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Asymptotic analysis of collision-induced timing
shifts in return-to-zero quasi-linear systems

with predispersion and postdispersion
compensation
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An asymptotic method for calculating the collision-induced frequency and timing shifts for quasi-linear
pulses in return-to-zero, wavelength-division multiplexed systems with predispersion and postdispersion
compensation is developed. Predictions of the asymptotic theory agree well with quadrature and direct nu-
merical simulations. Using this theory, computational savings of many orders of magnitude can be realized
over direct numerical simulations. © 2006 Optical Society of America
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The primary source of nonlinear impairments in
return-to-zero (RZ), wavelength-division multiplexed
(WDM) systems using dispersion management (DM)
is that of collision-induced timing shift (CITS) due to
cross-phase modulation.1 When DM is employed,
pulses undergo a rapid zigzag motion, interacting
many times in a series of minicollisions over a large
distance. Because of this extended interaction length,
pulses may experience either complete or incomplete
collisions. This complex dynamics makes analysis of
CITS in DM systems difficult.

Many studies1–3 have been devoted to the analysis
of CITS. The methods used in these studies range
from direct numerical simulations (DNSs) of the un-
derlying nonlinear Schrödinger (NLS) equation and
semi-analytic methods to scaling arguments and
asymptotic analysis. Even semi-analytic methods can
be computationally expensive when a large param-
eter space must be explored.

In this Letter, we extend the asymptotic method
developed in Refs. 4 and 5 to include quasi-linear
(QL) systems with predispersion and postdispersion
compensation (PPDC) and make substantial im-
provements in the accuracy of the method. Using this
approach, we can explain the underlying basis for the
shape of the time shift function found earlier by sev-
eral of us.6

We start with the perturbed NLS (PNLS) equation,
iuz+ �D�z� /2�utt+g�z��u�2u=0, written in dimension-
less variables, where t= tret / t*, z=zlab/z*, u
=E /�g�z�P*, and D=−k� /k*�; normalization param-
eters are denoted by an asterisk. E is the slowly vary-
ing complex optical field envelope; tret and zlab are, re-
spectively, the retarded time and propagation
distance. D�z� is the local group velocity dispersion,
and g�z� describes periodic lumped amplification and
continuous loss.

A single dispersion map consists of two fiber

sections (with dispersion coefficients and lengths
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D+�0,z+ and D−�0,z−) and an erbium-doped fiber
amplifier (EDFA) located at the beginning of the first
fiber. The map length is za=z++z−, and the fraction of
the map consisting of the anomalous fiber is �
=z+/za. The path-average dispersion is then defined
as �D�=�D++ �1−��D−, and a measure of the strength
of dispersion management is given by7 s= ��D+
− �D��z+− �D−− �D��z−� /4. For EDFAs, g�z�=g0 exp�
−2��z−nza�� ,nza�z� �n+1�za, where n is the map
number, � is the dimensionless loss coefficient, and
g0=2�za / �1−exp�−2�za��. The transmission span
then consists of the periodic extension of the above
dispersion map. PPDC is modeled by appending
anomalous fibers of lengths �Lpre and �Lpost to the
beginning and end of the transmission span, respec-
tively.

We first decompose the field envelope into two
pulses, one in frequency channel +�0 and the other
in frequency channel −�0: u=u++u−, i.e., u is decom-
posed into right- and left-going pulses relative to the
retarded frame and four-wave mixing effects are ne-
glected. We remark that numerical simulations3 indi-
cate that two-pulse interactions dominate timing jit-
ter calculations. The standard definitions of average
pulse frequency and average pulse time, written for
pulse u+ are, respectively, ���=−i	u+

*��u+/�t�dt /E
and �t�=	t�u+�2dt /E, with energy E=	�u+�2dt. Using
these definitions along with the PNLS equation, it
follows that ���� /�z=2g�z� /E	−�

� �u+�2���u−�2 /�t�dt,
��t� /�z=D�z�����z�. The frequency and timing shifts
are defined as ���z�= ����z�−�0 and �t�z�= �t��z�
−D̃�z��0+ t0, where D̃�z�
	−�Lpre

z D�x�dx is the path-
integrated dispersion and t0= �t��0�.

To model QL pulse propagation, we take as an ini-
tial condition the Gaussian ansatz u±�z=−�Lpre, t�
= �	 /�2
��exp�−�t� t0�2 /2�± i�0t�. Because of the

constant dispersion in the precompensation fiber,
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pulses can undergo at most one minicollision in
�Lpre. Thus, any frequency shift in �Lpre can be
neglected. Ignoring this small frequency shift from
the precompensation fiber, the pulses are
linearly evolved over the distance �Lpre, yielding a

chirped Gaussian at z=0: u±�0, t�=	 /�2
��+ iD̃�

exp�−�t� t0�2 /2��+ iD+�Lpre�± i�0t�. We remark
that precompensation reduces pulse peak power,
thereby mitigating nonlinear effects. Assuming that
��� changes slowly with z, the QL evolution of the
pulses from z=0 is then approximately given by8

u±�z,t� = 	/�2
�� + iD̃�


exp�− �t � t0 ± ���D̃�2/2�� + iD̃�

± i���t − �i/2����2D̃�. �2�

Replacing ��� with �0 on the RHS of Eq. (2) and sub-
stituting into the evolution equations for �t� and ���
we find, after integrating over t and z,

���L + �Lpost�

= A�0 �
0

L+�Lpost gD̃0 exp�− 2��0
2D̃0

2

��2 + D̃2�



��2 + D̃2�3/2
dz, �3a�

�t�L + �Lpost� = D̃0�L + �Lpost����L + �Lpost� − �tres,

�3b�

where A=4E�3/2 /�2
 and D̃0�z�=D̃�z�− �D�z0. D̃0
naturally accounts for unperturbed mean pulse mo-
tion, with the mean collision location, or the center of
the macrocollision, defined as z0= t0 / ��D��0�. In Eq.
(3b), the contribution of the PPDC fiber to
D̃0 ,D+��Lpre+�Lpost�, is important and tends to offset
the accumulated dispersion from the nonzero (nega-
tive) average dispersion. The residual timing shift
�tres is defined as4

�tres�L + �Lpost�

= A�0 �
0

L+�Lpost gD̃0
2 exp�− 2��0

2D̃0
2

��2 + D̃2�



��2 + D̃2�3/2
dz. �3c�

To include the nonlinear frequency shift from the pre-
compensation length, the only modification to Eqs.
(3) would be to set the lower limit of integration to
z=−�Lpre. The frequency shift from the postcompen-
sation fiber is also small, but we include this fre-
quency shift to illustrate the flexibility of the method.
Equations (3) are the key formulas for frequency and
timing shifts between a pair of pulses in different
channels of a QL RZ system. They provide estimates
of frequency and timing shift without the need for de-
tailed numerical calculations and are amenable to

asymptotic analysis, which we describe next.
The Laplace method9 applies to integrals of the
form I���=	a

bF�z�exp�−���z��dz, where ��1, ��0
and −��a�b��. When ��1, the main contribution
to the integral comes from the neighborhood of a
critical point, i.e., where � has a minimum. F and �
are then expanded about this point, with typically
only the first few terms retained. The Laplace
method, with important modifications mentioned be-
low, is employed.

We describe the asymptotic analysis of only Eq.
(3a); the analysis of Eq. (3c) is similar. Equation (3a)
can be written as ���L+�Lpost�=A�0�	0

L

+	L
L+�Lpost�F exp�−���dz, where F=gD̃0B−3, B2=�2

+D̃2, �=D̃0
2B−2 and the asymptotic parameter �

=2��0
2. We first focus on the integral from z=0 to z

=L, which can be written as a sum over each disper-
sion map: 	0

LF exp�−���dz=�n=0
N−1	nza

�n+��zaF exp�−���dz
+	�n+��za

�n+1�zaF exp�−���dz, where N is the number of dis-
persion maps in the length L. It suffices to consider
only the first integral in the sum; the second integral
is treated similarly.

We find the critical point zc of the integral ��n
+

=A�0	nza

�n+��zaF exp�−���dz by solving ���zc�=0. The
relevant solution is D̃0�zc�=0, corresponding to so-
called minicollision locations where pulse centers co-
incide. F and � are now expanded, to second and
third order, respectively, about z=zc. One then finds
after integration

��n
+ �

AFn�J1,n

��n��0
+

3AFn��n�J2,n − 2AFn��n�J4,n

6�3/2��n��5/2�0
2 ,

with Fn� =F��zc�, etc., and Jk,n=	xn

xn
+
xke−x2

dx. In contrast
to the standard Laplace method, here the limits of in-
tegration xn

± are kept finite. The resulting integral
Jk,n can be expressed as a sum of error functions and
exponentials. For completeness, we record the contri-
bution to Eq. (3c) from a single critical point as
�tres,n

+ �AFn�J2,n / �2���n��3/2�0
2�, where F=gD̃0

2B−3.
Because of finite pulse width, pulses will some-

times contribute to Eqs. (3a) and (3c) even if their
centers do not coincide; i.e., if D̃0�zc� is small enough,
near or pseudocollisions contribute to timing and fre-
quency shifts as well. Said differently, there are dis-
persion maps where D̃0�zc�=0 has no solution, but
due to the smallness of D̃0�z� there is still a signifi-
cant contribution to the integrals from this range of
integration. If at the integration limits ���O�1/��,
then the integrals over these dispersion maps can be
estimated using integration by parts, with a typical
contribution being �AF /2�� exp�−2��0

2�� /�0�nza
; we

neglect the exponentially smaller term from the
other limit of integration. If ���O�1/��, integration
by parts breaks down and one must use a Laplace-
like calculation. However, a good approximation in
this case is to set ��=0 and use the standard Laplace
contribution with zc as the integration limit where �

is minimum. In practice, we find that including map
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contributions where ��O�1/��� gives good results;
additional map contributions can be included, but
their contribution quickly becomes negligible.

The integral over the postdispersion compensation
fiber is treated in the same way as the integral ��n

+

above, except that now in F we take g=1 and the lim-
its of integration are L to L+�Lpost.

Summing over all critical points, it follows that

���L + �Lpost� �
A

��0
�
n=1

Nc �Fn�J1,n

�n�
+

Fn��n�J2,n

2�1/2�0��n��5/2

−
Fn��n�J4,n

3�1/2�0��n��5/2
 + ���p.c.�, �4a�

�tres�L + �Lpost� �
A

2�3/2�0
2 �

n=1

Nc Fn�J2,n

��n��3/2
+ �tres�p.c.�,

�4b�

where Nc is the number of critical points. Contribu-
tions from the pseudocollisions are denoted by
���p.c.� and �tres�p.c.�.

We now compare our asymptotic theory with DNS
of the PNLS equation and with the numerical inte-
gration of Eqs. (3). The system considered is similar
to the one recently analyzed in Ref. 6. The system
has normalized line parameters L=22.5, za=0.22, �
=0.66, �Lpre=0.22, �Lpost=0.39, s=1.55, �D�=−0.5,
and �=5.5. The pulse parameters are 	=1.78, �
=1.36, and �0=2.67. With t*=17 ps, z*=228 km and
k�=−1.27 ps2/km, this approximately corresponds to
a 10 Gbit/s system that is 5000 km long with a chan-
nel spacing of 100 GHz and a loss rate of 0.21 dB/km.
To obtain dimensional frequency and timing shifts,
Eqs. (4a) and (4b) are multiplied by 1/ �2
t*� and t*,
respectively.

To solve the PNLS equation, we used a standard
split-step Fourier method and for the numerical inte-
gration of Eqs. (3) we used the trapezoidal rule. For
DNS of the PNLS, loss and gain were included in the
PPDC fibers. Shown in Fig. 1 is the total timing shift
(normalized to the pulse FWHM=33 ps) as a function
of the mean collision location z0 (normalized to the
system length L) for two channels, �0 and 2�0. Fig-
ure 1 shows that Eqs. (3) are accurate, validating the
QL ansatz and the adiabatic approximation used to
derive Eqs. (3). For the first channel, �0, the
asymptotic approximation of Eqs. (3) is a good ap-
proximation and is in excellent qualitative agree-
ment with numerical results. As the channel spacing
increases, the asymptotic approximations become
more accurate, i.e., as �→� the difference between
the RHS of Eqs. (4) and the corresponding integral in
Eqs. (3) goes to zero; this is clearly seen in Fig. 1.

A more detailed analysis shows that the two com-
ponents of �t, �� and �tres, have a universal struc-
ture. Use of predispersion compensation has the pri-
mary effect of translating the main lobes of �� and
�tres; the maximum/minimum values do not change

significantly. Clearly, postdispersion compensation
does not affect frequency and residual timing shifts
incurred in the transmission span. Use of PPDC af-
fects �t primarily by reducing accumulated disper-
sion, that is, by reducing the timing shift D̃0��. De-
tails of these calculations will appear elsewhere.

In summary, we have employed quadrature and
asymptotic analysis to calculate CITS for systems
with predispersion and postdispersion compensation.
For the system chosen here, the quadrature and the
asymptotic theory agree well with DNS. Moreover, by
using the asymptotic theory, computational savings
of many orders of magnitude can be realized over
DNS. Because of the dominant two-pulse interactions
in WDM systems, the method can also be used to cal-
culate frequency and time shifts for multichannel
WDM systems. Higher-bit-rate systems can also be
analyzed with the method.
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