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Abstract. The derivation of the coupled nonlinear Schr¨odinger equation and the
Manakov-PMD equation is reviewed. It is shown that the usual scalar nonlinear
Schrödinger equation can be derived from the Manakov-PMD equation when polar-
ization mode dispersion is negligible and the signal is initially in a single polarization
state as a function of time. Applications of the Manakov-PMD equation to studies
of the interaction of the Kerr nonlinearity with polarization mode dispersion are then
discussed.

There has been a flood of recent work on polarization effects in optical fibers,
most of it focused on polarization mode dispersion (PMD). There are good, practical
reasons for this recent interest. As the data rate per channel increases, PMD becomes
an increas-ingly important limitation in communication systems. However, my own
interest in polarization issues was, at least originally, focused on more fundamental
questions. Since nearly all the contributions in this volume focus on the more immediate
practical issues that are a consequence of polarization effects, it seemed useful to me to
focus this contribution on more fundamental issues. The nice thing about fundamental
issues is that even though they attract less attention than immediate practical issues,
they typically stay relevant longer and can impact practical issues 10–20 years in the
future.

Throughout the 1970s, a considerable body of work established the basic polar-
ization properties of optical fibers. Much of this work was summarized by Kaminow
in 1981 [1]. It was found that the birefringence∆n/n is in the range10−4–10−9,
with communication fibers in the range10−6–10−7. It was found that the intrinsic
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birefringence is almost entirely linear, even when the fiber is twisted, because of the
very small value of the electro-optic tensor in glass [2]. Remarkably, there has been no
change in either the range of the birefringence values or the helicity in optical fibers
in the last 20 years, although many other fiber parameters have changed considerably.
The fiber-induced PMD can now be made much smaller by spinning fibers as they are
drawn; the effective areas of fibers can be made much larger or smaller, affecting the
strength of the nonlinearity; the dispersion can be tailored; and losses can be made
smaller.

In 1980, Mollenauer et al. [3] demonstrated the propagation of solitons in optical
fibers for the first time. This work began a series of studies, continuing into the present
day, that explored the interaction between chromatic dispersion and nonlinearity in
optical fibers and their implications for communication systems. The theoretical basis
for this work was the nonlinear Schr¨odinger equation, which had been derived by
Hasegawa and Tappert in 1973 [4]. This work took no account of the birefringence in
optical fibers; however, work by Botineau and Stolen [5] had made it clear that the
interaction of birefringence and nonlinearity could be quite important. In their work,
they measured the nonlinear polarization rotation and demonstrated its potential for
nonlinear switching. As part of this work, they demonstrated that the ratio of the cross-
phase modulation and the self-phase modulation in optical fibers is 2/3. I note that
this coefficient is only expected to be 2/3 if the fiber’s birefringence is intrinsically
linear. More generally, it equals(2 + 2 | ê1 · ê2 |)/(2+ | ê1 · ê1 |), whereê1 andê2

are the unit vectors for the birefringent eigenmodes [6]. Its value ranges from 2/3 for
linearly birefringent fibers to 2 for circularly birefringent fibers. Thus, the nonlinear
light evolution yields information about the linear properties of the fibers—a point to
which I shall return.

Given the experimental evidence of the importance of birefringence, it was natural
to derive an equation that takes it into account. This equation, referred to as the coupled
nonlinear Schr¨odinger equation, was first presented in 1987 [7]. In a form that is
particularly useful for studying randomly varying birefringence, it may be written as
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wherez andt are distance along the fiber and retarded time, respectively, whileu(z, t)
is the two-dimensional Stokes vector wave envelope. The parameterg is the gain and
loss in the fiber,θ/2 is the orientation angle of the axis of birefringence,∆β is the
birefringence,∆β′ is the frequency derivative of the birefringence,β′′ is the dispersion,
andγ is the Kerr coefficient. All parameters are evaluated at the carrier frequency. The
σj are the standard Pauli matrices. My original motivation for deriving this equation
was that for deep theoretical reasons I had hypothesized that solitons would be robust
in the presence of Hamiltonian perturbations [8]–[10]. It is beyond the scope of this
contribution to discuss the origin of this hypothesis and what Hamiltonian perturbations
are, except to note that when the birefringence is small, it is a Hamiltonian perturbation.
What does it mean for the birefringence to be small? It means that the birefringent beat
length should be large compared to the nonlinear scale length and the scale length
for chromatic dispersion. Under these circumstances, theory [11] and experiment [12]
show that solitons are robust in the presence of birefringence, as predicted by the
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robustness hypothesis. However, this limit is not the usual limit that applies in optical
fiber communication systems. In these systems, the beat length is short compared to
the scale lengths for nonlinearity and chromatic dispersion, as shown in Fig. 1. Under
these circumstances, the coupled nonlinear Schr¨odinger equation indicates that solitons
should be ripped apart—an effect that is not observed. Clearly, there is a mystery here.

In its broad outlines, the answer to this mystery, shortly after it first became appar-
ent in 1988, was not long in coming. The birefringence in optical fibers is randomly
varying.As long as the PMD scale length is long compared to the nonlinear and disper-
sive scale lengths, solitons will be robust [13]–[15]. The PMD scale length is the length
over which PMD will differentially change the polarization states in the bandwidth of
a signal so that the polarization state is no longer constant over the signal spectrum.
This scale length is the same as the scale length over which PMD will cause a linear
pulse to spread significantly [16]–[18].

However, a key question remained:Why and when should the nonlinear Schr¨odinger
equation hold? Since the early, very brief and intuitive derivation of Hasegawa and
Tappert [4], numerous derivations of the nonlinear Schr¨odinger equation have been
published. Many of these derivations contain mathematical errors. Two of the most
common are neglecting the∂2/∂z2 term that appears in Maxwell’s equations, rather
than eliminating it self-consistently, and dropping the∇(∇ · E) term. However, Ko-
dama [19] has published a derivation that takes into account these issues as well as
numerous other issues and is, I believe, completely correct mathematically. However,
this derivation shares with all others up to my recently published derivation [18] what
I consider to be a conceptual flaw. All derivations up to [18] assumed that the core of
an optical fiber is perfectly round and without stress and thus neglect the birefringence
entirely. In fact, a physically correct derivation that is applicable to communication
systems should take into account the large, but rapidly and randomly varying, birefrin-
gence. From a conceptual standpoint, the logical chain that one must use is as follows:
Starting from Maxwell’s equations, one must average over the rapid oscillations in the
carrier wave to obtain the coupled nonlinear Schr¨odinger equation, which appears in
the middle group of scale lengths that I show in Fig. 1. From there, one must aver-
age over the rapidly and randomly varying birefringence to obtain the Manakov-PMD
equation that applies to the largest group of length scales in Fig. 1. When PMD can be
neglected, and, in addition, the initial field is in a single polarization state as a function
of time, then the nonlinear Schr¨odinger equation holds [18].

When my colleagues and I began to tackle this question in the early 1990s, the
first issue that we faced was that we did not know how to model the randomly varying
birefringence in the fibers. In his analytical work, Poole [20] used a model that assumed
weak off-diagonal coupling between the axes of birefringence. This model was first
used to describe polarization-maintaining fiber, for which it is physically reasonable
[21], but it was less obvious to my colleagues and I that it is physically reasonable for
communication fibers in which we knew that the orientation of the birefringence axes
had to fairly rapidly cover all possible values uniformly. How did we know that? If
the opposite held, then, as noted previously, our early work had make it clear that the
birefringence would rip solitons apart—something that is not observed. For numerical
work, Poole et al. [22] introduced a rotating waveplate model. It is closely related to
the coarse step method, which was introduced in [14] and [15] to allow users to deal
effectively with systems in which nonlinearity, chromatic dispersion, and randomly
varying birefringence are all present. A difficulty in principle with the rotating wave-
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Fig. 1. Illustration of the key length scales in optical fiber transmission systems.

plate model that the models introduced in [14] and [15] avoid is that if the beat length
is resonant with birefringent fiber lengths, then a linear input polarization state can
only transform to other linearly polarized states. Thus, the randomly rotating wave-
plate model is not suitable for modeling broadband wavelength division multiplexed
systems. By contrast, the coarse step models are widely used in both commercial and
non-commercial, full-system simulators.

A key issue in deriving the Manakov-PMD equation is determining the statistics of
the evolution of polarization states on the Poincar´e sphere. Since the statistical varia-
tion of the birefringence in optical fibers was unknown,Wai and Menyuk [23] proposed
two physical models. In the first model, the birefringence is fixed and its orientation
is allowed to vary. In the second, the change in the index of refraction due to the bire-
fringence is assumed to be Gaussian-distributed in both transverse directions of the
fiber. Our original thought was that the two models might make different predictions
for the field evolution that would allow one to determine experimentally which under-
lying fiber model is correct. In fact, the two models make nearly identical predictions.
Thus, the issue remained unresolved until the recent polarization optical time domain
reflectrome-try measurements by Galtarossa et al. [24] showed, in combination with
earlier results indicating that the fiber birefringence is linear, that the second model is
correct. Alex Wai and I found that the evolution on the Poincar´e sphere is anisotropic
and that it depends on two parameters, the average fiber beat lengthLb and the fiber
decorrelation lengthLf . The field evolution on the Poincar´e sphere is characterized by
three parameters, an azimuthal diffusion lengthLaz, an equatorial diffusion length in
a frame that is fixedLeq,fixed, and an equatorial diffusion length in a frame that rotates
with the axes of birefringence,Leq,rot. Both Laz and Leq,fixed are proportional toLf

whenLb ? Lf and toL2
b/Lf whenLf ? Lb . By contrast,Leq,rot is proportional to

Lf , regardless ofLb.
To average over the coupled nonlinear Schr¨odinger equation to obtain the Manakov-

PMD equation, one proceeds in two steps [18], [23]. In the first step, one makes the
transformation

ṽ(z, ω) = {I cos[θ(z)/2] + σ2 sin[θ(z)/2]}ũ(z, ω), (2)
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where the tilde indicates the Fourier transform of the time domain quantities, andI
is the2 × 2 identity matrix. This transformation would diagonalize the linear portion
of the coupled nonlinear Schr¨odinger equation in the absence of az-varyingθ. I note
thatω is defined with respect to the carrier frequency. In the second step, we freeze
theω = 0 motion by making the transformatioñv(z, ω) = T−1ũ(z, ω) =, where

i
∂T(z)

∂z
+ {∆βσ3 + [θz(z)/2]σ2}T(z) =); T(z = 0) = I, (3)

andθz indicates thez-derivative ofθ. Returning to the time domain, we obtain the
Manakov-PMD equation,
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whereσ̄j = T−1σjT . On the left-hand side of Eq. (4), we have the slowly varying
contribution. On the right-hand side, we have the rapidly varying residual contributions.
The first residual term is linear and leads to the usual linear PMD. The length scale
on which averaging occurs equalsLeq,rot ∼ Lf , regardless ofLb. However, the
accumulated differential group delay (DGD) is proportional to the birefringence; so,
the expected value of the DGD is proportional toL

1/2
f /Lb over lengths that are large

compared toLf . The second residual term is nonlinear and leads to an effect that my
colleagues and I refer to as nonlinear PMD. Marcuse et al. [25] showed that this term
is negligible in communication systems. However, it can be important in short-pulse
systems, and Arend et al. [26] observed its effect in fiber loop mirrors. Interestingly,
the strength of this effect is proportional toLaz, in contrast to the usual linear PMD,
whose strength is proportional toLeq,rot.

While the nonlinear PMD can be neglected in present-day communication systems,
the same is not true for the interaction of nonlinearity and the usual linear PMD.
One example of this effect is that a nonlinearly induced pulse chirp can interact with
higher-order PMD to lead to additional pulse spreading beyond the spreading that is
induced by first-order PMD or can induce pulse compression. This effect was predicted
by Ibragimov et al. [27] and was recently observed by M¨oller et al. [28]. A second
example of this effect is that nonlinear polarization rotation induced by wavelength
division multiplexed interactions can lead to fast variations of the polarization states
that impede the ability of standard PMD compensators to mitigate signal degradation
that is due to PMD. This effect was observed by Khosravani et al. [29] and by Lee et
al. [30]. It is my view that much work remains to be done to explore the interaction of
nonlinearity and PMD and that it is a very interesting area for future research.

In conclusion, much of my own work on polarization effects in optical fibers
was motivated by a desire to understand what the basic equations are that govern
light propagation in optical fibers on the length and time scales that are important
for communication systems. This work led to the derivation of the coupled nonlinear
Schrödinger equation that governs the evolution on the intermediate length scale of
Fig. 1 and to the Manakov-PMD equation that governs the evolution on the long length
scale of Fig. 1. From this work, we find that the usual scalar nonlinear Schr¨odinger
equation and its variants will hold when PMD is negligible and the signal is launched
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in a single polarization state. Establishing the Manakov-PMD equation was important
step forward. It includes all the physical phenomena of importance in optical fiber
communications except the Brillouin and Raman nonlinearities, device effects like
polarization dependent loss, and amplified spontaneous emission noise from the am-
plifiers. The Manakov-PMD equation can easily be modified to include these effects.
It contains a rich set of phenomena, many of practical importance, which we have only
begun to explore.
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