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Abstract—Aspects of the interaction of the Kerr nonlinearity
and polarization mode dispersion (PMD) are reviewed. The basic
equation that governs this interaction on the length scale of inter-
est in optical fiber communications systems is the Manakov-PMD
equation. This equation is derived using multiple-length-scale
techniques. The focus of the derivation is the elucidation of com-
mon misunderstandings and pitfalls rather than mathematical
rigor. It is shown that the scalar nonlinear Schrodinger equation
is valid when PMD is absent and the signal is initially in a single
polarization state. Two examples are then presented that illustrate
the complexity of the interaction between nonlinearity and PMD.
The first example considers the interaction of a nonlinearly in-
duced chirp with PMD. As the power increases, one can obtain an
improved eye opening relative to the case when PMD is absent.
The second example considers the effect of nonlinear polariza-
tion rotation in a wavelength-division-multiplexed system. When
nonlinear polarization rotation is important, the principal states
of polarization become time dependent and PMD compensation
becomes ineffective. This problem can be mitigated through the
use of line codes.

Index Terms—Kerr nonlinearity, Manakov-polarization mode
dispersion (PMD) equation, optical fiber transmission, PMD.

I. INTRODUCTION

RANSMISSION in optical fiber communications systems

is impaired and ultimately limited by the four “horsemen”

of optical fiber communications systems—chromatic disper-

sion, amplified spontaneous emission noise from amplifiers,
polarization effects, and fiber nonlinearity [1].

Polarization effects are difficult to analyze and study because

they are due to random variations in the spatially varying bire-

fringence of the optical fibers, as well as polarization-dependent
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loss and gain in the amplifiers [2], [3]. The random variation in
the fibers changes on a time scale of milliseconds to days, so
that it is important to characterize the behavior statistically [2],
[3]. Modeling these effects properly is a challenge.

By contrast, the Kerr nonlinearity—the principal source of
nonlinearity—is not difficult to model. It leads to a phase rota-
tion that is proportional to the intensity at every point in time.
However, it couples to the other transmission impairments in a
complex way that is often difficult to analyze. It has been known
since the late nineteenth century that even simple nonlinearities
can lead to stunningly complex dynamics, including chaos [4],
and the Kerr nonlinearity is no exception.

Polarization effects and nonlinearity are usually studied sep-
arately for two reasons. First, each is hard to understand on
its own. Studying them together can seem almost hopeless.
Second, in practice, they usually appear separately in com-
munications systems, with one or the other interacting with
the amplified spontaneous emission noise and the chromatic
dispersion to limit the transmission distance and/or the per-
channel data rate.

However, there are good reasons for studying them to-
gether. They can interact to produce effects that are potentially
harmful—like nonlinear polarization rotation [5], which can
limit the effectiveness of polarization division multiplexing [6].
Conversely, there are a number of cases where they interact
to produce effects that are potentially useful, like all-optical
switching [7].

Polarization mode dispersion (PMD) has become increas-
ingly important as the per-channel data rates have increased and
is now arguably the most important of the polarization effects.
It is due to the differential rotation of the polarization states
in neighboring frequencies [2], [3], as will be discussed later
in more detail. The interaction between PMD and nonlinear-
ity can be particularly complex. Sometimes, in combination
with chirp, a system with both PMD and nonlinearity is less
impaired than a system with the same amount of nonlinearity
and no PMD [8]-[10]. More often, the combination of PMD
and nonlinearity can be harmful. Nonlinear polarization rota-
tion can alter the polarization states of the bits, so that they
vary from one bit to the next in a way that is difficult to
predict. In this case, conventional PMD compensation becomes
impossible [11].

Another motivation for studying the interaction of nonlinear-
ity and polarization effects is that this interaction can provide
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insight into the linear properties of optical fibers. For example,
if fibers are linearly birefringent, then the ratio of the cross-
phase-modulation coefficient to the self-phase-modulation co-
efficient is 2/3. By contrast, in a circularly birefringent fiber,
this ratio is 2. With arbitrary ellipticity, it varies between the
two extremes of 2/3 and 2 [12]. This ratio has been mea-
sured to be nearly equal to 2/3 [13], [14], providing power-
ful evidence—although by no means the only evidence—that
standard optical fibers are to good approximation linearly
birefringent. Another example is that signals are expected to
disperse linearly in exactly the same way, regardless of whether
any orientation of the randomly varying axes of birefringence is
equally likely, as is the case in standard communications fiber,
or there is some fixed axis that is most likely, as is the case
in polarization-maintaining fiber (compare [15] and [16]). By
contrast, solitons will be stable in the former case, but they
will split in two in the latter case (compare [17] and [18]).
The stability of solitons in standard fiber thus provides strong
evidence that the orientation of the axes of the birefringence is
uniformly distributed to a good approximation.

In addition to the practical reasons for studying the inter-
action between polarization effects and nonlinearity, there are
some fundamental reasons as well. First, one of the outstanding
questions in mathematical physics is understanding when the
complex, chaotic behavior that is generally present in nonlinear
systems can be avoided. Mathematical systems in which this
behavior is never present are referred to as integrable [4]. An
example of an integrable system is the nonlinear Schrodinger
equation [19], which can accurately model transmission in
optical fibers in certain cases [1], [20]. Integrable partial dif-
ferential equations like the nonlinear Schrédinger equation
typically have soliton solutions. However, solitons—or at least
solitonlike solutions—are often also present in nonintegrable
systems. Indeed, for deep theoretical reasons, it has been hy-
pothesized that solitons are robust when integrable systems are
subjected to Hamiltonian deformations [21]. Without entering
into what Hamiltonian deformations are here, we will simply
note that the addition of the birefringence to the nonlinear
Schrodinger equation produces a new equation—the coupled
nonlinear Schrodinger equation—that is a Hamiltonian defor-

Key length scales in optical fiber communication systems. (Originally from [26]).

mation of the nonlinear Schrodinger equation [22]. The stability
of solitons in this system [17], [23] provides evidence that the
robustness hypothesis just cited is correct.

Another fundamental reason for studying the interaction of
polarization effects and nonlinearity that is of more direct
relevance to optical fiber technology is to determine when
the nonlinear Schrodinger equation is expected to hold. To
understand this issue, the reader should peruse Fig. 1, in which
the different length scales that are present in typical optical
fiber communications systems are shown. The length scales
vary over 13 orders of magnitude from the smallest length,
the wavelength of light (1.55 pum), to the largest length, the
length of a transglobal communications system (23 000 km)
like fiber loop around the globe (FLAG). There is a similar
large variation in time scales. The length scales shown in Fig. 1
cluster into three groups. The shortest group, on the order of
micrometers, corresponds to the wavelength of light and the
fiber core diameter. The intermediate group, on the order of
meters, corresponds to the fiber beat length and to the fiber
correlation length—the length scale on which the fiber’s axes
of the birefringence change randomly. The longest group, on
the order of tens of kilometers and more, corresponds to length
scales for fiber attenuation and amplifier spacing, chromatic
dispersion, and the Kerr nonlinearity. A point to note is that
the strength of an effect is inversely proportional to its length
scale. Therefore, the birefringence is a large effect compared to
the chromatic dispersion.

Why then should the nonlinear Schrodinger equation, which
completely ignores polarization effects, ever hold? The answer
to this question lies in a multiple-scale analysis [24], [25].
While the birefringence is large, it is also rapidly and randomly
varying. On a long length scale, its effects can average out.
The operative word here is “can.” These effects do not always
average out, and one must then take into account the vector
effects that are associated with the birefringence. A careful
analysis shows that it is possible to use scalar equations like
the nonlinear Schrodinger equation when the length scale as-
sociated with PMD is long compared to the system length and
when the initial signal starts out in a single polarization state
[26]. Moreover, when the PMD length is long compared to the
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nonlinear length, the vector effects can be treated perturbatively
and are often small [26].

Thus, any attempt to determine the basic equations that
govern light propagation in optical fibers at the lengths of
interest in communications systems leads one naturally to
contemplate the relationship between nonlinearity and the
birefringence. This point bears emphasis because almost all
derivations of the nonlinear Schrodinger equation that appear in
the literature—including several textbooks—simply ignore the
birefringence. An unfortunate consequence is that the unwary
reader may attempt to use these equations where they do not
apply. Indeed, there are numerous instances in the literature in
which insufficient attention to the length scales of interest have
led to confusion and error.

Another common source of misunderstanding in the liter-
ature is the tendency not to explicitly write the independent
variables upon which the dependent variables depend. On oc-
casion, this lack of specificity may be followed by a Fourier
transformation or some other transformation in which part of
the equation is transformed and part is not. Sometimes, this sort
of transformation can be patched up mathematically by using
a two-time-scale or two-length-scale analysis in which one of
the time or length variables is transformed and the other is not.
Sometimes, it is just plain wrong. In any case, the failure to be
explicit is a source of confusion.

The remainder of this paper consists of two parts. In
Section II, we show how by averaging over the field variations
on the scale of a single wavelength, it is possible to obtain
the coupled nonlinear Schrodinger equation from Maxwell’s
equations and how by averaging over the randomly varying
birefringence, it is possible to obtain the Manakov-PMD equa-
tion and from that the scalar nonlinear Schrodinger equation.
Since a detailed mathematical derivation has been published
in [26], we will refer the reader there for details and focus
here on physical understanding, with an emphasis on common
misunderstandings and pitfalls. At every point, we have been
explicit about which length scales are being treated as fast and
slow and about which independent variables we are using. In
Section III, we will review two examples of how nonlinearity
interacts with PMD. The first will be the PMD improvement
that appears in some nonlinear systems [8], [10]. The second
will be the impact of nonlinear polarization rotation on the
principal states of polarization [11], [27], [28]. In both cases,
the emphasis will be on elucidating the physics and the key
length scales. Section IV contains the conclusions.

II. DERIVATION OF THE BASIC EQUATIONS

A. Coupled Nonlinear Schrodinger Equation

Our starting point is Maxwell’s equation in a dielectric
medium, which may be written
1 9°D(r,t)

Vo [V B O]+ —5

=0 1
e (D

where r and t correspond to space and time. The electric
displacement is defined as

D(r,t) = ¢oE(r,t) + P(r,t) (2)
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where the polarizability P has both a linear and a nonlinear
response. One thus writes

P(I‘7 t) = PL(I‘, t) + PNL(I‘, t) 3)
where
PL(rv t)
t
= €p / dtle(r, t— tl) . E(I‘, tl) (421)
PNL(I', t)
t t t
= €p / dtl / dtz / dtngL(I',t — tl,t — tz,t — tg)
—00 —00 —00
. E(I‘,tl)E(I‘,tQ)E(I',tzg). (4b)

The quantities X, and Xy, are the material dielectric response
tensors. The time integrals end at ¢, not 0o, to be consistent with
causality. Alternatively, one can demand that Xy, and X1, equal
zero when any of their temporal arguments is negative.

We now specialize to the optical fiber geometry by allowing
z to correspond to distance along the fiber and r, = (z,y) to
correspond to the transverse dimensions. We write

E(r,t) = F(z,r ,t,wp) exp [iB(wg)z — iwpt]

+ complex conjugate  (5)

where wy is the radial carrier frequency of the signal, also
referred to as the central frequency. Our basic assumption is
that the dependence of F on z and ¢ is slow compared to the
dependence of F on r; [1], [26]. Referring to Fig. 1, the length
scale for the variation of F' due to r, is the shortest scale or
micrometers, while the length scale for the variation with z
is centimeters or meters. We also assume that the chromatic
dispersion, nonlinearity, and the birefringence do not change
on the shortest length scale. Indeed, the assumption that the
change in the dispersion is slower than the shortest length scale
is implicit in the form of (5). In general we would have to
replace B(wo)z with [, 8(21,wo)dz1.

Another issue that we will mention briefly here is our choice
of the convention for the carrier frequency in (1). It is common
in the engineering literature to replace expl|if(wp)z — iwpt]
with exp[jwot — j3(wo)z], where j = v/—1 instead of i and
wot appears with a positive sign, rather than a negative sign.
There is no strong reason to prefer one convention over the
other, and both are used about equally in the literature on polar-
ization. However, this choice affects the meaning of the Stokes
parameters. Therefore, the reader must pay careful attention to
which convention is being used in order to avoid confusion.
The literature is often not specific in its choice, and one finds
on occasion that a single publication switches in mid-stream
without informing its readers. The implication of the different
conventions is thoroughly discussed in [29] and [30].
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The first step in applying multiple length scale methods to
the shortest length scale is to neglect the variation that occurs
in F on a longer length scale. Hence, we write

E(r,t) = F(r,,wo) exp [i8(wo)z — iwpt]

+ complex conjugate. (6)

In keeping with our assumption that nonlinearity can be ne-
glected on the shortest length scale, we write P = P,. We write
the dielectric tensor as

XL (I‘, t) = XL (I‘, t)l + AXL (I‘, t) (7)

where 7, is a scalar, | is the identity tensor, and the tensor AXp,
includes the effects of the birefringence. At this length scale,
we also neglect the variation of 1, with z and assume that
XL is cylindrically symmetric, so that writing r; = (p, 6), we
find x1,(r,t) = x.(r.,t) = xL(p, t). The tensor AXy, contains
both anisotropy due to a preferred orientation in the dielectric
tensor at a fixed point and asymmetry due to lack of rotational
symmetry about the axis of the fiber. The division of Xj, into xr,
and AXj, is ambiguous. To resolve this ambiguity, we choose
AXf, so that Trace ( f027r AXp,df) = 0 at all p. With this choice,
the variable x, represents the average or nonbirefringent con-
tribution to Xr,. Substituting (6) into (1), we obtain the standard
eigenvalue problem for optical fibers [31]

B%(wo)F L(r L, wo) +if(wo)é: V1 - Fu(ry,wp)
+ i,@(W())VLFZ(I‘l7u)Q) —+ VL X [VL X F(I‘L,WO)]

— — 14+ xL(p,wo)] F(ri,wo) =0 ¥

where F| = (F,, F},), and

00
p,wO /XL
0

We neglect AXp, in keeping with the assumption that the
birefringence can be neglected at this length scale.

The solutions to (8) are thoroughly described in [31] and
are reviewed in [26] from the standpoint of multiple scale ex-
pansions. In single-mode fibers (SMFs), which are now almost
universally used in high-data-rate communications systems, it
is a physical fact that F is doubly degenerate. We can thus write

wo 1/2
X [u1R1 (I‘L, u}o) + UQRQ(rLa WO)]

) exp(iwot)dt. 9)

(10)
where R; and R, are two orthogonal eigenmodes of the

SMF. These modes satisfy the relation €, x R; = R and are
normalized so that

27 o0 2m 00
/d@/pdp|Ru(rL,wo)|2:/d@/pdp|R2L(rl,wo)|2:1
0 0 0 0

)
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where R, and R are the transverse components of R and
R». The quantities w1 and uy are constant coefficients, and the
factor [wy /2€0c2B(wo)]*/? was added in keeping with the usual
convention in which |uy|? + |ua|? equals the signal power in
the weak guiding approximation.

In elementary derivations of the nonlinear Schrodinger equa-
tion, the term i3V, - F, and the term V| (V| - F) that comes
from the expansion V| x [V, xF] =V (V,-F)—-V?F
are often neglected. However, as Kodama originally pointed
out [32], it is not correct to just drop them. While they are
small compared to other terms on the shortest length scale,
they are large compared to terms on the longer length scales
that contribute to polarization effects, chromatic dispersion, and
nonlinearity. The reason that one obtains the right equation after
dropping these terms is that their effect is simply to change R,
R, and SB(wp) slightly, without affecting the structure of the
equations that apply on the longer length scales.

A subtle point is that in writing (10), we are focusing
on forward-propagating solutions. Maxwell’s equations have
solutions at w = wy that propagate both forward and backward.
However, when light is injected into an optical fiber, it rapidly
sorts itself out into its forward- and backward-propagating
solutions, and only the forward-propagating components prop-
agate through the fiber. Mathematically, the existence of both
forward- and backward-propagating solutions is due to the
second derivative of z in (1). By contrast, the equations that
describe the propagation on the slow length and time scales
are only first order in z since only solutions with forward
propagation exist on the slow time scale. Equation (10) is
where we have made the physical assumption that will lead
mathematically to a first-order equation in z.

After determining the fast variation, which in our case means
determining Rj, Ra, and S(wp), the next step in applying
multiple-scale methods is to average over the rapid variation
to determine the slow variation. In our particular case, we let
the coefficients u; and uo become functions of z and ¢ so that

e~ (i)

X [ur(z,t)Ry(ry,wo) + u2(z,t)Ra(r,wo)]. (12)

The goal is to determine the equations that govern the evolution
of uy (z,t) and us(z, t).

If we did not have additional terms to account for the
presence of the birefringence and nonlinearity, then the field
F, (r,t) would consist of a linear superposition of solutions to
(8), in which we solve (8) for a range of radial frequency values
surrounding wq, rather than just wg, and we then add these
solutions together with amplitudes that are determined by the
initial conditions. Writing the Fourier transform of u, (z, t) as

t1(z,w) = /dtul(z,t)exp(iwt) (13)

we find that w in (13) corresponds physically to the frequency
offset from wy. The z-evolution of each frequency component
must physically be governed by the dispersion relation G(w).
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Consistency with the dispersion relation then demands that
obey the equation
0t (z,w)

0z

and that %9 obey an identical equation. In the time domain, one

then finds

; Ouy(z,t)
0z

where IFT(-) indicates the
Alternatively, we may write

+ [B(wo + w) — B(wo)] t1(z,w) =0 (14)

+IFT{[B(wo +w) — Blwo)] i (2,0)} =0 (15)

inverse Fourier transform.

i8u1(27t) Ouy(z,t) 1

RO TR TR

0uy(z,t)

2 +...=0

(16)

where ('(wo), B”(wo),... indicate the first and higher
derivatives of (3 evaluated at the radial frequency wy.

Equation (16) can be obtained directly in the time domain
through an iterative procedure described in [26] and [32]. This
iterative procedure is based on the assumption that 5(wo + w)
can be expanded in a Taylor series around about w = 0 and that
the terms of this series diminish rapidly when integrated over
the bandwidth of the signal. It allows the user to work directly
in the time domain to include the effects of nonlinearity and
the birefringence, but its application to optical fibers keeping
the full transverse variation is complex [26]. Here, we will
work directly in the plane wave approximation, which was
described in [12], and we will summarize the difference when
the full transverse variation is taken into account, as in [26].
This approach is far simpler, contains all the essential physics
at the intermediate and longest length scales, and gives the right
answer, although its coefficients have to be replaced by the true
dispersion coefficients and nonlinear coefficient. It might seem
surprising at first that a method that approximates the fiber
with a medium of infinite transverse extent can yield the cor-
rect answer after merely “renormalizing” its coefficients. The
validity of this approach follows from two observations. The
first is that single-mode optical fibers are weakly guiding, so
that there will be two polarizations present, just like in a plane
wave. The second is that the multiple-scale technique averages
over the transverse variations to yield the evolution along the
fiber. The dispersive and nonlinear coefficients are determined
by the averaging, but the structure of the equations is not.

In the plane wave approximation, (12) becomes simply

wo 1/2 N ~
F(z,t) = (260025@00)) [ui(z,t)é1 + usz(z, t)és]

() U

where €; and é; are two orthogonal unit vectors transverse
to the direction of propagation that satisfy €, x €; = és.
These unit vectors replace R; and Rs. We have also defined
U(z,t) = [u1(z,t),uz(z,t)]". We note that in making this re-
placement, we have effectively changed the units and physical
meaning of u; and ug, because Ry and R, both have units of

a7)
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1/(area)'/?, while &, and &, are unitless. In the plane wave
approximation, |u;|? + |uz|? equals the signal power per unit
area, rather than the signal power. This change is necessary
because the signal power, along with the signal’s transverse
extent, is now infinite. Maxwell’s equation (1) becomes

PE(zt) 1 2

822 507@ [GOE(Z, t) + P(Z,t)} =0.

(18)

Combining (4a) and (7), the equation for the linear polarizabil-
ity becomes

t

PL(z )= / dty e (t = )l + AXe (2, £ — £1)] - B2, 1)

—00

=e€g exp [i3(wo)z — iwot]

x{ /dthL(t—tl)F(z,tl)exp liwo(t — )]

—00

t

+ /dtlAXL(Z7 t*tl) F(Z, tl)exp[iwo(ttl)]}

+ c.c. (19)
where c.c. stands for complex conjugate. Making a Taylor ex-
pansion of F in the neighborhood of ¢; = ¢ inside the integrals
of (19), we obtain

Pr(z,t) =€pexp [if(wo)z — iwpt]
OF(z,1)

x {xmwo)F(z,w + iR (w0) =

1. O?F(z,t -
— QXIIL(WO)% + -+ AXL(wo)

-F(z,t) +iAX£(WO) i % N }

+ c.c. (20)
As in the case of (13)—(16), the tilde indicates a Fourier
transform, and the primes indicate derivatives with respect to
frequency.

We will limit the discussion in this article to the terms that
we have shown in (20). In practice, it is sometimes necessary
to keep nonbirefringent terms to higher order. It has never
been necessary to date to keep higher order terms in the
birefringence.

We now determine the nonlinear contribution to the polar-
izability Pnr,. We first make the assumption that the nonlinear
response is isotropic. Within the plane wave approximation (4b)
now becomes

t

t t
PNL(Z7t):€0/dt1/dt2/dt3

o0
X XNL(t —t1,t —ta,t —t3)

X [E(Z,tl) . E(Zﬂfzﬂ E(Z,tg). (21)
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There is no experimental evidence of a nonisotropic contri-
bution to the cubic nonlinearity, although nonisotropic effects
can induce a quadratic nonlinearity in phosphorus-doped fibers
[33]. We now make the assumption that the nonlinearity is rapid
compared to wy * or the period of the light. In this case, allowing

t t t

XNL = /dtl/dtz/dthNL(t—tl,t—tg,t—tg) 22)

we obtain

PNL(Z7 t) = €90XNL [E(Z, t) . :E(Z7 t)] E(Z, t). 23)

It may seem surprising at first that only one material para-
meter appears, here denoted ynr,, rather than the two material
parameters introduced by Maker and Terhune [5] and denoted
by them as a and b. The reason is that Maker and Terhune do
not assume that the nonlinear response is fast compared to the
light period; they only assume that it is fast compared to the
time variation of the wave envelope [5]. To understand this
point, we substitute E(z,t) = F(z,t) exp[iB(wo)z — iwot] +
c.c. into (21) and obtain

Pni(z,t)
= eo exp[iff(wo)z — iwot]
x {2xnL(wo, —wo,wo) [F(2,t) - F*(2,1)] F(z,t)
+ X~L(wo, wo, —wo) [F(2,t) - F(z,t)| F*(2,t)}

+c.c. (24)
where
¢ ¢ ¢
XNL (w1, we, ws) = /dtl/dtQ/dt3XNL(t17t27t3)

X exp(z'wltl + twots + iW3t3)

and we note that Y, (w1, wa, ws) = ¥NL(we, w1, ws). We have
kept only the lowest order term in a Taylor expansion of F
and its derivatives. The coefficients 2Xnr,(wo, —wo,wp) and
XNL(wo, wo, —wp) are proportional to the Maker and Terhune
a and b coefficients, respectively. When the response is faster
than the period of the light, then

XNL(wWo, —wo,wo) = XNL(wWo, wo, —wo)

=xn~L(0,0,0)
= XNL (25)
and (24) reduces to
Pnw(z,t) = e€oxn expliff(wo)z — iwol]
x {2[F(z,t) - F*(z,t)] F(z,t)
+[F(z,t) - F(z, )] F*(2,t)} + cc.  (26)

which is equivalent to (23) in the limit that we are considering.
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One may question the physical assumption upon which (26)
is based. Indeed, both the Brillouin and Raman interactions
have times scales that are far longer than the period of the light
waves and so must be considered separately [1]. Moreover, even
in the case of the Kerr effect, while most of the contribution
(82%) comes from the electronic response, which is fast com-
pared to the light period, the remainder comes from the Raman
response, which is not [34]. Additionally, acoustic interactions
can make an important contribution [35]. These considerations
limit the validity of (26) and are discussed in detail in [26].
From a practical standpoint, they do not appear to affect the
applicability of (26) to communications systems.

We may now substitute (20) and (26) into Maxwell’s equa-
tion (18), and use the definition F = [wy/2¢oc? B(wp)]/?U, to
obtain

_ 52(w0)U(z7t) + Qiﬁ(wo)aUa(jt) + 8215'2(5,&

2 2
w 0

2 @)Uz 1) +i [cﬂ(wo) + 2?5(%)} 9U(z t)

ot

0?U(z,t)

ot?

2
“o i wo 1.
_ [2026 (wo) + 26—26 (wo) + C2€(wo)]

2

+ 0K (wo) - Uz, )

AUz, 1)

fw? ~ 2w, ~
+i [CgeoAXL(wo) + CQOeOAXL(wO)] T

+ o {[2U(z,8) - U (2, 4)] U(2, 1)

wo
2¢*B(wo)
+[U(z,t) - U(z, )| U*(2,t)} =0 (27)

where

€(w0) = €p [1 + )ZL(Wo)] . (28)

We now proceed to determine the evolution equation, making
use of the inequalities

0z 022

0U(z,1) 0?U(z,1)
ot ot?

162 (w0) U (2, )] > ’ B(WO@U(M)‘ . ‘82U(z7t)’

|wgU (2, t)] > |wo

‘ . (29

We note that it is not necessary for the inequalities in (29) to
hold at every value of z and ¢. It is only necessary for them
to hold at “most” values, so that one may apply perturbation
theory and obtain reasonably accurate results. What is meant
by “most” in this context can be made rigorous by applying the
concepts of perturbation theory [24], [25]. In keeping with the
physics of Fig. 1, we assume that the nonlinearity appears at
the same order of the perturbation expansion as the dispersion.
In modern-day dispersion-managed communications systems,
the nonlinear scale length is hundreds to thousands of kilome-
ters and is often far larger than the scale length of the local
dispersion, indicating that the local dispersion is a far larger
effect than the local nonlinearity. At the same time, the local
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dispersion can be far larger than the averaged dispersion, which
is typically comparable in magnitude to the nonlinearity. Small
or large, it is important to keep the nonlinear contribution in the
equations. Physically, the nonlinearity leads to qualitatively dif-
ferent behavior, which is reflected mathematically by a change
in the structure of the equations. Unlike some quantitatively
larger linear contributions, the nonlinearity cannot be absorbed
into a redefinition of the coefficients of the linear equation.

At lowest order in the perturbation expansion, we obtain the
dispersion relation

2

32 (wo) — %é(wo) — 0. (30)

At the next order, we obtain the group velocity equation
, oU(z,t) [wd. "oU(z, 1)
20Blwn) =5, — + dewo) o
wg s
+ CfgeoAXL(wo) -U(z,t) =0 (31)

where we recall that the prime indicates the derivative with
respect to angular frequency, evaluated at wg. Equation (31) can
be written in the form

7;8U(z, t) dU(z,t)

+ i (wo) T + AB(wg) - U(z,t)=0  (32)

where AB(wy) = €o[wd/2¢B(wo)]AXL (wo). By including the
term AB(wp) - U(z,t) at this order, instead of with the dis-
persion relation (30), we are effectively assuming that the
components of AB(wp) are all much less than ((wp). This
assumption is physically reasonable since the birefringence
in communications fibers is approximately 1076 or less. To
proceed to the next and final order, we must eliminate 92U /92>
consistently with (32). To do so, we take the z-derivative of (32)
and then use (32) again to eliminate the first-order derivatives
in z. We thus obtain

82U , , 62U , -
% = [ o))’ # — 2i3 (w0) AB(wo)
' % — [ABwo))* - U(z,1). (33)
We then find that
Z%jt) + AB1(wo) - U(z,t) + i [3 (wo)l + AB'(wp)]
aU(zvt) 1., aQU(Z,t)
T ot 2 (WO)T

+o{ 1060 P U0
- % [U'(2, )02 (2, 1)] a2U(z,t)} 0 (4

where AB;(wo) = AB — (AB)?/23, U' is the row vector
(uj,u3), and vy = [3wd /4c* % (wo)] XL is the Kerr coefficient.
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The matrix

0 —i
"2:(i 0)

is the second Pauli matrix [26]. The term AB’ - 9U/dt may be
written as ABj - 0U/dt + (AB/jB) - AB'- 9U/0t. The sec-
ond term must be dropped in order to be consistent with the
ordering assumptions that we made when writing (30) and (31).
Thus, we have AB(w) - OU /0t = AB1(wp) - 0U/0t. At this
point, we rewrite AB;(wq) as AB(wp). Effectively, the small
correction to AB(wp) in ABj(wg) has been absorbed into a
redefinition of AB(wp) [12], [26]. There is a subtlety here
that bears brief mention. After this redefinition, AB(wy) is
strictly speaking no longer traceless. However, the small trace
in AB(wg) can be absorbed into a redefinition of ' (wp), so
that AB(wg) once again becomes traceless. While the algebra
involved in these redefinitions is somewhat intricate, the phys-
ical meaning is simple. The higher order corrections to B(wy)
do not change the qualitative behavior of the system. Hence,
mathematically, they can be absorbed into a redefinition of the
coefficients of the linear equation.

When deriving (34), it is important to take (33) into account.
Otherwise, one does not obtain 5" (wg) self-consistently as the
coefficient of 92U /dt2. To see this point explicitly, we note
that in the absence of the birefringence and nonlinearity, the
second-order equation becomes explicitly

‘ oU(z,t)  [wd. "9U(z, )
215(@00)7 +1 [CSE(WO)] o
wd 2wy _, 1. 0%U(z,t
_ [20026”(“)0) + 67206 (wo) + ge(wo)] %
0%U(z,t
+ 8 (wo))? % —0. (35)
From the expression 3(wg) = (wo/c)[€(wp)]'/?, one can ver-

ify that

2
B(e00) " () = 5 " () + o2 () + ()~ [ ()
(36)

which is the consistency requirement. It is stated in some
derivations of the nonlinear Schrodinger equation that may
be found in articles and even well-known textbooks that one
simply “drops” the second derivative in z. In fact, one must
self-consistently replace it as shown here in order to obtain the
correct answer. This point bears emphasis because it has been a
significant point of confusion for many years.

If we explicitly take into account the transverse variations
in optical fibers, then (34) still has the same form [26]. There
are two changes. The first is that the expressions for 3(wq)
and AB(wg) will include geometric contributions as well as
material contributions. Since, in practice, one just uses the
measured values for 5(wp) and AB(wyp), this difference has no
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practical consequences. The second is that v becomes equal to
[Bwi /4¢* 3% (wo) Aest] XN L, Where

1 o0
= [ [ oo [Rs(0.0) R0 3T
0

with 7 = 1,2. The additional factor of A;% compensates for
the difference in the units of u; and wy in the plane wave
approximation. In practice, one either measures ~ directly from
the signal’s self-phase modulation or estimates A from the
core area. There are other small changes in the nonlinear terms
that are due to geometric factors and are negligible in practice
[26]. An important point to note is that in contrast to F(r,t)
and the other field vectors, the vector U(z,t) remains only a
function of z and ¢, as can be seen from the definition in (12).
We now consider the properties of AB(wp) and the impact
on the coefficients for self-phase and cross-phase modulation.
For the moment, we will neglect variations that occur on the
intermediate length scale in Fig. 1 and treat AB(wy) as constant
in z. Since AB(wyp) is traceless, we can write it as
AB(wo) =ApB[cos ¢ cos oz + cos ¢psinfoy + sin poa]  (38)
where AfB(wp) gives the magnitude of the birefringence and
@(wp) and O(wg) are angles that determine the ellipticity of
the fiber’s polarization eigenstate and the orientation of the
axes of the birefringence, respectively. All three quantities are
functions of wy in principle, although we have not written
this explicitly in (38). The matrices o; are the standard Pauli
matrices. The coefficients of o3, 01, and —oy correspond,
respectively, to the first, second, and third components of the
Stokes vector. The mismatch between the standard definition of
the Pauli matrices and the components of the Stokes vector can
be inconvenient and led Gordon and Kogelnik [29] to redefine
the Pauli matrices. Since ¢ and 6 are independent of z, we can
pick the axis of the birefringence so that § = 0. We will also
assume that f and ¢ are independent of wq. This physically
reasonable assumption effectively states that that the orientation
of a fiber’s birefringence and the ellipticity of its eigenstates are
independent of frequency. There is no experimental evidence to
contradict this assumption, and we will use it throughout this
paper. Equation (34) now becomes

0U(z,t)
"oz
+ 1AB (wo)(cos posz + sin poy)

1 0?U(z,t)

— 5ﬁ//(wo) o

+7{ U(z,8)]? U(z,t)

+ AB(wo)(cos pos + sin po2)U(z, t)

aU(z,t)
ot

1
-3 [U(2,1)02U(z,1)] O'QU(Z,t)} =0. (39

Writing U=wu;é. +u_€é_, where é, =cos(¢/2)é +
isin(¢/2)éq and €_ = isin(¢/2)é; + cos(¢/2)és, and noting
that & -é, =&" -é_ =1 and € -é_=¢é,-& =0, we
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find that the linear portions of the equations for u (z,¢) and
u—(z,t) decouple. Thus, the unit vectors &, and é_ correspond
to the orthogonal polarization eigenstates—the states that do
not evolve as a function of distance along the fiber for a fixed
value of ¢. The equations become

ou 31& O*uy
a—* + ABuy +iAG == — —ﬁ” o
+ (Jus ] + Ju-| )
- % [sing (Jup|® — Ju_|?) —icos ¢ (wu_ —u uy)]

X [£sin ¢uy Ficos pug] = 0. (40)
While we have not explicitly written the dependence of u. on
z and t and the dependence of 3 and its frequency derivatives
on wq for the sake of compactness, these dependences should
be kept in mind. In the case that cos ¢ = 1, corresponding to
linear birefringence, (40) becomes simply

Ous ,OuL 0%y
TiABUiiZAﬁi*Q atQ

+7 (|ui|2ui + = |u¢|2ui —|— ;) =0 41

3"
which is a well-known result.

The second term in (41) corresponds physically to phase
beating due to the birefringence, and its scale length is typically
meters, which corresponds to the intermediate group in Fig. 1.
All other terms in (41) are typically associated with the third
and longest group of scale lengths. In keeping with the usual
multiple scale length procedure, we may average over the rapid
variations due to the birefringent beating. To so do, it is useful
to first transform (41) into the form

3ui an 1, 0%
o LA E
"oz 2 ﬂ ot?
1 .
+ [lusPus+ 3 |Uﬂ ust g uZul exp(T4iABz)| =0 (42)

where we have set u+(z,t) = wy(z,t) exp[£iAB(wp)z] and
then replaced w4 with u... This transformation shifts the central
wavenumbers of v and u_ so that they no longer coincide at
w = 0. We emphasize that v, and u_ have been transformed
and are no longer exactly the same entities in (42) as they are in
(41), since this point has led to some confusion. We also note
that |u|? and |u_|? are unchanged by this transformation, so
that experimental observations in ON—OFF-keyed systems with
square-law photodetectors are unaffected. Averaging over the
rapidly varying final term, (42) becomes

8ui 8ui ,,azui
8 A ﬁ ot?

2
+’y(|ui|2+3|u¢|2>ui0.
(43)

A mistake that one finds in the literature is to drop the term pro-
portional to AS in (41) or, equivalently, to set exp(+iASz) =
1. In this case, the equation corresponds to the practically un-
realizable limit in which the beat length is very long compared
to the physical length scales corresponding to the other terms
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in (41), which include the chromatic dispersion, nonlinearity,
and the polarization-induced differential group delay.

In the general case, in which the ellipticity is arbitrary, (40)
is somewhat complex. However, in the limit in which the beat
length is small compared to the other scale lengths represented
in (40), (40) simply becomes [12]

2
,,8 U+

ot?

128 1 ing
0z

Our 1
ot 2

1
16} + v (1 ~3 sin? ¢> |us [Py

+7 (1 + ésin2 ¢ — %COSQ ¢)> lus|Pus =0 (44)
where, just as in going from (41) to (42), we first set u(z,t) =
w4 (z,t) exp[£iASB(wp)z], we next average over the rapidly
varying terms, and we finally replace wy with uy. The limit
in which the beat length is small compared to the other physical
length scales in (41) is the usual physical limit in optical fiber
communications systems.

From (44), we infer that the strength of the cross-phase mod-
ulation relative to the self-phase modulation coefficient depends
on the ellipticity. It is 2/3 for linear birefringence, two for
circular birefringence, and one when ¢ = tan™'(1/v/2) ~ 35°.
Thus, measuring the strength of the cross-phase modulation
relative to the self-phase modulation allows us to infer the
ellipticity of the fiber’s birefringence—a striking example of
how a nonlinear measurement allows one to infer a linear
property of the fiber. Measurements by Botineau and Stolen
[14] of this ratio indicate that optical fibers are linearly bire-
fringent to a good approximation. Other linear measurements
(see [36] and references cited therein), as well as more recent
polarization optical time domain reflectometry measurements
[37] support this conclusion, although there is some evidence
of a small residual ellipticity due to twisting. A difficulty in
making this assessment is that twisting will induce an apparent
ellipticity even when the birefringence is locally linear, and this
geometric ellipticity is expected to be 10-20 times larger than
the helicity induced in the material. This geometric ellipticity
will also affect the ratio between the cross-phase and self-
phase modulation as long as the nonlinear scale length is long
compared to the twist length [38]. Thus, in this limit there is no
way to distinguish between geometric and intrinsic ellipticity.
However, when the nonlinear scale length becomes comparable
to the twist length, it is possible to distinguish these two sources
of ellipticity. This experiment could be done in principle with
high-power lasers.

Recent theoretical work shows that a small ellipticity makes
no difference in the results that are calculated when it is
assumed that the fibers are linearly birefringent [39]. Thus, the
small ellipticity can be neglected for all practical purposes, and
we do so throughout the remainder of this paper.

B. Randomly Varying Birefringence and the Nonlinear
Schrodinger Equation

We now focus on the second group of length scales in
Fig. 1. On this length scale, we must take into account the
variation of the birefringence as a function of z. Since we
are assuming that the birefringence is linear, we may write
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AB(z,wp) = AB(z,wp){cos[0(z)]os+ sin[(z)]o1 } and simi-
larly AB'(z,wg) = AB'(z,wp){cos[0(z)]os + sin[f(z)]o1 }.
As noted earlier, we are assuming that 6(z) is independent
of frequency. From here on, we will write A3(z) rather than
AB(z,wp), AP'(z) rather than AS'(z,wp), and 3" rather than
(3" (wp), but the dependence on wy is not being neglected. We
do not make a note of it explicitly since it appears as a constant
parameter in the remainder of the discussion. Equation (34)
now becomes

1290 L AG(2) feos [0(2)] oy + sin [0()] 01} Uz, 1)

0z
FIAF(2) feos ()] 05 +sin[0(2)] o} Tt

. 1., U(z,t)
2 ot?

+v{ U 1)Uz 1)

B

1
-3 [U'(2,1)02U(z,1)] UQU(zﬂs)} =0. (45)

The third term in (45) is responsible for the usual linear PMD,
as we will show.

The quantities AS3(z) and 6(z) vary on a length scale that is
referred to as the fiber correlation length and is typically on the
order of 10-100 m. It is included in the second group of length
scales in Fig. 1. We will use the multiple length scale technique
to average over these variations, which are rapid relative to the
length scales in the third group of length scales, and we will
obtain an equation that is valid for this third group of length
scales.

Focusing on the linear terms in (45) and transforming to the
Fourier domain, we have

z% + {cos[0(z)] o5 + sin[0(z)] o1}

X [AB(2) + AB' (2)w] U(z,w) = 0. (46)
Transforming ﬁ(z,w) in a way that would diagonalize its
evolution were it not for the z-variation of 0(z), we let

V(z,w) = R1(2)U(z,w) 47)

where R~ = cos(6/2)l + sin(6/2)o,. Equation (46) now
becomes

VEL) | 18() + 28 ()l oy

+[0:(2)/2] 02} V(z,w) =0 (48)

where 6, (z) = df(z)/dz. We next write

W(z,w) =T H2)V(z,w) (49)
where T satisfies (48) at w = 0 so that
T
i) (ABs + 0.(2)/2 02} T =0 (50)

0z
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with T(z =0) = I. It follows that W(z,w = 0) is constant.
In effect, we have mathematically “frozen” the rapid motion
on the Poincaré sphere due to rapidly varying birefringence
at w = (0. This transformation will enable us to observe the
differential motion as w varies, which is the physical origin of
PMD. Explicitly, we now find

z% + AB (2)wds(2)W (z,w) = 0
where 73(2) = T 1(2)o3T(2).

To verify that (51) includes the effects of PMD, we investi-
gate two important properties of PMD. The first is the spread
of pulses in the time domain. It is useful to first define the
Stokes vector. We begin by allowing W (z,w) = a(w)A(z,w),
where |A(z,w)? = 1. One can show by direct substitution
of W(z,w) = a(w)A(z,w) in (51) that da(w)/dz = 0 and
hence «(w) is independent of z. As a consequence, the effect
of the differential polarization rotation in (51) is to trade energy
among the components of the Jones vector W(z,w) and to
rotate the overall phase, but there is no effect on the total energy.
We define the components of the Stokes vector as

(51

S1(z,w) =Al(z,w)o3A(z,w)
Sy(z,w) = Al(z,w)o1A(z,w)

S3(z,w) = — AT(Aw)agA(z,w). (52)
‘We now define a matrix IE(z, w) such that
iw +F(z,w)A(z,w) = 0. (53)
w

Since the transformation relating A(z, w) at different values of
w 1is unitary, the matrix |~:(2’7 w) must be Hermitian. Hence, its
eigenvalues are real and its eigenvectors are orthogonal. Taking
the w-derivative of (51) and the z-derivative of (53), we find
that the compatibility condition for these two derivatives is the
evolution equation

% = iAB (2)w [33(2)F (2,0) = F(2,0)73(2)|

+ Af(2)a3(2) = 0. (54)
The trace of F(z,w) is independent of z, and we will desig-
nate the eigenvalues of F(z,w) as Tog(w) £ Tpup (2, w). The
eigenvectors of IE(z,w) are conventionally referred to as the
principal states, while the difference between the eigenvalues
2TpMp (2, w) is conventionally referred to as the differential
group delay. The matrix F(z,w) is directly related to the pulse
spreading. Defining the mean signal time and the mean-square
signal time as

[ W (z, )| dt
J2 (W (2, t)) dt

T(z) =

[ 2 W (z, ) dt
J20 W (2, 1) dt

T?(z) = (55)
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we may define the mean-square signal spread ¥2(z) =
T2%(z) — T(z) . By analogy with the Stokes vector, it is con-
ventional to write

F(z,w) = Tog(w)l

1
+ 3 [Q1(z,w)o3 + Qa(z,w)o1 — Q3(2,w)o9] .

(56)
The vector 2 = (€1, Qs,Q3) is referred to as the polarization
dispersion vector. One then finds the well-known result [2], [3]

¥2(2)=¥?%(2=0) ~ i 1Q(z,w=0) x S(z,w=0)]* (57)

which holds when the length is short enough so that the spread-
ing has not become large. More details, along with more general
expressions, may be found in [26], [40]. From a physical
standpoint, what happens is that a signal launched in either
one of the principal states is either advanced or retarded by
Teump relative to Tog, while a signal launched in any other
state decomposes into the two principal states, so that part is
advanced and part is retarded.

The second result that we will verify is the length scale on
which spreading occurs. To determine this length scale, we first
write

cos 0,(z)

. sin 05 (2) exp [ids(2)]
7s(2) = (sines(z)exp [—ids(2)] )

—cosb,(z)
(58)

which effectively defines 65 and ¢;. When the fiber is untwisted
so that the birefringence variation is purely random, then a wide
variety of physical models all lead to the conclusion that the
fiber is exponentially correlated so that

C(21,22) = (AB'(21) cos [0s(21)] AB'(22) cos [05(22)])

1

3 <[Aﬁ’(z)]2> exp (—|z1 — 22|/zcorr)  (59)

where z.orr 1S the fiber correlation length, and the brackets
indicate an ensemble average over fiber realizations. One then
finds that

z z

(M(2) =8 [ dz1 | dz
[*]
x (AB'(z1) cos [0s(21)] AB' (22) cos [05(22)])  (60)
from which we conclude
(93:) =3 (188
X { Zeorr 2 + 22 lexp(—2/zeor) — 1]}. (61

We note that this result is independent of frequency, except for
a slow variation due to the dependence of A3’ on wy. Similar
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results hold for (Q3(z)) and (Q2(z)). Therefore, we con-
clude that

<T§MD(«Z)> =

(120)1”)

=2([a8(2)°)

>~ =

1]} (62)

X {zcorrz + 22 lexp(—2/zeor) —

which is another well-known result [2], [3].
We now make the substitution U(z,t) = R(2)T(2)W (z,1t)
in (45), where R and T are defined after (47). We obtain

OW(z,t) 1 ,0°W (2, 1) 8
0z 2 e Ty
OW (z,1)

ot

W (2,1)PW (2, 1)

= —iAB(2)73(2)

+ ;7{ [WT(z,t)@(z)W(z,t)} G2(2)W(z,t)

- IWEOPWE | (63)

where G5(2z) = T1(2)0o2T(2). This equation explicitly sepa-
rates the rapidly oscillating portions on the right side of the
equation from the slowly varying portions on the left. The
factor of 8/9 that multiplies the nonlinear factor when the slowly
varying portion is properly separated from the rapidly varying
portion has been verified experimentally [35], [41]. As we have
already shown, the first term on the right side of (63) leads to
the conventional linear PMD. Equation (63) is the Manakov-
PMD equation. The second term on the right, which is due
to incomplete mixing on the Poincaré sphere, is referred to as
nonlinear PMD. It is negligible as long as the correlation length
is short compared to the nonlinear scale length [42], which is
always true in communications systems. However, it can play
an important role in short pulse experiments [43].

When the PMD can be neglected, the Manakov-PMD equa-
tion, (63) becomes

0°U(z,t) 8
/1 ) S
Pty

img?”—% Uz, 07U (2, 1) =0 (64)
where we have replaced W with U. As in the case where we
previously transformed v into wy and then replaced w. with
uy in deriving (42) from (41), we have changed the meaning
of U. This Jones vector no longer corresponds to a polarization
state in a fixed frame. The evolution of the polarization state at
w = 0 has been removed. As before, this transformation does
not matter in ON—OFF-keyed systems with square law detectors
because |W(z,t)|? = |U(z,t)|. Equation (64) is the Manakov
equation. If we assume that at z = 0, U(z = 0,¢) is in a single
polarization state so that U(z =0,t) = u(z = 0,t)é,, then
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there is no coupling to the orthogonal polarization state, and
one may replace (64) with the scalar equation

Ou(z,t) 1

i _Z

0z 2

/! 82“(23 t)
ot?

Thus, we find that the conditions for the nonlinear Schrodinger
equation to hold are that PMD is negligible and the signal is
initialized in a single polarization state. Of course, the polar-
ization state of the signal is varying rapidly as a function of z
as the signal propagates along the fiber. This rapid variation
was hidden by the transformation from U to W. However,
when the nonlinear Schrédinger equation applies, this variation
is the same at every point in time and does not affect the
evolution of the intensity envelope. The physical meaning of
the mathematical transformations that we have carried out is to
isolate these rapid variations and determine when they do not
affect the intensity envelope.

An issue that we have not touched up to this point is gain and
loss. In practice, gain and loss always play an important role,
so that S(wp) becomes complex. Returning to (6), we would
replace the equation for the electric field with

3 + gv lu(z, t)|* u(z,t) = 0. (65)

E(r,t) = F(r,,wo) exp {iRe [B(wy)] z — iwpt} + c.c. (66)

where Re[3(wp)] indicates the real part of 8(wp), and we write
g(2) = Im|[B(wo, 2)], where we account for the z-variation of
the imaginary part of the propagation constant explicitly. We
note that the length scale associated with the attenuation is
the third or the longest length scale. With this change, the
derivation of the nonlinear Schrodinger equation proceeds as
before, ultimately terminating at the equation

Ou(z,t)

; 1 _,0%u(z,1)
0z

+ig(2)u(z,t) — iﬁﬁw

ol u( ) =0 67

where g(z) is the attenuation coefficient, which is negative
at the amplifier locations and positive otherwise. Referring to
Fig. 1, we see that the typical length scale for g(z) is about
20 km. This length scale is often significantly shorter than the
length scales for nonlinearity and chromatic dispersion, which
may be several hundred kilometers. In this case, it is possible
to treat the gain and loss as rapidly varying and obtain new
averaged equations [20], [44], [45]. In practice, the difference
between length scales is usually not wide enough to make this
procedure worthwhile and one solves (67) with the gain and
the loss included. However, this procedure has been carried out
for soliton systems to demonstrate that solitons still exist in the
presence of gain and loss and to determine the changes in the
soliton shape that gain and loss cause [44], [45].

III. INTERACTION OF NONLINEARITY AND PMD

We now consider two examples of the interaction between
nonlinearity and PMD. In the first example, the nonlinearity
induces a chirp in the signal, which in combination with higher
order PMD can lead to pulse compression and a reduction in
the eye-opening penalty that would be present in the absence of



MENYUK AND MARKS: INTERACTION OF PMD AND NONLINEARITY IN OPTICAL FIBER TRANSMISSION SYSTEMS

PMD. In the second example, the nonlinear interaction between
two channels induces a nonlinear rotation in the principal states
of the bits in each channel that varies bit to bit. While this
rotation does not directly induce an eye-closing penalty, it
makes it impossible to use most current PMD compensation
techniques, since these techniques typically rely on each bit
having the same principal states, and, more generally, the same
polarization variation as a function of time within a bit slot.

These two examples serve to underline two points. The first is
that the impact of fiber nonlinearity can be quite complex. The
second, which is closely related to the first, is that one cannot
simply add the penalties due to PMD and nonlinearity without
careful justification.

The basic equation that governs our investigation is the
Manakov-PMD equation that we write in the form

oU(z,t oU(z,t
200 +z‘Aﬁ;(z)og(z)§f’ )
1 _,0°U(z,t) 8
— 58— 57U Ule t) = 0. (68)

We do not include the nonlinear PMD term in (63) since we will
be considering pulses in the picosecond range, as is typical in
optical fiber communications systems, and the nonlinear PMD
term is negligible in this range [42]. We have returned to using
U as the dependent variable for the wave envelope, using it to
replace W. We remind the reader that the rapid polarization
evolution at w = 0 has been removed.

A. Improvement of a Nonlinear Chirped Signal Due to
Higher Order PMD

It has been known since the early work of Poole and
Giles [46] that a chirped signal can be compressed as well
as spread by its interaction with fiber PMD. While Poole and
Giles [46] focused on chirp that is due to dispersion, other
mechanisms such as an initial chirp due to the laser transmitter
can also produce the same effect [47], [48]. We show schemati-
cally the physical origin of this effect in Fig. 2. Due to chirp,
the leading edge of the pulse (earlier times) has a different
frequency from the trailing edge (later times). In the case shown
in Fig. 2(a), the leading edge of the pulse has a frequency that
differs from the mean wgy by +Aw and the trailing edge has
a frequency that differs by —Aw. When second-order PMD
is large relative to the first-order PMD, the principal state of
polarization can change significantly over the bandwidth of
the signal. We show this effect in Fig. 2(b). Here, we show
the variation of the principal state of polarization as a curve
on the Poincaré sphere. Thus, the state of polarization of the
signal, which is shown as a dot, is primarily aligned to the fast
axis when the frequency is wp — Aw, corresponding to the
trailing edge, and is primarily aligned to the slow axis when
the frequency is wg + Aw, corresponding to the leading edge,
as shown in Fig. 2(c). As a consequence, the pulse compresses
during propagation, as shown in Fig. 2(d).

We are interested here in the case when the chirp is due
to nonlinearity [8], [10]. In contrast to other mechanisms, the
pulse compression and hence the signal improvement depends
on the pulse power. Systems that show no signal improvement
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signal’s
state of
polarization

Fig. 2. (a) Chirp leads to a time-dependent frequency variation. In the
presence of large second-order PMD, this chirp also leads to (b) variation of
the principal states over the bandwidth of the signal and (c) time-dependent
variation in the fraction of energy in a signal pulse that is aligned with the fast
(—) and slow (- - -) axes, even though the signal is in a single polarization state.
(d) This variation leads to pulse compression.

at low powers may show signal improvement at higher powers.

The theoretical development is based on (53)—(57) with two

important modifications. The first is that we set 7, = 0, which

is physically equivalent to assuming that the pulse is originally

in a single polarization state. Second, (53) must be modified to

take account of the presence of chirp so that it becomes
OA(z,w)

i 4+ |F(z,w) + ¢ (z,w)l| A(z,w) =0

0 (69)

where ¢(z,w) is an overall phase that is defined by A(z,w) =
|A(z,w)|explid(z,w)], and ¢'(z,w) = 0P(z,w)/0w. With
these modifications, we find that

IS

T(2) = L= o?(w) [39Q(z,w) - S(z,w) + ¢ (z,w)] dw

f_ocoo o?(w)dw

o?(w) |39z, w) + ¢/(z, w)S(z,w)|2 dw
f_ozo o?(w)dw

IS

T2(z) ===

(70)

which is equivalent to Karlsson’s result [40] and from

which ¥2(z2) = T2(z) —WQ can be readily determined.
Focusing on the case in which PMD is weak, so that it makes
sense to just consider first and second-order PMD, one then
finds that o?(w) varies rapidly compared to §2(z,w) and
S(z,w). We will also assume that while the chirp given by
¢"(2,w) = 9?¢(z,w)/0w? may be large, its variation with
frequency is small. We may then make the Taylor expansion

1 , 1— 9% [1 ,
T = [0 +9] 4575 [0S o]

21— 92 2
+ w2 —

1 /
AT SR+ 'S (1)

202 = ‘;Q + 48

0
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Fig. 3.

Dependence of the eye-opening penalty on the angle ¢ for four values of 6 (0,7/4,7/2,37/4). (a) Simulation with an input power of 0.01 mW.

(b) Simulation with an input power of 10 mW. (c) Analysis including only second-order PMD. In this case, second-order PMD dominates the behavior at high

power. (Originally from [8]).

where all terms with a subscript O are evaluated at w = 0. We
have not written explicitly the dependence of €2 and S on 2
for the sake of compactness, but it is still present. We have
defined the mean-square bandwidth w? = [~ w?a?(w)dw/
[72, a*(w)dw, and we have assumed that the signal is centered
at w =0, so that w = [* wa(w)dw/ [* a*(w)dw = 0. If
we calculate Y22(2) directly from (71), we find that a plethora
of terms appear as a consequence, only some of which are
included in discussions prior to Karlsson [40], as Karlsson has
pointed out. Conversely, however, if we assume that ¢/ = 0 at
w = 0 and that ¢" is large compared to the frequency deriva-
tives of €2 and S so that the only terms of interest are the ones
in which ¢” appears, and we assume that w? is small, which is
consistent with our initial Taylor expansion, then we obtain

¥2(2) — £%(2=0)

- i 1Q(2.0) x S(z,w)|2 — i Q(2=0,w) x S(z=0,0)[?
+ w{[qb“(z,w)f—w(z:o,w>]2+§¢”<z,w>ﬂ’<z,w>

: S(z,w)f%qﬁ”(z:o,w)ﬂ'(z:O,w)~ S(zO,w)}
0
(72)

where Q' = 92/0w, and we have used the result - S' =
Q- (2 x S) = 0. This result is consistent with Bruyere [47].
From (72), we directly obtain the result first obtained by
Poole and Giles [46] that when €' - S has the opposite sign
from ¢”, pulse contraction can occur relative to the result
with no PMD. If there is an initial chirp whose magnitude
exceeds the final chirp, then there can be a pulse contraction
relative to the initial pulse duration. The physical source of
the chirp is irrelevant in (72), and a chirp due to the initial
pulse generation, dispersion, and Kerr nonlinearity all lead to
the same conclusion. However, nonlinearity has the special
property that the chirp is power dependent, so that one can go
from one regime to another by simply changing the input power.
In initial studies to demonstrate the reality of a PMD im-
provement when a nonlinearly induced chirp is present, and to
determine its power dependence, Ibragimov et al. [8] simulated
a 1.55-pm system with a 10-GHz nonreturn-to-zero pulse train
in a dispersion-managed transmission line with a 100-km am-
plifier spacing. They used a standard fiber with a dispersion of

17 ps/nm-km and a compensating fiber with a dispersion of
—120 ps/nm-km. The effective area of the standard fiber was
80 um? and that of the compensating fiber was 30 um?. The
length of the compensating fiber between the amplifiers was
chosen to provide close-to-zero average dispersion. The power
extinction ratio was set at —15 dB. The losses were 0.29 dB/km
in the standard fiber and 0.5 dB/km in the compensating fiber.
The overall propagation distance was 578 km. The average
differential group delay due to the PMD was 23.2 ps, which
is approximately a quarter of a bit period. The simulations used
a 64-bit pseudorandom bit string and solved the Manakov-PMD
equation using the coarse step method [42].

To calculate the penalty due to PMD, the input optical
signal had two polarization components, u; = Uy cos6 and
ug = Up sin 6 exp(i¢), where Uy is determined by the input
power. The reader should note that # and ¢ defined here
refer to the polarization state of the field envelope and are
unrelated to @ and ¢ defined after (39), which refer to the
polarization state of the fiber. Fig. 3(a) and (b) shows the eye
opening as a function of #, measured in arbitrary units for
four different values of ¢ (0,7/4,7/2,3w/4) at two different
powers and with the same fiber realization. The fiber PMD
is 1.0 ps/kml/ 2. Fig. 3 also shows the eye opening when the
PMD is zero, which appears as a horizontal line. For this fiber
realization, we find that there is some residual second-order
PMD even when the power is very low. When the power equals
10 mW, the behavior is completely dominated by the second-
order PMD. Fig. 3(c) shows the behavior that would be ex-
pected at 10 mW if only second order was present, and one
finds that it nearly matches the variation in Fig. 3(b). When the
second-order PMD dominates, about half the input polarization
states yield a penalty that is lower than the penalty in the
absence of PMD.

Fig. 4 shows another fiber realization with all other para-
meters the same. In this case, the first-order PMD dominates
the behavior at low power and even when the power reaches
10 mW, a large residual contribution from the first-order PMD
is visible. Nonetheless, even at 5 mW and certainly at 10 mW,
there are values of 6 and ¢ that lead to a reduction of the penalty
that would be present with no PMD. The difference between the
cases shown in Figs. 3 and 4 can be traced back to the behavior
of the differential group delay as a function of frequency. In
the case of Fig. 3, there is a sharp dip in the differential group
delay in the center of the signal spectrum, while in the case
of Fig. 4, the differential group delay is nearly flat across the
spectrum.
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Fig. 4. Dependence of the eye-opening penalty on the angle ¢ for four values of 6 (0,7/4, /2,37 /4). Simulations with input powers of (a) 0.01 mW,
(b) 5 mW, and (c) 10 mW. In this case, the first-order PMD dominates the behavior at low power, and its presence is visible at high power, although second-order

PMD is becoming increasingly important. (Originally from [8]).

Fig. 5.

2n

Contours of constant PMD enhancement in the 6-¢ plane of input polarization states. In each plot, contours are shown for PMD enhancements of 0.91,

0.92, 0.94, 0.96, 0.98, and 1.0. The thick contour corresponds to a PMD enhancement of 1.0. The input peak power for the return-to zero (RZ) signal is (a) 0,
(b)3,(c) 6, (d) 9, (e) 12, and (f) 15 dBm. The dispersion compensation is 100% of the residual dispersion of the line. (Originally from [10]).

More recently, Marks and Menyuk [10] simulated a 10-Gb/s
return-to-zero system with five periods of a dispersion map,
each of which consists of 100 km of standard fiber with a dis-
persion of 17 ps/nm-km and 15 km of dispersion-compensating
fiber (DCF) with a dispersion of —120 ps/nm-km. They used
pre- and postcompensating fiber at the beginning and at the end
of the transmission to control the net dispersion of the entire
system so that it is 100% dispersion compensated. The 100%
dispersion compensation implies that when PMD is not present,
the system performs optimally when nonlinearity is also not
present and degrades as the signal power, and hence, the non-
linearity increases. The 1.55-um signal is an initially unchirped
Gaussian pulse with a 30% duty cycle. The fiber’s nonlinear
coefficient equals 1.3 W~'km™!, and the average differential
group delay of the link is 33 ps. The receiver is modeled as
an ideal square law detector followed by an 8-GHz electrical
fifth-order Bessel filter. The authors investigated the effect of
increasing the system nonlinearity by increasing the peak power

of the input pulses from O up to 15 dBm. At the highest power,
the propagation length is several times larger than the nonlinear
scale length.

The simulation solves the Manakov-PMD equation using the
coarse step method [42]. The eye closure is defined as the
difference between the average power of the marks and the ave-
rage power of the spaces at the clock recovery time. The PMD
enhancement is defined as the ratio of the eye closure with the
PMD to the eye closure when the fiber’s PMD is set to zero. A
PMD enhancement greater than 1 implies that including PMD
increases the eye opening.

For one sample fiber realization, chosen so that the enhance-
ment is particularly visible, Fig. 5 shows contours of constant
PMD enhancement as a function of (6, ¢). For this fiber re-
alization, the link’s differential group delay is 21.9 ps, and
the polarization-dependent chromatic dispersion is 80.2 psZ.
Fig. 5(a)—(f) shows the variation of the contours as the power
increases in 3-dB increments from 0 to 15 dBm. The thick
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Fig. 6. Curves showing the probability of exceeding a given relative eye
opening (complement of the cumulative density function) generated from a
simulation consisting of 10° fiber realizations. The thin solid curve is for the
system in which the fiber nonlinearity is set to zero. For the other curves, the
same fiber realizations were used, and the nonlinearity was nonzero and held
fixed with the peak power of the launched RZ pulse set to 9 dBm for the dashed
curve, 12 dBm for the dot-dashed curve, and 15 dBm for the thick solid curve.
(a) Linear scale and (b) log scale. (Originally from [10]).

contour in Fig. 5(f) corresponds to a PMD enhancement of 1;
every input polarization state within this contour yields an
improved performance relative to zero PMD.

Marks and Menyuk [10] simulated 100 000 randomly chosen
fiber realizations in the same system configuration to explore
the statistical significance of the PMD enhancement. For each
fiber realization, they evaluated the eye opening both with and
without PMD and both with and without nonlinearity. Fig. 6
shows the complement of the cumulative distribution functions
for launched return-to-zero peak power of 9 dBm (dashed
curve), 12 dBm (dot-dashed curve), and 15 dBm (thick solid
curve). For comparison, this figure also shows the complement
of the cumulative distribution function when the nonlinearity is
set to zero (thin solid curve). The eye-opening values presented
in Fig. 6 are normalized by the eye opening with nonlinearity
and no PMD. The input polarization state was fixed for all fiber
realizations and generally does not correspond to a principal
state axis.

For low values of the peak power, the relative eye opening
with nonlinearity is nearly the same as the relative eye opening
without nonlinearity. As the peak power increases, however,
the eye opening with both PMD and nonlinearity is larger than
in the same case with the fiber nonlinearity set to zero for a
large majority of the fiber realizations. Also, as the peak power
increases, the eye opening with both PMD and nonlinearity is
larger than in the case with no PMD for many fiber realizations.
This result indicates that PMD enhancement occurs commonly
as the power increases. As shown in Fig. 6, it is not difficult to
find fiber realizations in which the PMD can increase the eye
opening when nonlinearity is significant.
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B. Nonlinear Polarization Rotation and Its Impact

The index of refraction can be changed by the optical
power in a specific polarization state, resulting in a nonlinear
birefringence [1], [5], [11]. In wavelength-division-multiplexed
(WDM) systems, the nonlinear interaction between channels
induces a nonlinear, bit-pattern-dependent phase change in an
optical signal whenever there is optical power present at the
other wavelengths, causing a bit-pattern-dependent change in
the state of polarization. Fig. 7 illustrates this concept for a
simple two-channel system. The bits at wavelength \; that
propagate alongside a long sequence of marks in the channel
at \o experience a small change in the fiber that changes their
output state of polarization relative to the other bits in the
channel. This effect becomes significant when the relative states
of polarization of the channels are preserved over a distance
that is long enough for the nonlinear interaction to accumulate,
implying that the nonlinear change in the state of polarization
is more prevalent in fibers with relatively low PMD, in which
the polarization states of the channels remained correlated
over a long distance. We thus find that while large PMD can
lead to a pulse distortion in a single channel, it is actually
helpful in reducing the nonlinear crosstalk between channels.
The situation is analogous to the chromatic dispersion. While
the chromatic dispersion may distort the signal inside a sin-
gle channel, it actually reduces the nonlinear interaction be-
tween channels.

It is simplest to develop the theory of nonlinear polarization
rotation in the limit where PMD is negligible. In this limit,
the evolution is described by the Manakov equation with gain
and loss

0U(z,t) 1

T 4 igl2) Uz, t) - 55 (w)

. 9*U(z,1)
! ot2

+ o IUGEHP UG =0 (73

which is (64), including the effects of gain and loss. We
consider a WDM system, and we write

N
Ul(z,t) = Z U, (z,t) exp(ifmz — iwmt) (74)

m=1

where [3,,, is the wavenumber of the mth WDM channel relative
to #(wo), and w,y, is the radial frequency of that channel relative
to wg. When four-wave mixing and intrachannel chromatic
dispersion can be neglected, we obtain for the /th channel

0U;(z,t , ) oU;(z,t
OB iU 1)+ i o) T A
8 N
2

N
+51 Y (U150 Up (5,0 Un(50) =0 (09)

m=1

where N is the total number of channels. Focusing on channel
[, we may define a new time variable ¢t; =t — z/[3" (wo)wi],
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in which the group velocity motion of the Ith channel is
removed. Equation (75) now becomes

aUl(Z tl) 8
i—p, — tig(2)Ui(z, t)+ 57 2: m (2, 0[P Uiz, 1)
m=1,#l
] N
+ §7mz::1 [Ui(z,t) - U (2,6)] Up(2, ) = 0. (76)
It follows from (76) that
U (z, 1))
% +29(2) |Ui(z, )2 = 0 (77)

which in turn implies that the nonlinearity induces no wave-
form distortion and that there is no waveform distortion at
all—merely gain and loss. Since the same result holds for all
the channels, we can write [28]

U (2,t0)° = Pon(2)pm [t — 8" (w0) (Win — w1)2]
where P,,(z) is the peak power in channel m at any point in
z taken over time, and p,,(t) gives the data modulation as a
function of time.

Our ability to write U,, in the form (78) greatly simplifies
the analysis. It is a consequence of neglecting intrachannel
chromatic dispersion. This assumption requires additional com-
ment. Modern-day long-haul WDM systems use dispersion
management in which intrachannel chromatic dispersion—far
from being negligible—is typically quite large, rapidly spread-
ing each bit over the equivalent of several bit periods and then
using fiber with dispersion of the opposite sign to compensate
for that. Dispersion management significantly reduces the im-
pact of the nonlinearity on system performance. However, the
general problem does not appear possible to analyze except
by using full computer simulations, and thus, work on (78)
provides an important baseline from which to study the more
general case. As a consequence, several experimental and theo-
retical studies of systems in which (78) holds have been carried
out [6], [30]. Here, we follow the theoretical development of
Vannucci et al. [28].

From (76), one can derive the equation

(78)

0S;i(z,t
BN | a1zt

N
8
= §fymZ::1 \Ul(z,tl)|QSm(z,tl) X Sg(z,tl) (79)

where S; is the Stokes vector for a single channel. While
(79) does not hold in general when the chromatic dispersion
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Optical power induces a small nonlinear birefringence that randomizes the state of polarization, limiting the effectiveness of the first-order PMD

cannot be neglected, there are important limits besides the one
considered here where it does hold. The first is the case of
solitons, in which case |U;|%S;;, j = 1,2, 3 refers to the final
three Stokes parameters of the individual solitons averaged over
time [6]. The second is when an entire channel is considered,
in which case S(z) is averaged over time and refers to the
Stokes parameters of the entire channel [49]. This case holds
more generally than the case being considered here, since it is
not necessary for the intrachannel dispersion to be negligible.
However, the Stokes parameters in this case provide no time
domain information.

We now return to using the Stokes vector, and we combine
(78) and (79) to obtain

0Si(z,t1) 8

N
9 §’yexp(—2gz) X Z P,(z=0)

m=1

X pm(tl — ﬂ”wmlz)Sm(z,tl) X Sl(z,tl) (80)

where wy,; = wy, —w;. We are assuming that the loss is the
same in all wavelength channels and is a constant, g. We now
focus on the special case in which there are two wavelength
channels. The first of these wavelengths is the signal and the
second is the probe. There is a pivot vector Spivot = Ssignal +
Sprobe, Which is constant as a function of z. The signal and the
probe rotate around the pivot when both contain a mark, and
the rotation stops when either contains a space. We may write
the rotation angle as

z

U(z,t) = gfprivot /exp(—ng)p(tl — B"wmz)dz  (81)
0
where  Ppivoy = (Pgump Psrobe"‘?PpumpPprobc cos 9)1/2,
and cosf is the angle between Spump and Sggna. We
now define the time-averaged rotation angle (U(t;)) =
(8/9)yPpivot Ler /4g, which holds for nonreturn-to-zero sig-
nals for which (p(t; — "wmiz)) = 1/2. For other signal
formats, this average would be different. We also de-
fine the difference rotation angle AW(¢;) = W(¢;) — (V(L)),
the power ratio PR = Pyump/Psignal, and the relative angle
between the signal and the pump 6 = 6 — tan~![sin 6 /(PR +
cos@)]. We then find that Sgignai(z,%;) = (sinfscos AU,
sin 0, sin AW, cos 6, ), from which we conclude that the degree
of polarization (DOP) at z = L, averaged over time T, is

given by

DOP = ‘<Ssigna1(L7 T)>|

1/2

= [1 —sin® 6, (1 — (cos AT)? — (sin AV)?)]

(82)
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Fig. 9. Output probe DOP after three spans versus the input polarization angle 6 for several pump-probe power ratios (PRs); measurements (dots), simulations
(triangles), and theory (lines). (Originally from [28]). (a) PR =0 dB, (b) PR =3.9 dB, (¢) PR =6.3 dB, (d) PR =9.3 dB, (¢) PR =11.8 dB, and

() PR = 11.8 dB.

While it is not difficult in principle to solve (82) numerically,
Vannucci et al. [28] obtain a closed-form expression for the
DOP by making the following approximations: They first fo-
cus on periodic sequences of k£ marks followed by k spaces.
Assuming that the contribution of this sequence is dominated
by its lowest harmonic, they find that

16 sin(wt/kT

A\P(t) = 77Ppivot ( / ) 1/2 (83)

o [492 + (ﬁﬁwlmL)Q]

from which one concludes
16/9 Py,

(cos AT) = J, (16/9m)vP, ot12

[492 + (B"wim L)?]"
(sin AT) =0 (84)

where Jj is the zeroth-order Bessel function. Noting that the
sequence of k consecutive marks or spaces occurs with proba-
bility k=2, they conclude that the DOP is given by

1
DOP = (1 — sin? 93{1 — [Z 5%
k=1
24\ 1/2
XJ() (16/971—)’7Ppivothpan (85)

[492 + (ﬁ”wlmL)Q]l/z

where N,y is the number of spans through which one repeats
the process. Equation (85) can be evaluated numerically.

To observe the decrease in the DOP predicted in (85),
Vannucci et al. [28] carried out measurements on the system
shown in Fig. 8, with the dispersion map shown in the inset,
which contained three spans of 100 km. The signal and the
pump are spaced 0.8-nm apart, and the loss is 0.2 dB/km. They
performed five sets of five hundred measurements of both the
total input DOP and the DOP after filtering the signal channel,
randomly changing the polarization controller each time. Fig. 9
shows a comparison of the experimental results, the results of
a complete computer simulation, and the results from (85). The
average signal power is 3 dBm, and the pump-probe power ratio
(PR) is shown in each of the subfigures for each of the five
cases. The experimental spread is due to amplifier noise. These
results show clearly the reduction in the DOP that is induced by
nonlinear polarization rotation.

Khosravani et al. [11] have carried out a set of simulations
and experiments that demonstrate the deleterious effect of
nonlinearity and PMD compensation when the PMD is large.
Curiously, small PMD actually reduces the penalty. The reason
is that when the PMD is large enough to randomize the polar-
ization states between the channels, but not so large as to lead to
penalties inside a single channel, then the PMD will reduce the
nonlinear interactions and, hence, the nonlinear penalty. In their
simulation studies, Khosravani et al. [11] focused on terrestrial
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Fig. 10. SIMULATION-600-km transmission, two-channel 10-Gb/s system, 0.8-nm channel spacing. (a) Power penalty distributions due to different cross-

phase-modulation-inducing optical powers (average power =

—1,2, and 5 dBm) after the first-order PMD compensation, 50 ps initial differential group delay,

(b) 10% worst case penalty after the first-order PMD compensation versus PMD of the link, 50-ps initial DGD, 5 dBm/channel; EXPERIMENT-six times
recirculation in the loop, 0.8-nm channel spacing. (d) Experimental setup. (¢) BER curves for the best and worst relative polarization between the two signals for
2.5- and 4-dBm input power on the cross-phase modulation-inducing channel to the SMF fiber. (Originally from [11]).

systems operating at 10 Gb/s. Each dispersion map period
consisted of 85 km of SMF, 15 km of DCF, and two gain stages.
The average input powers are set to 5 and —2 dBm for the SMF
and DCF fibers, respectively. They considered six periods of
the dispersion map, totaling 600 km. The channel spacing is
0.8 nm. The receiver model contains a low-pass filter with
a 6-GHz cutoff frequency. The sampling time and decision
threshold are optimized to account for PMD-induced bit pattern
shifts. The amplified spontaneous emission noise is the domi-
nant noise source; so, electrical receiver noise is ignored.

For the experiment, Khosravani et al. [11] used an optical
fiber recirculating loop consisting of ~ 82 km of SMF and
~ 12 km of DCF. The signal passed through a single-section
PMD compensator with ~ 76 ps of differential group delay
after six passes through the loop.

To evaluate the effects of nonlinear channel crosstalk
on PMD compensation—due primarily to cross-phase
modulation—they considered a simple two-channel system.
The first channel contains a random 64-bit signal, with 50 ps
of differential group delay applied to its two orthogonal
components, and is transmitted over 600 km of low-PMD fiber
(0.1 ps/km'/?). The first-order PMD compensation is used at
the end of the transmission link. The second channel is used
to induce crosstalk, and it consists of a long series of marks
followed by a long series of spaces, corresponding to the worst
case pattern.

Fig. 10(a) shows the power penalty distributions for a two-
channel system with different optical powers in the crosstalk-

inducing channel. Fig. 10(b) shows the 10% worst-case penalty
for different initial differential group delays and different
crosstalk-inducing optical powers. These results show that al-
though the initial differential group delay can be compensated
after transmission in a system with cross-phase modulation,
this compensation is no longer possible once crosstalk becomes
important due to the uncertainty in principal states of polar-
ization. Hence, initial values of the differential group delay
are more susceptible to the uncertainty in the principal states
of polarization, as the small deviations in the principal states
of polarization lead to higher penalties after compensation.
Average powers as low as 3 dBm can cause severe penalties
after the first-order PMD compensation.

If the PMD of the link is not small, the different states of
polarization of the wavelength channels become uncorrelated
and change quickly over a short distance, which results in an
averaging of the nonlinear effects and reduces the effect of
crosstalk-induced variations of the principal states of polariza-
tion. Fig. 10(c) shows the power penalty caused by crosstalk-
induced variations in a signal after the first-order PMD
compensation. The penalty initially decreases as the PMD
increases; however, as the PMD continues to increase, penalties
that cannot be compensated due to the higher order PMD lead
to an increase in the penalty.

In order to support the simulation results, Khosravani et al.
[11] set up the experiment shown in Fig. 10(d). They trans-
mitted two signals—one with modulated data and the other
with a continuous wave. By adjusting the polarization controller
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Fig. 11. Q-factor distribution for a 10-Gb/s signal (eight channels) after 600-km transmission. The first 100 km of the link has a high PMD of 3 ps/km'/2, and
the remaining 500 km has a low PMD of 0.1 ps/kml/ 2. (a) No cross-phase modulation, before PMD compensation. (b) No cross-phase modulation, after PMD
compensation. (c) With cross-phase modulation, after PMD compensation. (Originally from [11]).

(PC1) before the polarization-maintaining (PM) fiber, they first
optimized the bit error rate (BER). Then, they changed the
relative polarization states between the two optical signals
by changing another polarization controller (PC2) in order to
obtain the worst performance. Fig. 10(e) shows the BER curves
for different optical powers in the crosstalk-inducing channel.
A significant change in the system performance is apparent.

Fig. 11 shows the Q-factor distribution for an eight-channel
system with 3 dBm per channel optical power, before and after
the first-order PMD compensation. Again, it is assumed that all
channels but one consist of a long series of marks followed by
a long series of spaces, to simulate worst-case crosstalk effects.
The first 100 km of the link is assumed to have a high PMD
of 3 ps/kml/ 2. The crosstalk had little effect on the Q-factor
distribution without first-order compensation, but it caused
significant additional penalties (> 4 dB) after compensation.

It is possible to greatly reduce or even eliminate this effect
by avoiding long strings of marks in one polarization state.
Pan et al. [27] demonstrated the effectiveness of this technique
by replacing each mark in a single polarization state with a
mark that is split into two polarizations. Many other variants
can be imagined. Another possibility is to create a Manchester
code in which a combination of Z-y polarizations indicates a
mark and a combination of -2 polarizations indicate a space,
where & and ¢ indicate two arbitrary orthogonal polarization
states. This code has the additional advantage over the Pan et al.
code of having constant power, which would also serve to
reduce nonpolarization-dependent crosstalk-induced distortion.
This Manchester code shares with the code of Pan et al. the
defect that it requires doubling the transmission rate for a
fixed data rate. Line codes exist that can substantially decrease
the length of a string in a single polarization state while not
substantially increasing the bandwidth. For example, one could
create the polarization equivalent of a sliding window criterion
code [50], in which the marks in that code are replaced by
transmission in the Z-polarization and spaces in that code are
replaced by transmission in the g-polarization.

IV. CONCLUSION

In this paper, we have reviewed the interaction of the Kerr
nonlinearity and PMD.

In Section II, we presented a derivation of the Mankov-PMD
equation based on multiple-length-scale techniques. The length

scales in optical fibers divide naturally into three different
groups. The shortest group includes the wavelength of light
and the fiber core diameter. At this length scale, one must use
the complete set of Maxwell’s equations to determine the light
evolution. The intermediate group includes the birefringent beat
length and the autocorrelation length for the orientation of the
axes of the birefringence. At this length scale, we average over
the rapid variations of the field amplitudes over one wavelength
and the transverse variations to obtain the coupled nonlinear
Schrodinger equation, which is the governing equation for the
light evolution on this length scale. The longest group includes
the nonlinear, dispersive, and PMD lengths. It is the length scale
of interest for optical fiber communications systems. At this
length scale, we average over the rapidly varying birefringence
to obtain the Manakov-PMD equation, which is the governing
equation for light evolution on this longest length scale. When
the signal is initially in a single polarization state and the PMD
may be neglected, then the light evolution is governed by the
scalar nonlinear Schrodinger equation. In this derivation, we
focused on elucidating common misconceptions and pitfalls,
rather than on mathematical rigor.

Despite the simplicity of the Manakov-PMD equation and
the transparent physical meaning of all its terms, the behavior
that it predicts can be remarkably complex. In Section III, we
present two examples that illustrate this complexity. The first
example concerns the interaction of nonlinearity and PMD. It
has been known since the early work of Poole and Giles that
higher order PMD in combination with a frequency chirp can
lead to a pulse compression during transmission, which in turn
results in an increased eye opening after signal detection in
the receiver. This PMD improvement can occur regardless of
the physical origin of the chirp—dispersion, the transmitter,
or nonlinearity. However, in the case of the Kerr nonlinear-
ity, the chirp and hence the effect become power dependent.
Thus, in the presence of significant PMD, it is possible to
observe an improvement in the eye opening as the power in-
creases. This effect has been studied for both nonreturn-to-zero
and return-to-zero modulation formats and can be statistically
significant.

The second example concerns the interaction of nonlinear
polarization rotation in WDM systems with PMD compen-
sators. When two pulses at different wavelengths interact, the
Kerr nonlinearity induces a change in the polarization states
of both unless both pulses are in the same or orthogonal
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polarization states. In an ON—OFF-keyed system in which each
pulse corresponds to a mark, the amount of change that one
pulse undergoes depends on how many pulses with which it
interacts in the other channels, which varies from pulse to
pulse. Thus, pulses in a channel that are initially all in the
same polarization state will end up in different polarization
states, which in turn means that principal states of polarization
change rapidly over time. Under these circumstances, PMD
compensation schemes that rely on the slow variation of the
principal states of polarization will prove ineffective. However,
the use of a properly chosen line code can greatly mitigate this
problem. The line code should be chosen so that every pulse
in one WDM channel interacts with approximately the same
number of pulses in the other channels.

The physics contained in the Manakov-PMD equation is not
only of practical importance in optical fiber communications
systems, but it is extraordinarily rich. We have little doubt
that it will remain the focus of much future work in the years
to come.
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