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The widely used split-step Fourier method has difficulties when solving partial differential equations with satu-
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rithms for solving the Haus mode-locking equation and related equations that are used to model mode-locked
lasers and other optical oscillators and amplifiers with saturable gain. These equations all include the product
of a scalar nonlinearity and a stiff nonlinear operator. We find that a modified split-step method is the easiest
to program with the same level of reliability and accuracy as the other methods that we investigated. © 2013
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1. INTRODUCTION
Many optical systems contain saturable amplifiers with a
band-limited gain. Some important examples include erbium-
doped fiber amplifiers, mode-locked lasers, and optoelec-
tronic oscillators. In general, the partial differential equation
(PDE) that is used to model the system will have a term that is
both nonlinear, due to the gain saturation, and stiff, due to the
finite bandwidth of the amplifier. The solutions of these equa-
tions are more difficult to obtain than those for optical
transmission systems, which do not have the coupling of non-
linearity and a band-limited frequency response. The split-step
method is widely used to characterize light propagation in op-
tical fibers because it is relatively easy to program. Moreover,
prior work has demonstrated that it is efficient relative to
other methods for studying optical transmission when a high
accuracy is not needed [1]. However, there have not been
comparable studies for mode-locked lasers and other related
systems with saturable absorbers. As we show, stiffness en-
ters into the equations that describe these systems in a way
that is more difficult to handle accurately and efficiently than
the way in which stiffness enters into the equations that de-
scribe transmission systems. With the introduction of fre-
quency combs [2], the number of systems with saturable
absorbers and their complexity has grown along with their
potential applications. So a complete comparison of the com-
putational methods for solving the equations that model these
systems—comparable to what has been done for optical
transmission systems—is needed.

In this paper, we investigate methods to solve initial value
PDEs of the general form

∂u
∂z

� Lu� g�u�Ku�N �u; z�; (1)

where u � u�z; t� is the complex carrier envelope of a
scalar optical field, L and K are linear operators that are
assumed to be stiff, g�u� is a scalar nonlinear operator of
the carrier envelope u, and N is a nonlinear operator that
is not stiff. We use z as the evolution variable and t as the
transverse variable, as is common when modeling optical
systems.

In this paper, we use laser mode locking as our example
application. The canonical equation in this context is the Haus
mode-locking equation (HME) [3], which has also been com-
monly referred to in the literature as the master mode-locking
equation [4,5] or the complex Ginzburg–Landau equation with
saturable gain [6]. This PDE models the propagation of light
pulses through a mode-locked laser and is of the form of
Eq. (1). The effects of the discrete laser elements—nonlinear
propagation, dispersion, gain, and saturable absorption—are
averaged over one round trip in the laser cavity to give a
continuous equation that qualitatively models all the physical
effects necessary for passive, short-pulse laser mode locking,
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(2)

where t is the retarded time, z is the propagation distance, l is
the loss, β00 is the group velocity dispersion, γ is the Kerr co-
efficient, Ωg is the gain bandwidth, and δ is the fast saturable
absorption constant. If the relaxation of the laser medium is
much slower than the pulse repetition rate, the saturated gain
is well approximated by

g�u� � g0
1� Pav�u�∕Psat

; (3)
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where g0 is the unsaturated gain, Psat is the saturation power
of the amplifier, and Pav�u� is the average power of the pulse,

Pav�u� �
1
TR

Z
TR∕2

−TR∕2
ju�z; t�j2dt; (4)

in which TR is the round-trip time. While Eq. (2) looks much
like the nonlinear Schrödinger equation, it has complex in-
stead of imaginary coefficients in front of the dispersive
and nonlinear terms. These terms include the effects of a fre-
quency filter and fast saturable absorption, respectively, and
they are physically necessary in order to fix the central fre-
quency of the mode-locked pulses and to suppress continuous
waves. The slow saturable gain given in Eq. (3) suppresses
explosive pulse growth. The correspondence between Eqs. (1)
and (2) is given by

L � −

1
2

�
l� iβ00

∂2

∂t2

�
; (5a)

K � 1
2

�
1� 1

Ω2
g

∂2

∂t2

�
; (5b)

N �u; z� � �iγ � δ�juj2u: (5c)

It is often useful to evaluate L and K in the Fourier domain,
which then become

~L � �iβ00ω2
− l�∕2; (6a)

~K � �1 − �ω∕Ωg�2�∕2; (6b)

where ω is the frequency, and the tilde indicates the Fourier
transform.

The nonlinear Schrödinger equation is the basic equation
that describes nonlinear pulse propagation in optical fibers.
Since it was first applied to optical fiber transmission by
Hasegawa and Tappert [7], this equation and its extensions
have been extensively studied in optical systems using
numerical methods. Early finite-difference methods were
found to be inferior to spectral methods—in particular, the
split-step Fourier method, which was found to be the
most numerically efficient method to solve the nonlinear
Schrödinger equation [8,9].

Once we discretize the problem in the variable t, Eq. (1) is
reduced to a system of ordinary differential equations (ODEs),

du
dz

� Lu� g�u�Ku� N�u; z�; (7)

where u is a vector of length N , with discretized elements
u�j��z� approximating the solution at the time tj ,
j ∈ f1; 2;…; Ng. We have T � NΔt, where T is the duration
of the time window in which u�z; t� appears, and Δt is the dis-
cretized time step. We calculate the stationary pulse duration
τ using the variance

τ2 �
R TR∕2
−TR∕2

�t − tc�2ju�z; t�j2dtR TR∕2
−TR∕2 ju�z; t�j2dt

; (8)

in which tc is the center of the pulse

tc �
R TR∕2
−TR∕2 tju�z; t�j2dtR TR∕2
−TR∕2

ju�z; t�j2dt
: (9)

We verified that the evolution profile remains visibly the same
(it is unchanged to at least three significant figures) when
20τ ≤ T ≤ 60τ, as long as τ ≥ 10Δt. The matrices L and K
are N × N matrices that are the discretization of the linear op-
erators L and K, respectively, and the nonlinear operator N is
the discretization of N . We will use the Fourier transform
method to discretize the linear operators L and K in
Eq. (1). We then approximate the integral in Eq. (4) by an
inner product, so that

g�u� � g0
1� uHu∕E0

; (10)

where uH is the complex transpose of the vector u and
E0 � TRPsat∕Δt. The approximation of Eq. (10) is spectrally
accurate; i.e., the error tends to zero exponentially as Δt de-
creases, as long as Fourier spectral methods are used [10].
That will be the case for the methods that we present in this
paper.

Stiffness occurs when there are two or more very different
scales of the propagation variable (in this case, z) on which
the dependent variable (in this case, u) is changing [11]. The
source of stiffness in Eq. (2) and the related equations is
the second-order derivative in time t. If we consider the linear
diffusive wave equation for u�z; t� and its Fourier transform
~u�z;ω�, we obtain

∂u
∂z

� ∂2u
∂t2

; (11a)

∂ ~u
∂z

� −ω2 ~u: (11b)

When the time t is discretized for numerical computations, in-
stability can result. As a simple illustration of how instability
can appear, we may consider replacing Eq. (11) by its finite-
difference version

du�j�

dz
� u�j�1�

− 2u�j� � u�j−1�

�Δt�2 ; (12a)

d ~u�j�

dz
� −

sin2�ωjΔt�
�Δt�2 ~u�j�; (12b)

where ωj � 2�j − 1�π∕T is the discretized frequency. For any
numerical method, the largest frequency that is retained in the
problem is approximated by ωmax � 2�N − 1�π∕T . Equa-
tion (12b) predicts that the damping rate approaches zero
at this frequency. The high-frequency components can then
be made unstable by computational noise combined with non-
linear effects. We give an explicit example in Section 2.A.
In the simple case shown here, the difficulty can be
avoided by working in the Fourier domain, where we find
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~u�z� Δz;ω� � ~u�z;ω� exp�−ω2Δz�, where Δz is the step size
in the z direction. However, when ω2Δz ∼ 1, we find
Δz ∼ 1∕ω2, and the change ~u�z� Δz;ω� − ~u�z;ω� is compa-
rable to ~u�z;ω�. The choice of Δt, and hence ωmax, imposes
a constraint on how large Δz may be chosen while still main-
taining computational accuracy and stability. This constraint
can be quite serious and some computational methods will al-
ways be unstable due to the second derivative in t regardless
of how small Δz is [12].

When the frequency filtering represented by the term
g�u�∂2u∕∂t2 is not present, the stiffness enters in a relatively
benign way, as is the case for most computational studies
of optical waveguide transmission. When dispersion is
present, we see from the solution to the dispersive wave
equation

∂u
∂z

� i
∂2u
∂t2

; (13a)

∂ ~u
∂z

� −iω2 ~u; (13b)

which may be written as ~u�z� Δz;ω� � ~u�z;ω� exp�−iω2Δz�;
that dispersion only changes the phase of the Fourier compo-
nents. While the absolute magnitude of the change in ~u for a
given ω and z is the same for the diffusive and dispersive wave
equation, and while one must be careful to avoid choices ofΔz
that lead to computational resonance [13], it is typically
possible to tolerate far larger inaccuracies in phase than in
amplitude while maintaining stability. However, for laser
mode locking and other similar models, as we will show,
the presence of the frequency filtering term g�u�∂2u∕∂t2
strongly affects the performance of the different computa-
tional methods that we will compare.

In this paper, we compare the split-step Fourier method to
two newer algorithms, which are the additive Runge–Kutta
(ARK) method of Kennedy and Carpenter [14], as well as
the exponential time-differencing method of Cox and
Matthews [15]. We analyze the computational efficiency
and the stability of the algorithms when applied to solving
the HME of Eq. (2). The remainder of this paper is organized
as follows: Section 2 discusses in detail the implementation of
the split-step method to solve saturable gain problems.
Section 3 describes the application of the split-step method
to the HME. Section 4 describes the implementation of
the ARK method. Section 5 describes the exponential time-
differencing method, and Section 6 shows the results of the
comparison and discusses the relative merits of each method.

2. SPLIT-STEP FOURIER METHOD
Split-step methods have a long history going back to Strang
[16] and Bagrinovskii and Godunov [17]. The simplest and
most frequently used formulation is a second-order scheme,
while schemes of arbitrarily high order were proposed by
Yoshida [18]. The standard split-step method can be applied
to Eq. (7) when the nonlinear-stiff term involving g�u� is ab-
sent, so that we can split the equation into a stiff linear part
represented by L and a nonstiff nonlinear part represented by
N�u�z�; z�. Applying the standard second-order, symmetric
split-step method to this modified problem would lead to
the following formal expression for the numerical scheme:

uk�1 � exp�hL∕2� exp
�Z

zk�1

zk

N�u�z0�; z0�dz0
�
exp�hL∕2�uk;

(14)

where uk � u�zk�, zk�1 � zk � h, h is the size of the z step, and
the nonlinear exponential is evaluated analytically when pos-
sible or is approximated numerically using a second-order
explicit method. Furthermore, by using a Fourier spectral dis-
cretization, the linear exponential operators can often be ef-
ficiently calculated using the fast Fourier transform (FFT)
[9,19]. When efficient use of a FFT is not possible—for exam-
ple, if a Chebyshev spectral method is used [19]—the split-
step method still has the advantage that the stiff part of the
equation does not need to be solved implicitly.

The split-step method avoids stiffness by analytically solv-
ing the linear part of the equation, which is stiff, as in the case
of the nonlinear Schrödinger equation [20]. However, for
equations that have terms that are both stiff and nonlinear,
as is the case for the HME with the term g�u�∂2u∕∂t2, and
which often do not have analytical solutions, the application
of a split-step method becomes difficult.

A. Symmetric Splitting
By applying a split-step scheme simplistically to Eq. (1), an
intuitive scheme is

uk�1 � exp�h∕2�L� g�uk�K�� exp
�Z

zk�1

zk

N�u�z0�; z0�dz0�
�

× exp�h∕2�L� g�uk�K��uk; (15)

where g�uk� is the saturated gain that is calculated at the be-
ginning of the kth step. With this approximation, expfh∕2�L�
g�uk��Kg can be evaluated spectrally using the FFT, and
stiffness is avoided since the discretized ODE is solved ana-
lytically. However, the saturated gain g�u�z�� is poorly approxi-
mated by a constant g�uk� in each step, which makes this
scheme first-order accurate.

Computational efficiency is the major concern in solving
initial value problems numerically. A first-order method is
generally inferior to a second-order method, since it is often
necessary to take smaller step sizes to maintain a given global
accuracy, which in turn requires more total computer time.
This reduction in efficiency can seriously impact the useful-
ness of simulations for laser design, since it is often desirable
to carry out parametric studies over a wide range. A similar
issue arises in any model of a passively mode-locked laser
with slow saturable gain.

The Richardson extrapolation is often used to formulate a
higher-order result by combining lower-order estimates [21].
In the case of a first-order method, we formulate a second-
order result by combining solutions with step sizes of h
and h∕2,

uk�1 � 2uh∕2k�1 − uhk�1; (16)

where uhk�1 is the first-order approximation of u�zk�1� using a
step size of h. We will test the computational performance of
the scheme in Eq. (16) against other methods.

To maintain second-order accuracy of the symmetric split-
ting, an alternative is to use a higher-order method to handle
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all the nonlinear terms including the saturated gain. We would
then compute

uk�1 � exp�hL∕2� exp
�Z

zk�1

zk

fg�u�z0��K� N�u�z0�; z0�gdz0
�

× exp�hL∕2�uk; (17)

in which the linear term exp�hL∕2� can be handled analytically
in the frequency domain. The integral of all the nonlinear
terms can be evaluated by a second-order scheme when an
analytical solution is not available, or, alternatively, by a
nested splitting scheme when part of the integration is analyti-
cally solvable. In the case of Eq. (17), we may approximate the
nonlinear integration by a nested splitting scheme

exp
�Z

zk�1

zk

fg�u�z0��K� N�u�z0�; z0�gdz0
�
u

≈ FN

�
exp

�Z
zk�1

zk

g�u�z0��Kdz0
�
FN �u�

�
; (18)

where FN �u�z0�� � exp�R z0�h∕2
z0

N�u�z0�; z0�dz0�. In order to be
computationally efficient, explicit methods are usually pre-
ferred to evaluate exp�R zk�1

zk g�u�z0��Kdz0� when its analytical
form is not available.

However, numerical instabilities are introduced when
exp�R zk�1

zk g�u�z0��Kdz0� is evaluated explicitly, since the
second-order differentiation in t, which is similar to the diffu-
sion term in Eq. (11), is stiff. In the case of the HME, we have

exp
�Z

zk�1

zk

g�u�Kdz0
�
u

≈ IFFTf�1� hg�u��1 − ω2∕Ω2
g�∕2�FFT�u�g; (19)

which is stable only if j1� hg�u��1 − ω2
max∕Ω2

g�∕2j < 1, where
ωmax is the largest frequency. So, the largest step size allowed
is h < 4�g�u��ω2

max∕Ω2
− 1��−1. Practical step sizes must be

even smaller because of the presence of round-off errors.
Although this stability analysis is based on Euler’s method,
which is a first-order explicit method, an instability of the
same kind exists with any explicit method. The integration
of terms that are both nonlinear and stiff, such as
exp�R zk�1

zk g�u�z0��Kdz0� in Eq. (2), always require special han-
dling. We will explicitly show the appearance of this instability
in Section 3.

B. Asymmetric Splitting
A different approach for handling the term that is proportional
to g�u� is needed to alleviate the stiffness, as well as to main-
tain good computational efficiency. We formulate a split-step
scheme,

uk�1 � exp
�
hL∕2�

�Z
zk�1

zk�1∕2

g�u�z0��dz0
�
K
�

× exp
�Z

zk�1

zk

N�u�z0�; z0�dz0
�

× exp
�
hL∕2�

�Z
zk�1∕2

zk

g�u�z0��dz0
�
K
�
uk; (20)

in which the second-order derivative in t can be efficiently
evaluated using the FFT. If we consider the function g to
be function of z alone, g�u� → g�z�, we can approximate g
with a Taylor series about zk, g�z�≃ g�zk� � g0�zk��z − zk�,
where g0�z�≡ g0�u�z�� � dg�u�z��∕dz. Evaluating the integrals
that contain g�z� in Eq. (20) using this approximation, we
now can formally write the split-step method applied to the
problem with saturable gain as

uk�1 � exp�Lh∕2� �g�zk�1∕2� � g0�zk�1∕2�h∕4�Kh∕2�

× exp
�Z

zk�1

zk

N�u�z0�; z0�dz0
�

× exp�Lh∕2� �g�zk� � g0�zk�h∕4�Kh∕2�uk: (21)

To extend this expansion to Eq. (7), we first expand u�z� in
Taylor’s series about zk, so that

u�zk � δ�≃ u�zk� � δ
du
dz

����
z�zk

: (22)

We then expand the function g�uk � δduk∕dz� with δ small, so
that we obtain a linear approximation for the gain

g�zk � δ�≃ g�uk� � δJH
g �uk�

duk
dz

�O�δ2�; (23)

where Jg�uk�, which is a vector of length N , is the gradient of
g�u� evaluated at uk.

We now formally write the second-order split-step method
for Eq. (7) using Eq. (23) as

uk�1 � exp�Lh∕2� �g�uk�1∕2� � g2�uk�h∕4�Kh∕2�

× exp
�Z

zk�1

zk

N�u�z0�; z0�dz0
�

× exp�Lh∕2� �g�uk� � g2�uk�h∕4�Kh∕2�uk; (24)

where

g2�u� � JHg �u�
du
dz

� −

2�g�u��2
g0E0

RefuH �L� g�u�K�ug; (25)

and the exponential of the integral involving the nonlinear op-
erator N can be evaluated analytically when possible or by
using a second-order explicit method otherwise. This ap-
proach to splitting is asymmetric, and the nonlinear function
g2�u� only has to be updated once each step to yield second-
order accuracy. This scheme reduces to first-order splitting,
as shown in Eq. (15), when we set g2�u� � 0.

Alternatively, we can also approximate the nonlinear inte-
grations that involve the term with saturated gain in Eq. (20)
iteratively [20]. This approach is equivalent to using a finite-
difference approximation of g0�uk� � dg�u�z��∕dzjz�zk ,

g2�uk� �
1

h∕2
�g�ûk�1∕2� − g�uk��; (26)

where ûk�1∕2 is a first-order approximation to u�zk�1∕2�, which
may be written as
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ûk�1∕2 � exp�Lh∕2� g�uk�Kh∕2�uk:

This scheme is also second-order accurate and can be used
when the directional derivative of g�u� cannot be calculated
analytically. In the case of the HME, the formulation of
Eq. (26) also provides a second-order correction similar to
the formulation of Eq. (25), and we obtained nearly identical
computational efficiency by applying the split-step method of
Eq. (24) to the HME using these two different approaches for
updating g2�u�. Here, we will only show the result in
Section 6 when the formalism of Eq. (25) is used.

The split-step algorithm of Eq. (24) is second order and
does not perform as efficiently as fourth-order methods when
the required errors become sufficiently small. Fourth-order
versions of the split-step method have been given [18]; how-
ever, here we will use Richardson extrapolation to derive a
method that is fourth-order accurate and has the additional
advantage of giving lower-order estimates that can then be
used to control the step size [1]. We combine the solutions
with step sizes of h, h∕2, and h∕4 in the following way [21]:

uk�1 �
1
21

�32uh∕4k�1 − 12uh∕2k�1 � uhk�1�; (27)

in which uhk�1 is a second-order approximation of u�zk�1� us-
ing the step-size h. To estimate the error and control the step
size, we construct a third-order approximation in a similar
fashion, and we use it to estimate the local error of the
third-order estimate. We update h so that this error is held
nearly constant [14].

3. APPLYING THE SPLIT-STEP METHOD TO
THE HME
Equation 2 has a soliton solution with a special choice of
parameters that has the following form [3]:

u�z; t� � A0 sech1�iβ�t∕τ� exp�iϕz�; (28)

where the parameters of this solution, A0, β, τ, and ϕ can be
found by substituting Eq. (28) into Eq. (2). Two sets of param-
eters are given in Table 1. Parameter set 1 has been used to
model a system with anomalous dispersion that can be con-
sidered as a perturbation of the nonlinear Schrödinger equa-
tion [4,22]. Parameter set 2 models a system with normal
dispersion where both the gain and saturable loss have a large

effect on the equation and cannot be considered to be pertur-
bations.

For the HME, the nonlinear, nonstiff step of the split-step
Fourier method can be evaluated either analytically or by
using a second-order explicit method. Here, we use the
analytical solution, which is given by

exp
�Z

h

0
�δ� iγ�ju�ζ; t�j2u�ζ; t�dζ

�

� u�0; t��1 − 2hδju�0; t�j2�−�δ�iγ�∕�2δ�: (29)

Using the analytical solution for the nonlinear step in Eq. (29),
the asymmetric split-step method is implemented as

uik � IFFTfexp�h� ~L� g�uk� ~K�∕2� h2g2 ~K∕8�FFT�uk�g; (30a)

uiik � uik�1 − 2hδjuikj2�−�δ�iγ�∕�2δ�; (30b)

uk�1 � IFFTfexp�h� ~L� g�uiik� ~K�∕2� h2g2 ~K∕8�FFT�uiik �g;
(30c)

where we recall that a tilde indicates the Fourier transform. In
the HME the differential operators L and K are implemented in
the Fourier domain and are diagonal matrices

~Ljj � �iβ00ω2
j − l�∕2; (31)

~Kjj � �1 − �ωj∕Ωg�2�∕2; (32)

and the correction term g2 in Eq. (30) is given by

g2 � −

2g2�uk�
g0NPsat

Ref�FFT�uk��H � ~L� g�uk� ~K�FFT�uk�g: (33)

We will also use the explicit expressions for L and K in the
HME that are given in Eqs. (31) and (32) in Sections 4 and
5. A MATLAB program that implements this second-order
asymmetric split-step Fourier method of Eq. (30) is given in
its entirety as a function hme_ssfm2 in Appendix A. The
parameters that are given in set 1 have been shown to lead
to a stable pulse [4]. Figure 1(a) shows the buildup of a stable
mode-locked pulse from an initial small pulse u0�t� �
0.25 exp�−�t∕5�2� when h � 0.04.

As shown in Fig. 1(a), a similar evolution profile can be ob-
tained if a second-order Runge–Kutta method is used to
approximate the nonlinear integration in Eq. (29). However,
to obtain higher accuracy and stability of the split-step
method, one should use the analytical solution whenever it
is available to evaluate the nonlinear integration. We found
that the split-step method admits an enlarged stability region
when the analytical solution is used by comparison to the
case when a second-order Runge–Kutta method is used.
The results are shown in Appendix B.

By comparison, the split-step method becomes unstable
when we use the scheme of Eq. (17) if the nonlinear integra-
tion is evaluated explicitly. An example using the same step
size is shown in Fig. 1(b). Here, the nonlinear step is handled

Table 1. Two Sets of Normalized Parameters

Used for Computing the HME Numerically

Parameter Set 1 Set 2

g0 0.4 3
β00 −2 3
l 0.2 2
γ 4 4
δ 0.03 1
TRPsat 1 1
Ωg

������
10

p ���
2

p

A0 0.880 0.0759
τ 0.804 43.634
β 9.411 × 10−4 5.110
ϕ 1.548 2.247 × 10−2
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by a second-order Runge–Kutta method since the analytical
solution is not available. This code is also given as a MATLAB
function solveHME_ssfm_unstable in Appendix A. In-
stead of evolving to a stable pulse, the initial pulse u0�t� grows
exponentially and eventually blows up. This result is consis-
tent with our earlier statement that explicit integration of the
term that contains the saturated gain should be avoided.

4. ADDITIVE RUNGE–KUTTA METHODS
Another general approach that is often used to solve equations
of the form of Eq. (1) is to solve the stiff part of the equation
with an implicit method and the nonstiff part with an explicit
method. These methods are called additive, implicit–explicit,
or semi-implicit methods. Different approaches are used on
the explicit and implicit parts. A good overview of many of
these methods is presented by Ascher and co-workers
[23,24]. Here, we implement the fourth-order ARK method
of Kennedy and Carpenter [14]. In addition to fourth-order
output, this method also gives a third-order output fromwhich
the local error can be estimated and the step size controlled.
An extension to this method was recently used by Williams
et al. [25] to simulate a waveguide array mode-locked laser
using a PDE similar to the HME.

The basic idea of the ARK methods is to split Eq. (7) into
two parts—one stiff and the other nonstiff—and to solve the
stiff part with a diagonally implicit Runge–Kutta scheme and
the nonstiff part with an explicit Runge–Kutta scheme. The
full method can be written as

k1 � uk; (34a)

ki � uk � h
Xi−1
j�1

�asijF s�kj� � ansij Fns�kj�� � hγrkFs�ki�;

i ≥ 2;

(34b)

uk�1 � uk � h
Xm
i�1

bsiF s�ki� � h
Xm
i�1

bnsi Fns�ki�; (34c)

where Fns is the nonstiff part of the ODE, Fs is the stiff part of
the ODE, m is the number of stages, and ki is the ith stage of
the ARK method. The values of the coefficients asij, a

ns
ij , γrk, b

s
i ,

and bnsi are given in [14].
In each implicit stage i � 2;…;m, we solve a nonlinear al-

gebraic system. A complication here is that the nonlinear op-
erator g�u� is not differentiable in u because the complex
conjugate of u explicitly appears. Hence, in order to solve
the nonlinear system, we split the system into real and imagi-
nary parts and form an extended system of 2N equations after
discretization. So we write q � �Re�u�; Im�u��T , and following
Eq. (34b), qi is solved at the ith stage (i ≥ 2) from the non-
linear equation

h
Xi−1
j�1

�asijFs�qj� � ansij Fns�qj�� � qi − hγrkFs�qi�; (35)

where

Fs�q� � �L̂q� ĝ�q�K̂q� Fns�q� �
�
Ref�δ� iγ�juj2ug
Imf�δ� iγ�juj2ug

�
;

and the linear operators of this extended system become the
block matrices

L̂ �
�
Re�L� −Im�L�
Im�L� Re�L�

�
; K̂ �

�
Re�K� −Im�K�
Im�K� Re�K�

�
; (36)

where in the case of the HME, the operators L and K are de-
fined in Eq. (31). Meanwhile, the gain function in the extended
system ĝ is given in terms of q as

ĝ�q� � g0
1� qTq∕E0

: (37)

The Jacobian of the implicit stage system is therefore given by

Jext � I − hγrk

�
L̂� ĝ�q�K̂ − 2

ĝ�q�2
g0E0

K̂qqT
�
: (38)

The matrix qqT appearing in Eq. (38) is a dense 2N × 2N
matrix. Directly solving the nonlinear system is not feasible;
however, the matrix Jext is the sum of a block-diagonal matrix
and a rank-one matrix. Hence, the matrix Jext can be inverted
efficiently using the Sherman–Morrison formula [25,26],
which gives the inverse of a matrix A� abT as

�A� abT �−1 � A−1
−

A−1abTA−1

1� bTA−1a
: (39)

At each stage, we can apply this formula to Eq. (38)
identifying
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Fig. 1. Solving the HME starting from a small pulse u0�t� �
0.25 exp�−�t∕5�2� using set 1 in Table 1 with a step size h � 0.04:
(a) The pulse evolves to a mode-locked pulse using the asymmetric
splitting of Eq. (24) and (b) the pulse energy grows exponentially us-
ing the symmetric splitting scheme given in Eq. (17), where the non-
linear integration is evaluated using a second-order Runge–Kutta
method.
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A � L̂� ĝ�q�K̂; a � −2
ĝ�q�
g0E0

K̂q; and b � q:

5. EXPONENTIAL TIME-DIFFERENCING
RUNGE–KUTTA METHODS
Exponential time-differencing methods have been shown to
be an efficient class of methods to solve many types of non-
linear wave equations. The exponential time-differencing
methods have a long history and have been developed inde-
pendently in several different fields [27,28]. We implement the
fourth-order exponential time-differencing Runge–Kutta
(ETDRK) scheme developed by Cox and Mathews [15]; how-
ever, we note that the ETDRK methods were not intended to
solve problems of the form of Eq. (1) because the methods
require exponentials of the integrals of the stiff operators
to be calculated and are most efficient if these exponentials
are only calculated once. Furthermore, the stiff operators are
required to be linear so that their integrals in z can be calcu-
lated analytically.

To apply the ETDRK method to the HME, we split the prob-
lem into a linear stiff term and a nonlinear termwith a reduced
stiffness. This approach uses a constant approximation to the
stiff nonlinear piece, which may then be integrated analyti-
cally. The remainder is included with the nonstiff piece. We
may then write

∂u
∂z

� fL� g�uk�Kgu� f�g�u� − g�uk��Ku� N�u; z�g: (40)

The operators in both braces are stiff; however, during a single
numerical step, the quantity jg�u� − g�uk�j is small compared
to g�uk�, and in this case the second brace will be less stiff than
the first operator. The implementation of the second brace of
Eq. (40) requires that the nonlinear operator be evaluated in
both the Fourier domain and the time domain, so that both a
FFT and inverse FFT are required in order to evaluate the
second brace.

A fourth-order ETDRK scheme is implemented in the
following way [29]:

ak � exp�L̂h∕2�uk � L̂−1�exp�L̂h∕2� − I�N̂�uk; zk�; (41a)

bk � exp�L̂h∕2�uk � L̂−1�exp�L̂h∕2� − I�N̂�ak; zk � h∕2�;
(41b)

ck � exp�L̂h∕2�ak � L̂−1�exp�L̂h∕2� − I��2N̂�bk; zk � h∕2�
− N̂�uk; zk��; (41c)

uk�1 � exp�L̂h�uk � h−2L̂−3f�−4I − L̂h

� exp�L̂h��4I − 3L̂h� �L̂h�2��N̂�uk; zk�
�2�2I� L̂h� exp�L̂h��−2I� L̂h��
× �N̂�ak; zk � h∕2� � N̂�bk; zk � h∕2��
� �−4I − 3L̂h − �L̂h�2 � exp�L̂h��4I − L̂h��N̂�ck; zk � h�g;

(41d)

where I is the identity matrix, and the operators are defined as

L̂ � L� g�uk�K; (42a)

N̂ � �g�u� − g�uk��Ku� N�u; z�: (42b)

An additional difficulty is that the coefficients in Eq. (41)
must be updated at each step, reducing the efficiency of
the method. To calculate the coefficients, a numerical contour
integral can be used to avoid round-off errors in the formula
for small values of the linear operator [29]. This approach is
too slow to be performed at each step, and we found that ap-
plying Padé approximants to the exponentials works well [30].

6. RESULTS
We test all the methods discussed in this paper to the HME
using the two sets of parameters given in Table 1. In each case,
the number of time points is N � 1024. We assume periodic
boundary conditions in t. We use the same initial condition as
in Section 3, u0�t� � 0.25 exp�−�t∕5�2�, corresponding to an in-
itial pulse that has a small amplitude compared to the mode-
locked pulse. To estimate the error, we use a more accurate
numerical solution ur computed with a step size that is one
quarter of the next smallest step size. Writing uh for the evo-
lution result with the step size h, the relative error is then
calculated as

Erel�h� �
‖uh�z� − ur�z�‖2

‖ur�z�‖2
; (43)

where ‖u‖2 �
���������
uHu

p
. The results are summarized in Figs. 2

and 3. In both figures, the numerical methods that we use
are denoted as follows: SSFM(s)2 is the second-order Richard-
son extrapolated version of the symmetric split-step method
based on Eqs. (15) and (16), SSFM2 is the split-step Fourier
method of Eq. (24), SSFM4 is the fourth-order Richardson
extrapolated version of the SSFM2, ARK is the additive
Runge–Kutta method of Section 4, and ETDRK is the ETDRK
algorithm of Section 5.

Figures 2(a) and 3(a) show the computed relative error ver-
sus the step size that is used. Figures 2(b) and 3(b) show the
computational time versus the relative error that is calculated
using Eq. (43). We obtain all numerical results with code that
was written in MATLAB and that runs on a desktop PC with a
2.93 GHz Intel Core2 Duo CPU.

From the results, for both parameter sets shown in Figs. 2
and 3, we find that the computational performance of the
SSFM(s)2 and SSFM2 methods are similar. For a given step
size, the SSFM(s)2 method generally has a smaller error at lev-
els <10−1 in set 1 and at levels <10−2 in set 2. We attribute the
better error performance of SSFM(s)2 to the use of Richard-
son extrapolation, which provides a better approximation to
the saturated gain than does the method SSFM2. However, the
method SSFM2 is more computationally efficient since it costs
equal or less CPU time at almost all error levels <100. This
advantage will be more significant as the evolution dis-
tance grows.

From the results for set 1 shown in Fig. 2, the ARK and
ETDRK methods have similar errors for a given step size.
The SSFM4 method has a smaller error, which we attribute
to the use of the analytical solution in the nonlinear step.
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The SSFM4 method has a smaller error than the ETDRK
method for a given step size and also performs better in com-
putational efficiency. All methods appear to be stable in the
range of step sizes of interest, and no method becomes unsta-
ble below the error level 10−1. All of the fourth-order methods
are significantly more efficient than the second-order method
when the relative error is below 10−1. Finally, we note that the
ARK method takes significantly more time than the other
fourth-order methods for the same relative error. There are
two reasons for this result: First, a nonlinear system must
be solved at each step, and second, the system is split into
real and imaginary parts and is therefore twice the size. We
do not take advantage of the fact that this system is now real,
as MATLAB does not have that ability; however, we note that
if coded in a language that allows further optimization, then
the performance of the ARK method relative to other methods
might be improved.

In the case of set 2 shown in Fig. 3, we find that the SSFM4
and ARK methods have similar errors at the same step size for
relative errors above about 10−4; however, below this value,
the SSFM4 has a smaller relative error, and the error de-
creases at a slightly greater rate than O�h4�. We note that
the ETDRK method becomes unstable for step sizes
greater than h � 4, although with this step size the error is

approaching the order 100, and therefore the step sizes are
not of practical interest. The computational efficiencies of
the methods using this parameter set are similar to the
efficiencies of the methods using set 1.

7. CONCLUSION
In this paper, we have discussed the use of the split-step Fou-
rier method, the ARK, and the ETDRKmethods for solving the
initial value problem for the HME. The ETDRK method per-
formed better than expected even though it is not well suited
to this problem. It requires the evaluation of the nonlinear op-
erator in both the time and Fourier domains, and the coeffi-
cients of the method must be recalculated at each step.

The ARK method was stable over a large range of param-
eters as all stiff terms were treated implicitly. In addition, it is
a well-established method. The disadvantages of the ARK
method are that it is complicated to program, and it requires
splitting the implicit problem into real and imaginary parts.

The asymmetric split-step Fourier method has been shown
to be easy to program and computationally efficient. When Ri-
chardson extrapolation was used to yield a fourth-order
method, the asymmetric split-step scheme was found to be
the most computationally efficient method for solving the
HME for errors below 10−2.
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Fig. 2. (a) Relative error versus the step size and (b) the relative er-
ror versus the computational time. The HME of the Eq. (2) computa-
tion was solved with an initial small pulse up to z � 300 using set 1 in
Table 1.
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tion was solved with an initial small pulse up to z � 300 using set 2 in
Table 1.
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APPENDIX A: MATLAB CODES
The following is the MATLAB code to solve the HME with the
split-step Fourier method of Eq. (24). The code is used to cre-
ate the plot of Fig. 1(a).

function hme_ssfm2()
% The equation parameters
g0 � 0.4; PsatTR � 1; loss � 0.2;
Omega � sqrt�10�; del � 0.03;
gam � 4; beta2 � −2;
% Discretization
Nt � 1024; T � 50; dt � T∕Nt;
t � �−Nt∕2∶1∶Nt∕2 − 1�0 � dt;
dw � 2 � pi∕T; w � �0∶Nt∕2 − 1 0 −Nt∕2� 1∶ − 1 �0 � dw;
Z � 400; h � 0.04; NumSteps � round�Z∕h�;
SaveInterval � 250;
% Operators
L � �1i � beta2 � w:̂ 2 − loss�∕2;
K � �1 − �w∕Omega�:̂ 2�∕2;
% Initial condition
u0 � 0.25 � exp�−�t∕5�:̂ 2�;
uf � fft�u0�; uplot � abs�u0�:0;
zplot � 0; Psatf � PsatTR∕dt � Nt;
for istep � 1∶NumSteps
g1 � g0∕�1� norm�uf�̂ 2∕Psatf�;
g2 � −2 � �g1̂ 2∕g0∕Psatf� �…

real�dot�uf; �L� g1 � K�: � uf��;
u � ifft�exp�L � h∕2� �g1 � h∕2� g2∕8 � ĥ 2� � K�: � uf�;
uf � fft�exp�−�del� 1i � gam�∕�2 � del�…
�log�1 − 2 � del � h � abs�u�:̂ 2��: � u�;

g1 � g0∕�1� norm�uf�̂ 2∕Psatf�;
uf � exp�L � h∕2� �g1 � h∕2� g2∕8 � ĥ 2� � K�: � uf;
if mod�istep;SaveInterval� �� 0
uplot � �uplot;abs�ifft�uf��:0�;
zplot � �zplot;istep � h�;

end
end
waterfall(t, zplot, uplot); colormap([0 0 0]);
view(30, 30); xlabel(‘t’); ylabel(‘z’);
end

The following is the MATLAB code to solve the HME with
the split-step Fourier method of Eq. (17), where the nonlinear
integration is evaluated by a second-order Runge–Kutta
method. The code is used to create the plot of Fig. 1(b).

function SolveHME_SSFM_unstable()
% The equation parameters
g0 � 0.4; PsatTR � 1; loss � 0.2;
Omega � sqrt�10�; del � 0.03;
gam � 4; beta2 � −2;
% Discretization
Nt � 1024; T � 50; dt � T∕Nt;
t � �−Nt∕2∶1∶Nt∕2 − 1�0 � dt;
dw � 2 � pi∕T; w � �0∶Nt∕2 − 1 0 −Nt∕2� 1∶ − 1 �0 � dw;
Z � 400; h � 0.04; NumSteps � round�Z∕h�;
SaveInterval � 250;
% Operators
L � �1i � beta2 � w:̂ 2 − loss�∕2;
K � �1 − �w∕Omega�:̂ 2�∕2;
% Initial condition
u0 � 0.25 � exp�−�t∕5�:̂ 2�;
uf � fft�u0�; uplot � u0:0; zplot � 0;
Psatf � PsatTR∕dt � Nt;
for istep � 1∶NumSteps

(Table continued)

Continued

uf � exp�L � h∕2�: � uf;
uf � RungeKutta2�uf;h;g0;Psatf;del;gam;K�;
uf � exp�L � h∕2�: � uf;
if any(isnan(uf))
break;

end
if mod�istep;SaveInterval� �� 0
uplot � �uplot;ifft�uf�:0�;
zplot � �zplot;istep � h�;

end
end
waterfall�t;zplot;abs�uplot��;
colormap([0 0 0]); view(30, 30);
xlabel(‘t’); ylabel(‘z’); axis tight;
end
function uf out � RungeKutta2 (uf, h, g0, Psatf,…
del, gam, K)
k1 � 0.5 � h � gKu Nu�uf;g0;Psatf;del;gam;K�;
k2 � h � gKu Nu�uf� k1;g0;Psatf;del;gam;K�;
uf out � uf� k2;
end
function dudt � gKu Nu�uf;g0;Psatf;del;gam;K�
g � g0∕�1� norm�uf�̂ 2∕Psatf�;
u � ifft�uf�;
dudt � g � K: � uf� fft��del� 1i � gam� � abs�u�:̂ 2: � u�;
end

APPENDIX B: STABILITY OF THE
SPLIT-STEP METHOD
Handling the nonlinear step

R
h
0 N �u; z0�dz0 analytically instead

of explicitly not only reduces the computation error but also
enlarges the region of stability. We consider the following
scalar ODE:

du
dz

� cu� �δ� iγ�juj2u; (B1)

where u�z� is a function of z. The coefficients δ and γ are real
constants. Equation (B1) is similar to Eq. (2), but it has a re-
duced complexity in which the dependence of u on t is not
considered, and the loss, the band-limited gain, and the
dispersion are lumped into a constant c. In this case, we have
N �u; z� � �δ� iγ�juj2u.

We now apply the standard symmetric split-step method of
Section 2.A to Eq. (B1), and we define the absolute stability
parameter σN of each step as

σN � uk�1

uk
: (B2)

The split-step scheme is stable if jσN j < 1. If a second-order
Runge–Kutta method is applied to handle N �u; z�, we find
in the �k� 1�th step

uk�1 � exp�C��1� �A� iB�jDj2D exp�C��uk; (B3)

where D � 1� �A� iB� exp�C�∕2, A � hδjukj2, B � hγjukj2,
and C � hc. We thus find

σN � exp�C��1� �A� iB�jDj2D exp�C��: (B4)
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By comparison, for the case when N �u; z� is handled analyti-
cally using Eq. (29), we obtain

σN � exp
�
C −

A� iB
2A

log�1 − 2A exp�C��
�
; (B5)

if A ≠ 0. When A � 0, we simply have σN � exp�C�.
The stability regions as A, B, and C vary are shown in Fig. 4.

The complex plane is defined in terms of A� iB, and different
values of C are noted above each subfigure. The white regions
mark the stable regions for the method. Figures 4(a)–4(f)
show the cases when N �u; z� is handled by the Runge–Kutta
method. Each stable region in this case is symmetric about the
A axis, which implies that σN is an even function of A, which
can be proved by expanding σN in a Taylor series in A and B
using Eq. (B4). Also, the stability region shrinks as C increases
from being negative to positive, i.e., when a transitions occurs
from loss to gain. The region starts from a finite continuous
region on the complex plane. Then, it gradually shrinks and
breaks into two symmetric pieces around C � 0.2358, until
it finally vanishes around C � 1.442.

By contrast, Figs. 4(g)–4(l) are for the cases where N �u; z�
is handled analytically. In each subfigure, the stability region
is separated, where one piece is bounded to the right by some
value of A, while the other piece is on the lower-right portion
of the complex plane that implies 1 − 2A exp�C� < 0, which
corresponds to the pulse power juj2 being negative. This latter

case is nonphysical and not of concern. The special case A �
0 implies that the algorithm is unstable unless C < 0. The sta-
bility boundary shrinks to the left as C increases.

By comparison, we show the stable regions are significantly
enlarged when the nonlinear integration

R
h
0 N �u; z0�dz0 is

evaluated analytically than in the cases when a second-order
Runge–Kutta method is used. We conclude that in order to
obtain good performance for both accuracy and stability, it
is preferable to evaluate this nonlinear step using its analytical
form, if available.
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