
JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 22, NO. 4, APRIL 2004 1023

A Comparative Study of Single-Section
Polarization-Mode Dispersion Compensators

Ivan T. Lima, Jr., Aurenice O. Lima, Student Member, IEEE, Gino Biondini,
Curtis R. Menyuk, Fellow, IEEE, Fellow, OSA, and William L. Kath, Member, OSA

Abstract—This paper shows how to use multiple importance
sampling to study the performance of polarization-mode disper-
sion (PMD) compensators with a single differential group delay
(DGD) element. We compute the eye opening penalty margin for
compensated and uncompensated systems with outage probabili-
ties of 10 5 or less with a fraction of the computational cost re-
quired by standard Monte Carlo methods. This paper shows that
the performance of an optimized compensator with a fixed DGD el-
ement is comparable to that of a compensator with a variable DGD
element. It also shows that the optimal value of the DGD compen-
sator is two to three times larger than the mean DGD of the trans-
mission line averaged over fiber realizations. This technique can be
applied to the optimization of any PMD compensator whose dom-
inant sources of residual penalty are both the DGD and the length
of the frequency derivative of the polarization-dispersion vector.

Index Terms—Birefringence, compensation, optical communi-
cations, optical fiber polarization, polarization-mode dispersion
(PMD).

I. INTRODUCTION

THERE is substantial interest in upgrading the current
per channel data rates to 10 Gb/s and beyond in ter-

restrial wavelength-division multiplexed (WDM) systems.
Polarization-mode dispersion (PMD) is a significant barrier to
achieving this goal. Designers want to ensure that the proba-
bility of an eye opening penalty due to PMD beyond some value
occurs only a very small fraction of the time. For example, a
designer might require that a penalty larger than 1 dB occurs
with probability or less. Therefore, there have been
numerous proposals to use optical and electrical PMD compen-
sators to mitigate this problem [1]–[9], and much of this work
has focused on compensators with a single differential group
delay (DGD) element because they are the simplest to build, to
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control, and to analyze. In [9], we used importance sampling
in which the DGD alone was biased [10] to show that the
average reduction of the eye opening penalty in compensators
does not address the issue of greatest practical importance,
which is the increase of the penalty margin for a given outage
probability. Here, we extend the work in [9] by using multiple
importance sampling in which both the DGD and the length of
the frequency derivative of the polarization-dispersion vector
are biased [11], and, for the first time, we completely describe
the implementations of importance sampling that we use. We
focus on compensators with a single DGD element due to their
simplicity and practical importance [1], [3], [12].

The main idea in any biased Monte Carlo simulation, in-
cluding simulations based on importance sampling, is to cause
the events that contribute to the statistical quantities of interest
to occur more frequently and thus to reduce the relative varia-
tion in the numerical estimate of those quantities with a fixed
number of samples [13]. In our case, the quantities of interest
are the eye opening penalties and their probability density func-
tions (pdfs) both before and after compensation. As is desirable
with any Monte Carlo simulation, we monitor its effectiveness
by calculating the standard deviation divided by the mean in the
quantities of interest. We show that biasing the DGD is sufficient
to accurately calculate the uncompensated penalties and their
pdfs, but it is not sufficient to accurately calculate the compen-
sated penalties and their pdfs. For the compensators that we con-
sider in this paper, we also show that biasing both the DGD and
the length of the frequency derivative of the polarization-disper-
sion vector is sufficient to accurately calculate the compensated
penalties and their pdfs.

In Section II, we describe the fiber transmission model that
we use. In Section III, we describe the PMD compensators that
we study, and describe how we optimize the compensators and
how we determine the eye opening penalty. In Section IV, we
describe the implementation of importance sampling in which
we only bias the DGD. We previously used this implementation
in [9]. In Section V, we describe the implementation of multiple
importance sampling in which we bias both the DGD and the
length of the frequency derivative of the polarization-dispersion
vector. In Section VI, we show how we combine the samples
from several biasing distributions using importance sampling to
obtain the statistical results that we present in this work. Finally,
in Section VII, we apply the techniques that we develop in this
paper to efficiently compute the outage probability of single-
section PMD compensators and to optimize the constant DGD
element in fixed-DGD compensators.
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II. SYSTEM PARAMETERS AND FIBER TRANSMISSION MODEL

We simulate a 10 Gb/s nonreturn-to-zero (NRZ) system with
30 ps of rise time. The pulses are generated by perfect rectan-
gular pulses filtered by a Gaussian shape filter that produces the
designed rise time. The results of our simulations can also be ap-
plied to 40 Gb/s systems by scaling down the time quantities by
a factor of four. The PMD simulation model that we use is based
on the representation of the fiber link by a frequency-dependent
transfer Jones matrix , which corresponds to the Müller
matrix . We do not take into account polarization-depen-
dent loss, chromatic dispersion, or fiber nonlinearity. The com-
plex envelope of the electrical field vector at the end of the fiber
link, , equals

(1)

where is the input field vector in the Jones space. Using
the coarse step model of a fiber [14], the Jones transfer matrix

of an optical fiber that consists of linearly birefringent
sections may be written as [14]

(2)

where

(3)

is the transmission matrix of the th fiber section, models
the random mode coupling of the th birefringent fiber section
in the unbiased PMD simulation model, which is shown in (4)
at the bottom of the page, and

(5)

models the propagation of the light through a birefringent sec-
tion. The parameter is the DGD in a single section, while ,

, and are random variable that are independent at each
and from each other. The pdfs of the angles and are uni-
formly distributed between 0 and , while the pdf of the
are uniformly distributed between and 1. The Müller matrix

that is equivalent to the Jones matrix in (4) is comprised
of elementary rotations around the three orthogonal axes [15] of
the Poincaré sphere,

(6)

which can produce a uniform rotation on the Poincaré sphere
[14]. In (6), is a rotation around the -axis, and
is a rotation around the -axis. Likewise, the Müller matrix

equivalent to the Jones matrix in (5) is comprised
of an elementary rotation around the -axis,

(7)

Since the Müller matrix of a section is equal to , the
polarization-dispersion version of a single section is given by
[16]

(8)

where is a unit vector along the -axis.
The formulation of (3) is consistent with the one in [16],

where the random mode coupling in the th section occurs prior
to the birefringent element of that section. We set equal to

N
(9)

where is the mean DGD of the fiber with sec-
tions [17]. In this work, we emulate an optical fiber with eighty
birefringent sections . In [9], we showed that
is sufficient to obtain a Maxwellian distribution of the DGD in
the outage probability range of to . We assume that
the fiber passes ergodically through all possible orientations of
the birefringence.

III. PMD COMPENSATOR AND RECEIVER MODEL

In order to compensate for PMD distortions, we use a com-
pensator with an arbitrarily rotatable polarization controller and
a single DGD element, which can be fixed [1] or variable [12].
The expression for the polarization-dispersion vector after com-
pensation is similar to the one in (16),

(10)

where is the polarization-dispersion vector of the com-
pensator, is the polarization-dispersion vector of the
transmission fiber, is the polarization transformation in the
Stokes space that is produced by the polarization controller of
the compensator, and is the polarization transformation
in the Stokes space that is produced by the DGD element of the
compensator, which is similar to (7). We model the polarization
transformation as

(11)

We note that the two parameters of the polarization controller’s
angles in (11) are the only free parameters that a compensator
with a fixed DGD element possesses, while the value of the
DGD element of a variable DGD compensator is an extra free
parameter that needs to be adjusted during the operation. In (11),
the parameter is the angle that determines the axis of po-
larization rotation in the plane of the Poincaré sphere,

(4)
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while parameter is the angle of rotation around that axis of
polarization rotation. An appropriate selection of these two an-
gles will transform an arbitrary input Stokes vector into a given
output Stokes vector. While most electronic polarization con-
trollers have two or more parameters to adjust that are different
from and , it is possible to configure them to operate
according to the transformation matrix in (11).

Throughout this paper, we use the eye opening as the feed-
back parameter for the optimization algorithm unless otherwise
stated. We define the eye opening as the difference between
the lowest mark and the highest space at the decision time in
a noise-free bit string. The eye opening penalty is defined as
the ratio between the back-to-back and the PMD-distorted eye
opening. Since PMD causes pulse spreading in amplitude-shift
keyed modulation formats, the isolated marks and spaces are
the ones that suffer the highest penalty [18]. To define the de-
cision time, we recovered the clock using an algorithm based
on one described by Trischitta and Varma [19]. We simulated
16 bit strings of the form “0 100 100 101 101 101.” The receiver
is modeled by a square-law photodetector followed by a fifth-
order electrical Bessel filter with a 3 dB width of 8.6 GHz. After
the electronic receiver, we delayed the bit stream by half bit slot
and subtracted it from the original stream, which is then squared.
As a result a strong tone is produced at 10 GHz. The decision
time is set equal to the time at which the phase of the tone is
equal to .

The goal of our study is to determine the performance limit
of the compensators. We therefore show the global optimum of
the compensated feedback parameter for each fiber realization.
To obtain the optimum, we start with 5 evenly spaced initial
values for each of the angles and in the polarization
transformation matrix . If the DGD of the compensator is
adjustable, we start the optimization with the DGD of the com-
pensator equal to the DGD of the fiber. We then apply the con-
jugate gradient algorithm [20] to each of these 25 initial polar-
ization transformations. To ensure that this procedure yields the
global optimum, we studied the convergence as the number of
initial polarization transformations is increased. We examined

fiber realizations spread throughout our phase space, and
we never found more than 12 local optima in the cases that we
examined. In only three of these cases, we missed the global op-
timum, because several optima were closely clustered, but the
penalty difference was small. We therefore concluded that 25
initial polarization transformations were sufficient to obtain the
global optimum with sufficient accuracy for our purposes. We
observed that the use of the eye opening as the objective function
for the conjugate gradient produces multiple optimum values
when both the DGD and the length of the frequency derivative
of the polarization dispersion vector are very large.

The performance of the compensator depends on how the
DGD and the effects of the first- and higher-order frequency
derivatives of the polarization-dispersion vector of the transmis-
sion fiber interact with the DGD element of the compensator to
produce a residual polarization dispersion vector and on how
the signal couples with the residual principal states of polariza-
tion over the spectrum of the channel. Therefore, the operation
of PMD compensators is a compromise between reducing the
DGD and setting one principal state of polarization after com-

pensation that is approximately copolarized with the signal. An
expression for the pulse spreading due to PMD as a function of
the polarization-dispersion vector of the transmission fiber and
the polarization state over the spectrum of the signal was given
in [21].

IV. IMPORTANCE SAMPLING BIASING THE DGD

When we use importance sampling to bias the DGD, we are
taking advantage of the large correlation that exists between the
PMD-induced penalty and the DGD. We note that first- and
higher-order frequency derivatives of the polarization-disper-
sion vector are included in the simulations, although this ap-
proach does not produce larger values of first- and higher-order
frequency derivatives of the polarization-dispersion vector than
the moderately large values that are naturally obtained when one
biases the DGD.

To apply the multiple importance sampling technique, we
first recall that , the probability of an event defined by the
indicator function , can be estimated as [22]

(12)

where

(13)

is the likelihood ratio of the th sample drawn from the th
biasing distribution, and where is the number of samples
drawn from the th biasing distribution . The term
is the pdf of the unbiased distribution, and is the number of
different biasing distributions. The weights allow one to
combine different biasing distributions and are defined in Sec-
tion VI. The indicator function in (12) is chosen to com-
pute the probability of having an eye opening penalty within any
range, such as a bin in a histogram. Thus, is defined as 1
inside the desired penalty range and 0 otherwise. A confidence
interval for the estimator of the probability of the indicator
function in (12) can be defined from the estimator of the
variance of , which is given by

(14)
where

(15)

is the contribution of the samples drawn from th biasing dis-
tribution to the estimator . The confidence interval of the es-
timator equals the range . The relative
variation equals .

The polarization-dispersion vector after fiber sections is
determined by the following concatenation rule [23]:

(16)
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where is the equivalent Müller matrix of the th section in
(3). Biondini et al. [10] demonstrated that the appropriate pa-
rameters to bias are the angles between the polarization-dis-
persion vector of the first sections and the po-
larization-dispersion vector of the th section at the center
frequency of the channel, such that is biased toward one,
thereby increasing the probability that the polarization-disper-
sion vector at that frequency will lengthen after that section. In
other words, is biased toward a direction that is equal to
the direction of . In standard Monte Carlo simulations
using the coarse step method, the pdf of , , is uni-
formly distributed. Therefore, we have , where

. The angles are directly determined by the re-
alization of the random mode coupling between the birefringent
sections. Thus, the values of play the role of the compo-
nents of the random vector in (12). Specifically, we pick
from the following pdf [24]:

(17)

which biases toward 1 when is positive, and corresponds
to standard Monte Carlo simulations in the limit . The
likelihood ratio for each value of that is obtained from the
biasing pdf in (17) is given by

(18)

Since the values of are independent random variables,
the likelihood ratio for a biased realization of the fiber PMD is
equal to the product of the likelihood ratios for each of its biased
angles

(19)

where is the amount of bias used in the th distribution, and
is for the th section of the th sample obtained

from the th distribution.
We must determine the value of the biasing parameter

that enables us to statistically resolve the histogram of the eye
opening penalty over a range of large eye opening penalty
values whose probability is on the order of a given target
probability , such as . Intuitively, we anticipate
that the required value of is the one for which the target
probability is equal to the likelihood ratio of the biased
realization of the fiber PMD evaluated at the expected value of
the random variable with biasing pdf . That is,
the parameter satisfies the equation

(20)

where is the number of fiber sections, and is the expecta-
tion operator. Our motivation for this heuristic comes from (12)
and from the observation that, over a given range of penalties,
the biased samples statistically resolve the histogram of the eye
opening penalty when the indicator function for this range has
the value 1 for a large proportion of the biased samples. For the

simulation results in this paper in which we only bias the DGD,
we chose , which produces unbiased samples, together
with , and . The target probabilities of the bi-
ased simulations are and .
We use samples for each of the three biases except as noted.
As we increase the number of samples with bias parameter ,
the size of the interval about for which the histogram of the
eye opening penalty is well resolved increases.

In order to bias the angle between the polarization dis-
persion vector of the first sections and the po-
larization-dispersion vector of the th section , the polariza-
tion rotation matrix in (6) has to be modified to properly
account for the bias. In practice, we bias the direction of the
polarization-dispersion of the previous sections
toward because the polarization-dispersion vector of the pre-
vious sections is the vector rotated by the matrix , as
shown in (16). The polarization-dispersion vector of any of the
sections of the transmission fiber modeled by (3) is given by

, as in (8), which is independent of . Therefore,
the matrix of the th section must bias the polarization-dis-
persion vector of the previous sections toward the vector .
We obtain this bias by replacing the first two random rotations
in (6) by the combination of one random rotation with two deter-
ministic rotations around the - and the -axes. The first rotation

eliminates the -component of the polarization-disper-
sion vector of the previous sections , which is ac-
complished by choosing . The second ro-
tation eliminates the -component of ,
where is chosen like , with the additional constraint that
the resultant vector should be in the

direction. Then, we chose a random angle from the bi-
asing pdf in (17) to rotate around the

-axis. This rotation can be combined with the previous deter-
ministic rotation around the -axis by to produce a single ro-
tation. Finally, we add a uniformly distributed random rotation

around the -axis to obtain the polarization rotation matrix
, which becomes

(21)

A uniform rotation like in (4) could in principle be added
at the end of the fiber so that the direction of is uniformly
distributed on the Poincaré sphere. However, our receiver model
has no polarization dependence; so, this final rotation is unnec-
essary.

In Fig. 1, we show the pdf of the normalized DGD, , of a
fiber with 80 birefringent sections and 30 ps of mean DGD ,
where and the DGD is normalized with respect to .
Hence, these results are independent of . The unbiased prob-
ability of obtaining normalized DGD values outside the domain
[0,4] that we show in Fig. 1 is less than . We obtained this
curve with only samples from Monte Carlo simulations for
each of the three biasing distributions: , which produces
unbiased samples, , and . We combined the
results of the biasing distributions using the balanced heuristic
method that we describe in Section VI. The largest relative vari-
ation over the domain [0.3,4] is 8%. We observed an excel-
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Fig. 1. The pdf of the normalized DGD, j��� j =hj��� ji, plotted on a logarithmic
scale with 80 bins. The squares show the results of Monte Carlo simulations
with importance sampling with DGD bias using 3�10 samples. The solid line
shows the Maxwellian distribution with the same mean.

Fig. 2. Joint pdf of the DGD and the length of the frequency derivative of
the polarization-dispersion vector with 25� 25 bins. The solid lines show the
results of Monte Carlo simulations with importance sampling with DGD bias
using 3 biases with 6�10 samples in each bias. We only show the results with
importance sampling where the relative variation does not exceed 25%. The
dashed line shows the contour level corresponding to 10% relative variation
in the results using importance sampling. We applied the Bezier smoothing
algorithm [28] in the contour level of the relative variation. The dotted lines
show the results of standard Monte Carlo simulations using 10 samples. The
dot-dashed line shows the contour level corresponding to 10% relative variation
in the results using standard Monte Carlo simulations with 10 samples. The
contours of the joint pdf are at 3�10 , 10 , 3�10 , 10 , 3�10 ,
10 , 3�10 , 10 , 3�10 , 10 , 3�10 , 10 , 3�10 , 10 ,
10 , 10 , 10 , and 10 .

lent agreement between the numerically calculated pdf of the
DGD obtained with importance sampling and the Maxwellian
pdf with the same mean. The slight deviation in the tail between
the numerically calculated pdf and the Maxwellian distribution
occurs because we use 80 sections rather than a larger number
[25].

In Fig. 2, we compare the joint pdf of the DGD and the length
of the frequency derivative of the polarization-dispersion vector
that is obtained with the implementation of the importance sam-
pling with DGD bias to standard Monte Carlo simulations with

samples. We had the same configuration as in Fig. 1, ex-
cept that we used 6 samples per bias. We observe that
the length of the frequency derivative of the polarization-disper-
sion vectors that are statistically correlated to the DGD that we
bias are correctly accounted for. However, this implementation
is not efficient in obtaining samples with large lengths of the
frequency derivative of the polarization-dispersion vector asso-
ciated with moderately small values of DGD. Hence, the use of
DGD bias is limited to systems where the DGD is the dominant
source of penalties, which is the case in uncompensated systems
and in systems with limited PMD compensation.

V. IMPORTANCE SAMPLING BIASING BOTH THE DGD AND

THE LENGTH OF THE FREQUENCY DERIVATIVE OF THE

POLARIZATION-DISPERSION VECTOR

The derivative of the polarization-dispersion vector with re-
spect to the angular frequency after fiber sections , is
determined by the following concatenation rule [23],

(22)

where is the Müller matrix that is equivalent to the Jones
matrix in (3), and is the derivative of the polarization dis-
persion vector of the th section with respect to the angular fre-
quency. Note that in this problem, since each sec-
tion has a constant—frequency independent—polarization-dis-
persion vector .

In order to obtain large values of the frequency derivative
of the polarization-dispersion vector with a relatively small
number of Monte Carlo simulations, Fogal et al. [11] demon-
strated that it is necessary to bias the polarization-dispersion
vector of the th section in a direction that is different from
the direction used in the DGD bias that was described in Sec-
tion IV. The biasing direction is located in a plane that con-
tains the vectors and , and this direc-
tion is chosen so that the angle between the biasing direction
and the polarization-dispersion vector of the previous sections

varies linearly along the fiber sections from in
the first fiber section to in the last fiber section, where
the values of and in (17) determine the region in the plane
formed by the DGD and the length of the frequency deriva-
tive of the polarization-dispersion vector that one wants to
statistically resolve. Specifically [11], we choose

(23)

where . Note that the choice produces only
DGD bias. However, the parameter completely determines the
target probability (20), since the parameter simply selects an
equiprobable region in the parameter space. For the simulation
results in this paper with both the DGD and the length of the
frequency derivative of the polarization-dispersion vector bias
we chose the following values of to bias the distributions
with samples each: (0, 0), which produces unbiased sam-
ples, (0.5, 0), (0.5, ), (0.5, ), (0.5, ), (1, 0), (1, ),
(1, ), (1, ), and (0.7, 0).

In order to implement the bias for both the DGD and the
length of the frequency derivative of the polarization-dispersion
vector, the polarization rotation matrix in (6) has to be
modified in a way that is analogous to the derivation of
in Section IV. The goal is to choose a set of rotations so that
the vector ends up at angle with the biasing direction

in the three-dimensional (3-D) Stokes space. The first
step is similar to the one described in Section IV, where two
deterministic rotations are obtained to rotate the polarization
dispersion vector of the previous sections to
the direction, . Then, a rotation
around the -axis eliminates the -component of

, while leaving the -component posi-
tive. The next step is to apply a deterministic rotation
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Fig. 3. The pdf of the normalized length of the frequency derivative of the
polarization-dispersion vector plotted on a logarithmic scale with 60 bins.
The squares show the results of Monte Carlo simulations with importance
sampling biasing both the DGD and the length of the frequency derivative of
the polarization-dispersion vector using 10 samples. The solid line shows the
results of the theoretical distribution of the length of the frequency derivative
of the polarization-dispersion vector.

so that is parallel to
the biasing direction , where is determined by (23). Then,
a uniformly distributed rotation around the -axis is
added to produce the correct statistical randomization of .
Finally, a biased rotation around the -axis, , is applied
to obtain an appropriate bias for both the DGD and the length of
the frequency derivative of the polarization-dispersion vector,
where is obtained from the pdf in (17). The matrix
in this case becomes

(24)

where is a random variable whose pdf is uniformly dis-
tributed between 0 and as in (21). Note that none of the
angles , , , and in (24) are random, and that these
rotations are not unique; it is possible to produce a bias for both
the DGD and the length of the frequency derivative of the po-
larization-dispersion vector using a different set of elementary
rotations. A uniform rotation like in (4) could be added at
the end of the fiber model to make sure that is uniformly
distributed on the Poincaré sphere. However, this extra rotation
is not necessary here, just as in the case of DGD bias alone.

In Fig. 3, we show the pdf of the length of the frequency
derivative of the polarization-dispersion vector of a fiber
with 80 birefringent sections and 10 ps of mean DGD . We
show the length of normalized with respect to its expected
value . In Fig. 3, we combine the results of the 10 bi-
asing distributions with samples per bias using the balanced
heuristic method that we describe in Section VI. The largest rel-
ative variation over the domain [0,9] is 17%. We observed an
excellent agreement between the numerically calculated pdf of
the length of the frequency derivative of the polarization-disper-
sion vector obtained using importance sampling with the theo-
retical pdf of the length of the frequency derivative of the polar-
ization-dispersion vector [26].

In Fig. 4, we show the results of the joint pdf of the DGD and
the length of the frequency derivative of the polarization-dis-
persion vector that is obtained with Monte Carlo simulations
with our implementation of multiple importance sampling bi-
asing both the DGD and the length of the frequency derivative
of the polarization-dispersion vector in comparison with results

Fig. 4. The joint pdf of the DGD and the length of the frequency derivative of
the polarization-dispersion vector with 25� 25 bins. The solid lines show the
results of Monte Carlo simulations with importance sampling biasing both the
DGD and the length of the frequency derivative of the polarization-dispersion
vector using 10 biases with 6�10 samples in each bias. The dashed line shows
the contour level corresponding to 10% relative variation in the results using
importance sampling. We applied the Bezier smoothing algorithm [28] in the
contour level of the relative variation. This curve is distorted by the limited
number of biases. It is farthest out in directions corresponding to the biases and
moves inward in between these directions. The dotted lines show the results
of standard Monte Carlo simulations using 10 samples. The dot-dashed line
shows the contour level corresponding to 10% relative variation in the results
using standard Monte Carlo simulations with 10 samples. In all directions, the
10% relative variation level is farther out for the biased Monte Carlo simulations
than for the standard simulations, indicating the effectiveness of the biasing
procedure. The contours of the joint pdf are at 3�10 , 10 , 3�10 , 10 ,
3�10 , 10 , 3�10 , 10 , 3�10 , 10 , 3�10 , 10 , 3�10 ,
10 , 10 , 10 , 10 , and 10 .

of standard Monte Carlo simulations with samples. We had
the same configuration as in Fig. 3, except that we used 6
samples per bias. We observed an excellent agreement between
these results. We point out that the relative variation in the joint
pdf of the DGD and the length of the frequency derivative of the
polarization-dispersion vector in the results of standard Monte
Carlo simulations depends only on the number of samples used.
In addition to the number of samples, the relative variation in the
results with importance sampling strongly depends on the set of
biases that are combined to produce the numerical joint pdf. As
a consequence, the contours of relative variation do not follow
the probability contour lines and have a bumpy structure. We
show this behavior in Fig. 4 for the 10% relative variation con-
tour. However, we see that the 10% relative variation contour for
the biasing simulations lies well outside the 10% relative varia-
tion contour for the standard simulations, although the standard
simulations have a much larger number of samples. This result
supports the conclusion that the biasing procedure is effective.

VI. COMBINATION OF MULTIPLE BIASING DISTRIBUTIONS

In this section, we describe two heuristic methods to com-
bine samples from different biasing distributions in order to ac-
curately determine the eye opening penalty or any other quan-
tity that is dependent on PMD. We observed that one single bi-
asing distribution is insufficient to accurately determine the eye
opening penalty over the entire range of interest in the
plane. It is necessary to combine the statistical result from mul-
tiple biasing distributions, since each distribution provides ac-
curacy in different regions of the parameter space. However,
the biasing distributions that do not have a low variance in a
given region in the parameter space can degrade significantly
the accuracy of the estimate of the probability in that region
if they are inadequately combined with the other distributions.
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This effect is particularly evident in the computation of the eye
opening penalty because the polarization-dispersion vector
and its frequency derivative are not the only quantities that
determine the eye opening penalty. The second- and higher-
order frequency derivatives of and the coupling factor between
the polarization state of the signal and the principal states of po-
larization at the central frequency of the channel are other im-
portant factors.

In (12), we described how the probability of an event de-
fined by the indicator function can be estimated with the
combination of several Monte Carlo simulations with impor-
tance sampling. In addition to the likelihood ratio in (19),
a weight is assigned to each sample from each of the
biasing distributions in order to estimate the probability . In
[9], a heuristic technique called stratified importance sampling
was used to determine the weight of each sample from all
the distributions. The goal of this technique is to exclude sam-
ples from a biasing distribution that appear in a region with a
small number of hits. Then, the statistical result obtained from
the biasing distribution with the largest number of hits in that
region of the plane can be used to statistically resolve
that region. This technique requires some a priori knowledge of
what is the region of the parameter space that each biasing dis-
tribution resolves. The weight function for the sample is given
by

otherwise
(25)

where is the th region in the plane, and all regions
are nonoverlapping. In the case of [9], the regions correspond
to the DGD ranges that produce the greatest number of hits for
each bias . We determined these ranges by experimentation.

A more efficient technique to combine the samples from mul-
tiple biasing distributions is the balanced heuristic method [22].
The balanced heuristic weight assigned to the sample is given
by

(26)

The idea behind the balanced heuristic method is that samples
are weighted according to the likelihood of each particular dis-
tribution producing samples in that region; distributions that are
more likely to put samples there are weighted more heavily.

The computation of the balanced heuristic weights for any
given sample requires that the likelihood ratio of all the biasing
distributions be evaluated for that sample. In other words, the
likelihood ratio of all the biasing distributions have to be eval-
uated for the th sample drawn from the th distribution, even
though this sample was obtained using only the biasing pdf of
the th distribution. This process is simple for the DGD bias,
since one only has to evaluate the likelihood ratio of all the

distributions using the values of from the th sample
that was drawn using the th biasing pdf. That is so because the
biasing direction is fixed in the direction of in the DGD
bias. However, the biasing direction varies linearly along the
fiber, proportionally to the biasing parameter , when both the

Fig. 5. The pdf of the eye opening penalty of a fiber transmission system with
h�i = 25 ps and a PMD compensator with a fixed DGD element � = 25 ps

using Monte Carlo simulations with importance sampling biasing the DGD. We
divide the domain of the penalty into 46 bins. The solid line shows the results
of combining the samples using the stratified importance sampling described
in (25) whose confidence interval is shown with error bars for one out of three
consecutive bins. The dotted line shows the result of combining the samples
with the balanced heuristic method described in (26). The solid and the dotted
curves lie on top of each other.

DGD and the length of the frequency derivative of the polar-
ization-dispersion vector are biased, as described in Section V.
Consequently, the weight is determined not only by the values
of , but also by the values of in (24), since the likeli-
hood ratio in each section of a given distribution depends on the
angle between the vector and the biasing direction in
that distribution.

In Fig. 5, we show the pdf of the eye opening penalty for a
10-Gb/s NRZ system with 30 ps of rise time, 25 ps of mean
DGD, and a PMD compensator with a fixed DGD element

. The fiber transmission model, the PMD compensator and
the receiver model were described in Sections II–V. The sam-
ples from the various biasing distributions are combined em-
ploying both stratified importance sampling and the balanced
heuristic method in order to compare them. Their weight func-
tions are given in (25) and (26), respectively. In both cases, we
biased the DGD alone using the three biasing distributions de-
scribed in Section IV. When applying stratified importance sam-
pling, we used the following bounds: for ,

for , and for .
We observed a very good agreement between the two weighting
methods. We verified that it is sufficient to bias only the DGD
for this set of parameters by biasing both the DGD and the
the length of the frequency derivative of the polarization-dis-
persion vector with ten biasing distributions using the bal-
anced heuristic method and verified that we obtained the same
results. Due to its efficiency and generality, we used the bal-
anced heuristic method in most of the statistical results shown
in this work, including all the results when we biased both
and .

VII. CALCULATIONS OF OUTAGE PROBABILITY DUE TO PMD

We now use multiple importance sampling to bias both the
DGD and the length of the frequency derivative of the polar-
ization-dispersion vector to determine the eye opening penalty
in both compensated and uncompensated 10 Gb/s NRZ systems
with 30 ps of rise time. The fiber transmission model, the PMD
compensator and the receiver model were described in Sec-
tions II– V. We use samples in each of the 10 distributions
with both the DGD and the length of the frequency derivative of
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Fig. 6. Compensated pdf of the eye opening penalty due to PMD for a fiber
transmission system with h�i = 30 ps. We divide the domain of the penalty
into 46 bins. The compensator is comprised of a variable DGD compensator,
in which the residual DGD of the system at the center frequency of the channel
is canceled after compensation. The solid line are compensated results using
importance sampling with 10 Monte Carlo simulations whose confidence
interval is shown with error bars for one out of three consecutive bins. The dots
are compensated results using 1.1�10 standard Monte Carlo simulations.

the polarization-dispersion vector bias that we described in Sec-
tion V, which we combine using the balanced heuristic method,
to obtain the results that we show in this section.

In Fig. 6, we show the pdf of the eye opening penalty, and
we validate our implementation of importance sampling with
both the DGD and the length of the frequency derivative of the
polarization-dispersion vector bias using samples by com-
parison with standard Monte Carlo simulations with 1.1
samples. The fiber transmission system has 30 ps of mean DGD

, and the compensator is comprised of a variable DGD el-
ement. We observed an excellent agreement between the two
techniques, even though the method with importance sampling
has a fraction of the computational cost of the standard Monte
Carlo method. In this case, we used the residual DGD at the cen-
tral frequency of the channel after compensation as the feedback
parameter for the compensator, rather than the eye opening, be-
cause it does not require the use of an optimization procedure in
simulations like that described in Section III. Hence, we were
able to carry out the large number of standard Monte Carlo sim-
ulations that were required for this validation.

In Fig. 7, we show the outage probability as a function of the
eye opening penalty margin for compensated and uncompen-
sated system with . The outage probability at an eye
opening penalty margin is the complement of the cumulative
density function (cdfc) of the eye opening penalty , where

(27)

and is the corresponding pdf. Fig. 7(a) shows the results
on a linear scale and Fig. 7(b) shows the same results on a loga-
rithmic scale. When the fixed DGD element of the compensator

is set to 25 ps, which is equal to the uncompensated mean
DGD , we observe a larger reduction of the average penalty
due to PMD than when . However, we observe that
the choice provides a more significant reduction
of the outage probability for penalties larger than 0.4 dB than
does . In Fig. 7, we show that the performance of
the compensator with is close to the performance
of the compensator with a variable DGD element whose feed-
back parameter is also the eye opening, in agreement with [27],

Fig. 7. Compensated and uncompensated cdfc of the eye opening penalty due
to PMD for a fiber transmission system with h�i = 25 ps. The dotted lines
are uncompensated results. The dashed lines are results for a compensator with
� = h�i. The solid lines are results for � = 2:75h�i. The dot-dashed lines
are results for a compensator with a variable DGD element. The dotted vertical
lines show the 0 dB eye opening penalty. The error bars show the confidence
interval for the curves that have at least one bin whose relative variation exceeds
10%. For those curves, we show the error bars for one out of three consecutive
bins. (a) Results plotted on a linear scale with 63 bins. (b) Results plotted on a
logarithmic scale with 88 bins.

Fig. 8. Compensated and uncompensated cdfc of the eye opening penalty due
to PMD for a fiber transmission system with h�i = 30 ps. Dotted lines are
uncompensated results. Dashed lines are results for a compensator with � =

h�i. Solid lines are results for � = 2:25h�i. Dot-dashed lines are results for a
compensator with a variable DGD element. The dotted vertical lines show the
0 dB eye opening penalty. The error bars show the confidence interval for the
curves that have at least one bin whose relative variation exceeds 10%. For those
curves, we show the error bars for one out of three consecutive bins. (a) Results
plotted on a linear scale with 63 bins. (b) Results plotted on a logarithmic scale
with 88 bins.

despite the difference in the complexity of these compensators.
The outage probability does not equal 1 at 0 dB because there
is a finite, albeit small probability that the PMD in the trans-
mission line will interact with the DGD in the compensator to
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Fig. 9. The outage probability as a function of the fixed DGD element of the
compensator, � . The value � = 0 corresponds to the uncompensated case.
The solid line with circles are results for h�i = 25 ps. The dashed lines with
diamonds are results for h�i = 30 ps. The error bars show the confidence
interval for the curves. The dotted line shows the 10 outage probability level.

compress the signal and reduce the penalty. In Fig. 8, we show
results similar to the ones in Fig. 7, except that .
This figure is a corrected version of [9, Fig. 2], where only the
DGD bias was applied. In Figs. 7 and 8, we plot error bars for
the curves that have at least one bin whose relative variation ex-
ceeds 10%.

In Fig. 9, we plot the outage probability for a 1-dB penalty
as function of for fibers with and .
This figure is a corrected version of [9, Fig. 3], where only the
DGD bias was applied. There is an optimum value for that
minimizes the outage probability for both cases. This value is
about 69 ps. The reason why the outage probability rises when

becomes larger than this optimum is because large values of
add unacceptable penalties to fiber realizations that could be

adequately compensated at lower values of . The reduction
in the outage probability that the fixed DGD compensator can
provide in the fiber system with is substantially
smaller than when because the number of PMD re-
alizations that the compensator cannot adequately compensate
increases rapidly with the average DGD. We have also observed
that it is increasingly difficult to find an optimal operating point
when becomes large because the penalty depends more sen-
sitively on the polarization controller’s orientation. Thus, it is
preferable to operate with the smallest possible that produces
an acceptable outage probability.

VIII. CONCLUSION

This paper showed how to use multiple importance sampling,
in which we bias both the DGD and the length of the frequency
derivative of the polarization-dispersion vector, and it showed
how to combine the samples from several biasing distributions
to study PMD compensators with a single DGD element. This
paper demonstrated that fixed DGD compensators can reduce
the outage probability by several orders of magnitude for NRZ
signals that are transmitted in optical fibers with PMD. It
showed that the optimal value of the fixed DGD element of the
compensator for realistic penalties of 1 dB is two to three times
larger than the mean DGD of the line. The optimized fixed
DGD compensator can provide a performance that is close
to the one provided by a variable DGD compensator, despite
the difference in the complexity of these compensators. This
paper’s results show that it is not sufficient to determine the
impact of PMD compensators on the average penalty when

designing realistic systems because the average penalty is not
directly related to the outage probability, which is the most im-
portant design parameter. It is, therefore, crucial to accurately
model the tail of the probability density function of the eye
opening penalty, and importance sampling is a technique that
makes this study feasible.
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