimal bias so that

it requires less a priori knowledge of the simulated system than importance sampling requires.

A second

advantage is that the merging of different regions of a probability distribution function to obtain the entire

function is not necessary in many cases.
OCIS codes:

The accurate computation of bit error rates and the
probability distribution function (pdf) of the received
voltage in optical communications systems depends on
modeling very rare events with probabilities of the
order of 10716-1076, When forward error correction
is used, it is still important to accurately model the
voltage pdfs before correction." One traditional way of
computing bit error rates and eye diagrams is to run
Monte Carlo simulations and extrapolate the results
under the assumption that the electrical voltage at the
receiver after narrowband filtering is distributed in a
Gaussian shape in the marks (ones) and spaces (zeros).
If the noise realizations in the Monte Carlo simulation
are picked in an unbiased way, as is commonly done,
this method cannot yield information about the tails of
the pdf within a reasonable computational time. As a
consequence, system designers often use a simplified
approach in which they assume that the optical noise
spectrum at the receiver is white, effectively neglect-
ing the nonlinear signal—noise interaction in the fiber.
This simplification is inappropriate for many long-haul
optical communications systems. In contrast, the co-
variance matrix method does take into account the
nonlinear signal—noise interaction and works for non-
linear systems.>”* However, it can fail in principle
when the nonlinear noise—noise interaction in the fiber
becomes large.

In this Letter we apply the multicanonical Monte
Carlo (MMC) simulation technique that was proposed
by Berg and Neuhaus® in 1992. The MMC method is
closely related to importance sampling® in the sense
that both methods increase the number of events in
the tail region of the pdf by biasing them. In stan-
dard importance sampling one needs to guess which
regions of the state space are the major source of the
bit errors and devise a set of biases that will pref-
erentially sample these regions. The MMC method
automatically determines the bias with an iterative
procedure. The iterative procedure uses a control
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quantity to update the set of biases for the next
iteration, so that, as the iteration number increases,
there tends to be an approximately equal number
of hits in each bin of the histogram of the control
quantity.® Moreover, the merging of different regions
of a distribution’ is not necessary in many cases. Re-
cently, Yevick® successfully applied the MMC method
to compute polarization-mode-dispersion emulator
statistics, demonstrating that the MMC method can
be applied to any continuous probability distribution
as opposed to density of state functions for discrete
spin systems that Berg had studied in Refs. 5 and 9.
In this Letter we outline the MMC algorithm, and we
then employ it to compute the received-voltage pdfs in
an optical communications system and compare these
pdfs with the pdfs that we previously computed with
the covariance matrix method.?

We introduce a state space I' with a probability den-
sity p,i.e., p(z) =0 and [; p(z)dz = 1. When comput-
ing bit errors due to noise, I' is the space of all possible
amplified-spontaneous-emission noise inputs at all am-
plifiers and all frequencies. We want to compute the
pdf p(V) for each value of the received voltage V. We
partition I' into M subspaces I', ={z €T | (k — 1)AV =
V(z) < EAV}, where AV is a small voltage difference
andl=k=M. IfP, = fka_Vl)AV p(V)dV is the proba-
bility that (¢ — 1)AV = V(z) < EAV, then

P, = [F @p(z)dz, D

where yr(z) = 1 if z € T}, and yx(z) = 0 otherwise.
One can use a standard Monte Carlo simulation to ap-
proximate P; by

1 ¥ ,
P, = N ;Xk(z ) (2)

where the z? are N random sample points in I', selected
according to the probability density p.
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The goal of any biasing scheme, including the MMC is hence
method, is to reduce the variance of the sum in re- pz(Zb ) p;
lation (2) by introducing a positive biasing pdf p*(z). Tap = l_[ mi n[ ,1} min( < ,1>. (5)
We rewrite Eq. (1) and relation (2) as® =1 pz(Za ) P ks
p(z) The probability ratio 7.5/ 7, equals p™ (zb)/p (z)),
P, = [ Xr(Z) o (2) p (z)dz which is the detailed balance condition that ensures
. that the limiting (stationary) distribution for infinitely
_1 Z 250 p(z™") (3) many steps of this random walk is p™ /.11 ‘
p*(z*0) In each iteration the perturbation coefficient e’

where the 2™ are sampled from p*(z) instead of p(z).
The ratio L = p(z™?%)/p™*(z*?) is called the likelihood
ratio. The variance of the sum in relation (3) is zero if
the optimal biasing pdf p*(z) = pepi(2) = x&(2)p(2)/Ps
is used. However, p;kpt(z) depends on P, and hence is
initially unknown. In standard importance sampling
one uses physical intuition to guess a biasing pdf that
is close to p;kpt. The MMC algorithm instead iterates

over biasing pdfs p™J that approach p;kpt. We define
p™*7 for the jth iteration by
< z
p*’J(z)=L1’ zET,. 4)
CJPk

The quantities Pj satisfy P; > 0 and Y1, P} =1,
where we recall that M is the number of partitions of
the state space and ¢/ is an unknown constant that
ensures [ p*/(z)dz = 1. The vector of P} is the key
quantity in the MMC algorithm and completely deter-
mines the bias. Pj are updated after each iteration
such that, after a number of iterations, the expected
number of samples in each bin of the histogram is
<Zf\;1 xx(z*") = N/M and is hence independent of
k. Substituting this value in relation (3) and Eq. (4)
yields ¢/ — M and Pj — P,."° We will discuss the
assumptions under which this convergence can be
achieved in a later publication.

Within each MMC iteration j we employ the
Metropolis algorithm!! to produce a random walk of
samples z*? whose distribution equals p™/(z). We
consider a Markov chain of transitions consisting of
small steps in the noise space. Each transition goes
from z*i = z* € T} to z, = z* + €/Az, where Az
is random and symmetric; i.e., it does not favor any
direction in I', and the transmon is accepted with

k
probablhty . If a tran31t10n from z5 = z7 to
zb is accepted we set z*itl = zb, otherwise we set
z* i+1 Z i Z

In our s1mulat10ns p is the product of the pdfs of
all amplified-spontaneous-emission noise inputs at
each amplifier and each frequency, which we assume
to be 1ndependent identical Gaussian pdfs p; with
p = [1%, p1, where d is the dimension of I'. We con-
sider the perturbation of the noise component in each
bit z;k, ; of z)' separately and accept or reject it inde-
pendently with the probability min[pl(z;,k,l) / pl(zj,l), 1].
We pick each perturbation Az, from a zero-mean
symmetric pdf. We obtain a trial state z;f in which
only some of the components are different from their
previous values in z,. Next we compute %, and fi-
nally accept the step from z) to z;,k with the probability

min(P,ga /P,gb, 1). The compound transition probability

is constant for all samples. After each iteration, we
adjust €’/ so that the acceptance ratio «, which is the
ratio of the number of accepted steps to the total num-
ber of steps NV, is close to 0.3. The minimum required
number of samples N of this random walk depends on
the average step size ae/(|Az|) and is hence system
dependent. The noise reahzatlons are recorded in
the histogram H™/, where Hk = SN xe(@™) is
the number of the z*’ in iteration j that fall into
Iy. lec are updated after each MMC iteration with
the recursion relations given in Ref. 9 based on the
histogram H™* /. As J increases, the expected num-
ber of samples (H ") becomes 1ndependent of the bin
number %, which implies that Pk — Py.

We note that we could in principle also pick all
perturbations at the same time and accept the entire
step with the probability min[p(z;)P] /p(z})P; ,1].
The advantage of our individual perturbation method
is that we can use significantly larger perturbations
e/. However, this method works only in problems in
which the pdf p factors into 1ndependent pdfs p;.

In the first iteration one can set Pk 1/M or use
an initial guess for the P}. We have used both ap-
proaches. To update the Pk at the end of iteration j,
we initially set P1 "to an arbltrary positive value and
use the recursion relations®

Jj+1

PPl (H.
pict - PP (B o
p;, Hy’
j * 0% ]
i H, H
f;’IJe jgk 7’ g;e = >l<kl k+>l<11 ’ (6b)
2-18k H,” + H,};

where, in addltlon we define gk =0 if gk 0 and

k—OifHk +Hk+1—0 The exponent 0 = g} = 1
hence depends on all prev1ous iterations. Finally, we
normalize the P " so that Pyl Pl =1.

We applied the MMC algorlthm to a 10-Gbit/s,
single-channel chirped return-to-zero (CRZ) system of
6100-km length that resembles a submarine system.
Previously, we computed the pdf of the received
voltage in this system with the covariance matrix
method and compared its results with standard
Monte Carlo simulations.® However, we were able to
show agreement over only approximately 6 orders of
magnitude. In contrast, the MMC method allows us
to show agreement over approximately 20 orders of
magnitude.

The state space I is of dimension d = (34 dispersion
map periods) X (4 amplifiers per period) X (140 rele-
vant frequencies) X 2 = 38,080, where the last factor
of 2 accounts for the real and imaginary parts of



1896

Probability Density

0 0.5 1 15
Voltage (normalized)

Fig. 1. Pdfs of the low-pass-filtered received voltage for
the marks and the spaces in the CRZ system. The circles
and crosses represent results from the last iteration of
MMC simulations with 55,000 and 100,000 samples, re-
spectively; the solid line and curve represent the covari-
ance matrix method.

the optical noise. We launch a 32-bit pseudorandom
binary sequence signal and calculate the average pdf
of the received voltage in the marks by averaging over
all 16 marks, and we use the same procedure in the
spaces. We consider v(¢1,,) and v(¢,,), where ¢;,
and ¢y, with n = 1...16 are the points in time at
the centers of the bit slots that contain a mark or a
space, respectively, and v(¢) is the low-pass-filtered
received voltage as a function of time. We record
the average pdfs of v(¢1,,) and v(ty,) in weighted
histograms by quantizing v(¢;,,,) and v(¢y,,). For each
noise realization z™! we increment the value of the
histogram in the appropriate bin by the likelihood
ratio L = p(z™1)/p™(z*7) = ¢/ P}, z* € T}, according
to relation (3). The pdfs of v(¢1,,) and v(¢,,) can be
regarded as vertical slices through an eye diagram.

Figure 1 shows the average pdf of v(¢1,,) and v(¢o,,)
in the last MMC iteration. The voltage is normalized
by max,[v(¢1,,)] in the absence of noise. The solid line
and curve show the results of the covariance matrix
method, and the crosses and circles show the pdf from
the MMC simulations for the marks and the spaces.
The agreement is excellent.

Next we summarize additional details of the al-
gorithm. To bias the marks, we want to decrease
the maximum voltage in the marks to close the
eye. We therefore choose the control quantity to be
V = min,[v(¢;,,)] for each noise realization. Con-
versely, we want to increase the voltage in the spaces,
and in that simulation we set V = max,[v(¢,,)]. In
our simulations the voltage V thus merely plays the
role of a control quantity and has no other use.
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We set M = 50. In the first iteration we choose
N = N/=1 = 5000 samples. The simulation covers
a larger voltage range with each new iteration, and,
moreover, the Metropolis random walk tends to accept
more steps at voltages where p(V) is large than in the
tails of p(V). We therefore increase the number of
samples after each iteration so that N/*! = 1.15N/.
In the simulation of the marks we needed 50,000 total
samples in eight iterations, and to simulate the spaces,
we needed 101,000 total samples in ten iterations.
We considered the simulation to have sufficiently
converged when max;|(P; — P,fl)/P,flI < 0.1, which
is hardly visible on a log scale.

In conclusion, we have applied the MMC simulation
technique to a CRZ system with a transmission dis-
tance of 6100 km. We were able to compute the pdfs
of the low-pass-filtered received voltage over a range of
20 orders of magnitude. We compared this result with
the covariance matrix method?* and obtained excel-
lent agreement, fully validating the covariance matrix
method for this system. This result also demonstrates
the usefulness of the MMC method for calculating the
complete voltage pdf in a receiver while accounting for
the full nonlinear noise—noise interaction in the fiber.

The authors thank J. Zweck, W. L. Kath, V. S.
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Holzlohner’s e-mail address is holzloehner@umbc.edu.
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