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1. INTRODUCTION
Passively mode-locked lasers are used to generate ultra-short,
high-energy, and stable optical pulses. Compactness, stability,
and cost are among the major concerns for practical design of
these lasers. The stability of these systems as system param-
eters vary must be determined to optimize the system and its
components.

Despite the vast quantity of both experimental and theoreti-
cal work that has been published on passively mode-locked
laser systems [1–3], little theoretical work has been done to
investigate the stability of these systems over a broad param-
eter range. Typical theoretical studies solve the evolution
equations starting from noise or some other initial conditions
and allow the solution to evolve until it either settles down to a
stationary or periodically stationary state or fails to settle
down after a long evolution time [4–6]. This approach can
be ambiguous, since it is often not clear how long it is neces-
sary to wait for a pulse to settle down, and the computation
time required to evolve to a steady state approaches infinity in
principle when the system parameters approach a stability
boundary.

Here we describe a different approach that is based on
dynamical systems theory [7,8]. A mode-locked pulse is a sta-
tionary or periodically stationary solution of a nonlinear
dynamical system and can also be viewed as an equilibrium
of that system. In this paper we refer to the mode-locked pulse
solutions of the equations that we will be studying as equilib-
rium solutions. If any possible perturbation grows exponen-
tially, then the system is linearly unstable. The stability can
be determined by solving a linear eigenvalue problem
[9,10]. Once a mode-locked solution (an equilibrium) has been
found for a single set of parameters using the evolution
equations, we can rapidly trace the equilibrium solution as
the system parameters vary by solving a root-finding problem
to obtain the equilibrium solution without solving the evolu-
tion equations. In parallel, we determine the solution’s stabil-
ity as the system parameters vary. Once a stability boundary is

encountered, we can then track its location in the parameter
space. This approach allows us to rapidly determine the exist-
ence and stability of pulses over a broad parameter range.

In this work, we apply this dynamical approach to the old-
est and most widely used model equation of a passively mode-
locked laser system. This model equation was originally
proposed by Haus [11], and we refer to it as the Haus
mode-locking equation (HME), which may be written as
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where u�t; z� is the complex field envelope, t is the retarded
time, z is the propagation distance, ϕ is the phase rotation per
unit length, l is the loss coefficient, g�juj� is the saturated gain,
β00 is the group velocity dispersion coefficient, γ is the Kerr
coefficient, and ωg is the gain bandwidth. The value of ϕ
has no effect on the pulse evolution except to induce on over-
all phase rotation. It is common to set it to zero, but it physi-
cally corresponds to the rate of change of the carrier envelope
offset. It is mathematically convenient for us to let it be arbi-
trary for now. If the relaxation of the laser medium is much
slower than the pulse repetition rate, the saturated gain is well
approximated by

g�juj� � g0∕�1� Pav�juj�∕Psat�; (2)

where g0 is the unsaturated gain, Pav�juj� is the average power
in the laser cavity, and Psat is the saturation power of the am-
plifier. We may write Pav�juj� �

R TR∕2
−TR∕2 ju�t; z�j2dt∕TR, where

TR is the round-trip time. The function f sa�juj� represents
the model of fast saturable absorption. In the HME, we have
f sa�juj� � δjuj2, where δ is the fast saturable absorption
constant.
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The HME predicts only a narrow stability range for δ that is
inconsistent with what has been observed experimentally
[12]. Motivated by this observation—and in an effort to more
accurately model the laser physics—other models of the fast
saturable absorption have been introduced. A common
approach is to add a quintic term, and f sa�juj� becomes

f sa�juj� � δjuj2 − σjuj4; (3)

where σ > 0 is the coefficient of the quintic term [4,5,13,14],
which relaxes the stability constaints posed on the term δ and
enables us to find more stable pulse solutions in a broader
range of the parameter space. We refer to the mode-locking
equation that is formulated in Eqs. (1)–(3) as the cubic–quintic
mode-locking equation (CQME). The CQME is not a quantita-
tively accurate model of any real passively mode-locked laser
system of which we are aware. However, it is simple, and it
contains the essential elements that any model of a passively
mode-locked laser system must have to ensure the existence
of stable pulse solutions. Hence, it has been widely used to
obtain qualitative insights into the behavior of many lasers,
and is thus a useful model upon which to test our algorithms.
At the end of this paper, we briefly discuss how the algorithms
must be modified to be applied to more specialized and
realistic models.

When dynamical systems go unstable as a parameter
varies, the instability mechanisms are referred to in the non-
linear dynamics literature as bifurcations [7,8]. The bifurca-
tions that can occur in our system with the parameters that
we are using are saddle-node bifurcations, which occur when
the mode-locked pulse amplitude becomes unstable, and
Hopf bifurcations, which occur when continuous waves be-
come unstable. In our system, the spectrum of eigenvalues
has a discrete component, referred to as the discrete spec-
trum and a continuous component, referred to as the
continuous or essential spectrum [15,16]. It is possible in
our system for discrete eigenvalues to emerge from the
continuous spectrum. These bifurcations are called edge
bifurcations [15].

In this paper, we will determine the stability region of the
CQME in the parameter space �σ; δ�, which are the parameters
of the fast saturable absorption, keeping other parameters
fixed. We operate in the anomalous dispersion regime, in
which β00 < 0. In Section 2, we review the properties of the
bifurcations that appear in our study (saddle-node, Hopf,
and edge). In Section 3, we describe the equilibrium solutions
to the CQME, derive the eigenvalue equation that governs the
stability of these solutions, and present the eigenvalue spec-
trum in a typical stable case. In Section 4 we present the com-
putational techniques that we use to find the equilibrium
solutions as the system parameters vary, determine their sta-
bility, and find the stability boundary locations. In Section 5
we present our results. Finally, Section 6 contains the
conclusions.

2. REVIEW OF RELEVANT DYNAMICAL
THEORY
It has been known since the late 19th century that solving the
evolution equations is not an effective approach for determin-
ing the stability of a nonlinear dynamical system, particularly
as the system parameters vary [17]. Instead, it is better to

use geometric or dynamical methods in which one first
determines stationary or periodically stationary solutions
of the dynamical system, referred to as equilibria, and one
then linearizes the equation about these equilibria to find
their linear stability. This basic approach then becomes the
starting point for addressing more complex issues, such
as the nonlinear stability of the system and the onset of
chaos; however, these issues are not addressed in this
paper.

As noted in Section 1, these powerful dynamical methods
have been systematically exploited in many areas of science
and engineering—including fluids and plasmas [18,19] and, in
recent years, biological systems [7,8]. However, these meth-
ods have not been systematically applied to mode-locked
lasers. To our knowledge, they have only been applied in
special cases where analytical solutions are known for the
equilibria [15,20].

The basic approach that we will use is to first find an equi-
librium solution for one set of parameters using the evolution
equations. We can then determine the equilibrium solution as
parameters vary by solving a root-finding problem, which is
far more computationally efficient than is solving the evolu-
tion equations, especially when the point of operation in
parameter space approaches the stability boundary. Addition-
ally, solving the root-finding problem allows us to find equilib-
ria regardless of their stability. We vary parameters until we
encounter a stability boundary, and we then move along the
boundary—tracking or mapping its location. The stability is
determined by calculating the eigenvalues of the linearized
evolution equations. When any of the eigenvalues has a pos-
itive real part, then the equilibrium is unstable. At a stability
boundary in the problem that we are considering in this paper,
one or more eigenvalues whose real parts are negative
become pure imaginary. At that point, one of two things
can happen as the parameters vary further. First, the equilib-
rium can continue to exist, but some of the eigenvalues of the
linearized evolution equation become positive. In this case,
the equilibrium is unstable. Alternatively, the equilibrium
can cease to exist. In either case, this behavior is referred
to in the mathematics literature as a bifurcation [7,8].

In the problem that we will be addressing in this paper, we
will encounter two types of bifurcations when our system be-
comes unstable. The first type is a saddle-node bifurcation.
This type of bifurcation can be illustrated with the first-order
ordinary differential equation (ODE)

dx
dt

� −r � x2; (4)

where both x and r are real. When r > 0, this equation has two
equilibrium solutions, x ≡ x0 � �r1∕2. The equilibrium x0 �
r1∕2 is unstable, while the equilibrium x0 � −r1∕2 is stable.
When r � 0, the two equilibria coincide, and, in a sense, “an-
nihilate” each other [7], so that when r < 0, there is no longer
an equilibrium. In this case, the eigenvalue of the linearized
equation for the stable equilibrium is real and negative. The
system becomes unstable at the point that the eigenvalue
becomes equal to zero.

The second type of bifurcation is a Hopf bifurcation. In this
case, two eigenvalues that are complex conjugates simultane-
ously cross the imaginary axis. This type of bifurcation can be
illustrated with the second-order equation
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_x � μx − ωy� α�x2 � y2�x; (5a)

_y � ωx� μy� β�x2 � y2�y; (5b)

where μ, ω, α, and β are all parameters of the system. This
system has an equilibrium at �x; y� � �0; 0� for any parameter
values. The linearized equation has the eigenvalues
λ � μ� iω. When the parameter μ change from negative to
positive—unlike the case of saddle-node bifurcation where
the equilibrium disappears when the bifurcation occurs—
the equilibrium continues to exist, but becomes unstable.

There is a third type of bifurcation that we will encounter in
this paper. Equation (4) is a partial differential equation on the
infinite line, i.e., the retarded time t extends from −∞ to ∞.
The corresponding linearized equation will have both a dis-
crete and continuous spectrum. It is possible, as parameters
vary, for new discrete eigenvalues to appear. This sort of
bifurcation is called an edge bifurcation in the mathematics
literature [21]. A relatively simple, linear illustration of this
behavior is the well-known three-slab waveguide as the index
of refraction of the intermediate slab varies. This waveguide
may be described by the equation [22]

d2u

dx2
� �k20Δn2

− λ2�u � 0; (6)

where k0 is the wavenumber of the light, Δn2 is the difference
between the squared indices of refraction of the central and
the two outside slabs, and λ is the eigenvalue. When Δn2 < 0,
then there is no discrete spectrum. Only a continuous spec-
trum exists with purely imaginary eigenvalues, λ. By contrast,
when Δn2 > 0, there is at least one discrete eigenvalue that is
purely real. This eigenvalue bifurcates out of the continuous
spectrum, starting at the point where Δn2 � 0.

3. THE EQUILIBRIUM SOLUTION AND ITS
STABILITY
In this paper, we will find the stability boundary in the �σ; δ�
plane while keeping other system parameters fixed. The first
step in determining the stability boundaries as system param-
eters �σ; δ� vary is to seek a stationary pulse solution of the
CQME �u0�t�;ϕ0� in the form of

u�t; z� � u0�t�; (7)

so that u�t; z� is independent of z. We note that ϕ � ϕ0 is not
arbitrary in this equilibrium solution, but must be found in par-
allel with u0�t�. The equilibrium solution u0�t� is an equilib-
rium (or fixed point) of the dynamical system that exists
only for a special value of ϕ0. Analytical solutions of the
CQME exist in certain parameter regimes. However, the
known exact analytical solutions are of limited use because
they exist only for limited combinations of the coefficients
of the CQME [5,12], and they are unstable when β00 < 0.
We provide more detail on these analytical solutions in
Appendix A. Recently, an interesting class of approximate sol-
utions that are called highly chirped solitons has been re-
ported [23–27]. However, in this paper we do not consider
such solutions since our study focuses on the anomalous
dispersion regime, while the reported approximate analytical
solutions are found in the normal dispersion regime. In

general, we are able to find stable numerical solutions in re-
gions where the known analytical solutions do not exist, and it
is this more general case in which we are interested.

To determine the linear stability of the system once
�u0�t�;ϕ0� has been found for a given set of parameters, we
linearize Eq. (1) and obtain
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where Δu�t; z� � u�t; z� − u0�t� is a small perturbation of
u0�t�, and hu0;Δui �

R TR∕2
−TR∕2 u

	
0Δudt. By taking Δu�t; z� �

exp�λz�Δu�t�, where λ is a constant, we obtain an eigenvalue
problem:

λΔu � ∂
∂z

Δu; (9)

where λ is an eigenvalue and Δu is the eigenmode correspond-
ing to λ. The linear stability of the equilibrium solution can be
determined by the distribution of all eigenvalues on the com-
plex plane, as discussed in Section 2. A dynamical system that
is linearly unstable can in principle be nonlinearly stable be-
cause the system evolves rapidly to a nearby equilibrium or
limit cycle [7,8]. However, it is usually found in practice that
linear stability is a prerequisite for stable behavior. In this
paper, we are concerned only with linear stability, and we will
refer to linearly stable and unstable systems simply as “stable”
and “unstable.”

In order to illustrate the behavior when a stable equilibrium
exists for which no analytical solution is known, we consider
the parameter set that is shown in Table 1. Except for σ and δ,
all parameters will be held fixed with these values throughout
this paper. In Fig. 1, we set �σ; δ� � �0.002; 0.035�, and we
show the evolution of an initial pulse u�t � 0; z� �
0.2 exp�−�t∕5�2�. In Fig. 2, we show the final equilibrium sol-
ution u0�t�, where the phase at t � 0 is set equal to zero, and
we find ϕ0 � 1.856. There is a non-zero chirp, which we
indicate using false color. We will describe in more detail
the computational procedure that we use to find this solution
in the next section.

In Fig. 3, we show the linearized eigenvalue spectrum. The
spectrum includes two branches that are symmetric about the
real axis and four real discrete eigenvalues that correspond
physically to perturbations of the equilibrium solutions cen-
tral time (λt), central phase (λϕ), amplitude (λa), and central
frequency (λf ) [28,29]. The real parts of all the eigenvalues are

Table 1. Normalized Values of Parameters

Parameter Value Parameter Value

g0 0.4 TRPsat 1
l 0.2 ωg

������
10

p
∕2

γ 4 β00 −2
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negative except for λt and λϕ, which equal 0. These eigenval-
ues must equal zero because the CQME, as well as its lineari-
zation, Eq. (8), are invariant with respect to time and phase
shifts. One consequence is that these eigenvalues must remain
strictly zero as the system parameters vary and so cannot lead
to instability. Another consequence is that the equilibria are
only neutrally stable. In particular, noise perturbations will
lead to random, unconstrained fluctuations in the central time
and phase of the mode-locked pulses. One of the great
advances in mode-locked laser technology in the past 15 years
has been the development of electronic feedback systems that
can lock the central time and central phase of the mode-
locked pulse to an external reference [30]. From a mathemati-
cal perspective, these feedback systems break the invariance
of the CQME, leading to coupled systems of equations, de-
scribing the coupled optical–electronic systems, which when
linearized about their equilibrium solutions have eigenvalues

whose real parts are all strictly negative [31]. A detailed dis-
cussion of this behavior is outside the scope of this paper.

The eigenvalue spectrum in Fig. 3 is qualitatively the same
as the spectrum that appears in soliton perturbation theory, in
which the equilibria are soliton solutions of the nonlinear
Schrödinger equation [28,29]. In that case, there are also
two complex conjugate branches of the continuous spectrum
and four discrete eigenvalues. We have found that this behav-
ior is generic in the �σ; δ� plane, with the other parameters
given in Table 1, until δ becomes relatively large, at which
point edge bifurcations appear. The parameters in Table 1
correspond to the anomalous dispersion regime; so, it is
not surprising that the eigenvalue spectrum should corre-
spond closely to the soliton spectrum. In preliminary studies,
we have found that the spectrum changes significantly when
the average dispersion becomes normal.

4. DESCRIPTION OF THE ALGORITHMS
We now describe in detail the boundary tracking algorithms
that we use to determine the stability boundaries in the �σ; δ�
plane. This algorithm is really a collection of algorithms that
carry out the following tasks:

1. Solution of the evolution equations. We must solve the
evolution equations to find a stable equilibrium (mode-locked)
solution for at least one set of parameters, as described in
Section 2. This stable equilibrium is then the starting point
for the remainder of the algorithm. We also solve the evolution
equations on occasion to check our results and determine the
evolution of unstable solutions. To solve the evolution equa-
tions, we use a variant of the split-step method that we have
described elsewhere [32]. We have verified that this approach
is both robust and computationally efficient.

2. Track the equilibrium solution as parameters vary.
At equilibrium, we have ∂u∕∂z � 0 in Eq. (1), and we find that
Eq. (1) becomes
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where �u0�t�;ϕ0� denotes the equilibrium solution, and g�ju0j�
is given by Eq. (2). The equilibrium solution is subject to the
boundary condition u0�t� → 0 as t → �∞. In our computation,
this boundary condition is essentially equivalent to a Dirichlet
boundary condition or a periodic boundary condition because
we use a time window such that u0�t� ≈ 0 at the edge of
the time window. The setup of such a time window will be
described in detail in Section 4.A. The determination of
�u0�t�;ϕ0� is essentially a nonlinear root-finding problem.
Starting from an already-determined solution �u0�t; σ1; δ1�;
ϕ0�σ1; δ1��, we can determine a nearby solution �u0�t; σ2; δ2�;
ϕ0�σ2; δ2�� using a variant of Newton’s method, and continue
to find solutions along a path in the �σ; δ� plane. We discuss
this algorithm in Section 4.A.

3. Tracking the stability boundaries of the continuous

waves. We determine the stability of each equilibrium solution
by solving the linearized eigenvalue equations, Eqs. (8) and
(9). The approach is different for the discrete spectrum
and the continuous spectrum. The continuous spectrum

Fig. 2. Equilibrium solution u0�t� for the case �σ; δ� � �0.002; 0.035�.
The false color indicates the phase of the pulse in radians.

Fig. 1. When σ � 0.002 and δ � 0.035, starting with an initial pulse
u�t � 0; z� � 0.2 exp�−�t∕5�2�, the system evolves to a final equilib-
rium solution u0�t�.

Fig. 3. Spectrum of the eigenvalue problem of Eqs. (8) and (9) at the
stable equilibrium solution of the CQME when �σ; δ� � �0.002; 0.035�.
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corresponds to modes with an infinite extent. The eigenmodes
outside the limited time window in which the equilibrium
pulse exists will be complex exponentials, and the pulse will
affect the eigenvalue only through its effect on g�juj�. We take
advantage of that to find the continuous spectrum. When the
continuous spectrum touches the imaginary axis, a Hopf bifur-
cation occurs, and the equilibrium becomes unstable. We vary
both σ and δ along paths that are parallel to the stability boun-
dary, where these paths exist in both the stable and the
unstable regions, and then we interpolate to find the boun-
dary. We describe these algorithms in Section 4.B.1.

4. Tracking the stability boundaries of the discrete ei-

genmodes. The discrete spectrum corresponds to eigenmodes
that have a limited extent in the time domain, so we can ac-
curately determine the eigenmodes and the eigenvalues using
a limited time window. We typically find a stability boundary
by varying δ with a fixed value of σ until we encounter a value
at which λa becomes zero or the root-finding procedure fails to
converge to a pulse solution. When λa becomes zero, a saddle-
node bifurcation occurs, and the equilibrium disappears. We
then vary both δ and σ along three paths that run parallel to the
stability boundary and use three points to extrapolate to
the boundary values. We describe these algorithms in
Section 4.B.2.

5. Find the edge bifurcations and track the correspond-

ing stability boundary. We have found that when δ becomes
sufficiently large (δ ≈ 9.5), then an edge bifurcation occurs,
and two new complex conjugate discrete eigenvalues appear.
These eigenvalues then cross over the imaginary axis, and the
corresponding equilibrium becomes unstable via a Hopf bifur-
cation. As δ continue to increase, a whole series of edge bi-
furcations take place. The exact location of the first edge
bifurcation and the Hopf bifurcations in �σ; δ� are difficult
to calculate since the eigenmodes have a temporal extent that
is much broader than the equilibrium pulses when the Hopf
bifurcation takes place. If the linearized equation was an
ODE, we could solve the problem in a time window of limited
extent using shooting methods, but that is not possible be-
cause the linearized equation is an integro-differential
equation that is non-local in time. We instead formulate the
problem as an overdetermined boundary value problem with
exponentially decaying solutions as t → �∞ and we search
for the values of �σ; δ� at which a solution exists. We describe
these algorithms in Section 4.B.3.

A. Solving for the Equilibrium Solution
For a given set of parameters �σ; δ�, we find the equilibrium
solution �u0�t; σ1; δ1�;ϕ0�σ1; δ1�� by solving the nonlinear
root-finding problem given by Eq. (10) and the gain saturation
equation, Eq. (2). However, the dependence of the saturated
gain g on the unknown function u0�t� leads to a Jacobian that
is a dense matrix, which we must avoid for computational
efficiency. Hence, we rewrite Eq. (2) as

g − g0∕�1� Pav�ju0j�∕Psat� � 0; (11)

where g is treated as an unknown variable.
We define a time window with a duration T in which the

pulse solution differs significantly from zero. We form a vector
of time points after discretization, t � �t1; t2;…; tj;…; tN �T ,
where t1 � −T∕2, tj � t1 � �j − 1�δt, j � 1; 2;…; N , and
δt � T∕N . The function u�z; t� is represented by a column

vector u of length N , where uj�z� is the computational
approximation of u�z; t � tj�. As is usual in computational
studies, we vary T and N as the parameters vary to be certain
that both are sufficiently large to have no discernible effect on
the computational results. An extended discussion of this is-
sue is provided in Appendix B. We typically set N � 512 and
set T somewhere between 40τ and 60τ, where τ is the duration
of the equilibrium pulse, which is obtained using [33]

τ2 �
R T∕2
−T∕2 �t − t0�2ju0�t�j2dtR T∕2

−T∕2 ju0�t�j2dt
; (12)

where t0 is the geometric center of the pulse:

t0 �
R T∕2
−T∕2 tju0�t�j2dtR T∕2
−T∕2 ju0�t�j2dt

: (13)

To obtain an explicit Jacobian for the system that is com-
posed of Eqs. (10) and (11), another computational difficulty
is that juj is not differentiable since the complex conjugates
explicitly appear. To resolve this issue, we form an extended
system by splitting the system into its real and imaginary
parts. We let u0�t� � v�t� � iw�t� and u0;j � vj � iwj , where
v�t� and w�t� are the real and the imaginary components of
u0�t�, and vj�z�, wj�z�, and u0;j are the corresponding discre-
tizations. When discretized, we can combine Eqs. (8) and (11)
and formulate the following root-finding problem:

�g − l�v� g∕�2ω2
g�vtt � 2ϕw� β00wtt � p � 0;

−2ϕv − β00vtt � �g − l�w� g∕�2ω2
g�wtt � q � 0;

g�P0 � ‖v� iw‖2� − g0P0 � 0; (14)

where vtt, and wtt are vectors that represent the second-order
differentiation in t of v and w, respectively, and P0 �
TRPsat∕�δt�. Provided that T and N are set to be large enough,
the vectors vtt and wtt can be evaluated using the fast Fourier
transform (FFT) since u0�t� is a smooth function. We define
the zero vector 0, whose components are all 0 s, and we define
the vector norm ‖x‖, so that ‖x‖ �

���������
xHx

p
, where xH is the

complex conjugate transpose of x. We define the vector p
and q, whose jth components are given by

pj�v;w� � 2�δvj − γwj��v2j �w2
j � − 2σvj

�
v2j �w2

j

�
2
;

qj�v;w� � 2�γvj � δwj��v2j �w2
j � − 2σwj

�
v2j �w2

j

�
2
:

The unknowns of the ODE system of Eq. (14) are a composite
vector �v;w; g;ϕ�T , and the Jacobian is

2
4 �g∕�2ω2

g��D2
t � Pv β00D2

t � Pw v� vtt∕ω2
g w

Qv − β00D2
t �g∕�2ω2

g��D2
t �Qw w� wtt∕ω2

g −v
2gvT 2gwT P0 � ‖u‖2 0

3
5;

where D2
t is the second-order finite difference matrix. Taking

both accuracy and computation efficiency into consideration,
we use a seven-point central finite-difference scheme as well
as periodic boundary conditions, so that
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. . .

. . .
. . .

. . .
. . .

. . .
. . .

.
0

0 
 
 
 0 c3 c2 c1 c0 c1 c2 c3
c3 0 
 
 
 0 c3 c2 c1 c0 c1 c2
c2 c3 0 
 
 
 0 c3 c2 c1 c0 c1
c1 c2 c3 0 
 
 
 0 c3 c2 c1 c0

3
77777777777777775

;

(15)

where c0 � −49∕18, c1 � 1.5, c2 � −0.15, and c3 � 1∕90. The
matrices Pv, Pw, Qv, and Qw are diagonal matrices whose
components are dependent on ϕ, v, and w in the following
way:

Pv;jj�ϕ; v;w� � �g − l� − 4γvjwj � 6δv2j � 2δw2
j

− 10σv4j − 2σw4
j − 12σv2j w

2
j ;

Pw;jj�ϕ; v;w� � 2ϕ − 2γv2j − 6γw2
j � 4δvjwj

− 8σv3j wj − 8σvjw3
j ;

Qv;jj�ϕ; v;w� � −2ϕ� 2γw2
j � 6γv2j � 4δvjwj

− 8σvjw3
j − 8σv3j wj;

Qw;jj�ϕ; v;w� � �g − l� � 4γvjwj � 6δw2
j � 2δv2j

− 10σw4
j − 2σv4j − 12σv2j w

2
j : (16)

This Jacobian is a non-square matrix with a dimension of
�2N � 2� × �2N � 1�; therefore, we cannot solve the system
of Eq. (14) using the standard Newton’s method and must
instead solve it in a least-square sense. We have found that
the Levenberg–Marquart method works well [34].

To track the equilibrium efficiently over a broad range of
parameters, the initial guess for �u0�t; σ2; δ2�;ϕ0�σ2; δ2�� of
the root-finding problem is set to be an equilibrium solution
�u0�t; σ1; δ1�;ϕ0�σ1; δ1�� that has been found previously at the
point �σ1; δ1�, where �σ2; δ2� is close to the point �σ1; δ1� in
the parameter space, as noted in the description of task 2
in Section 4.

B. Boundary Tracking Algorithms
The stability of the pulse solution is determined by the ODE in
Eq. (8). In our computations, we continue to split the system
into two components, as the complex conjugate operations
explicitly appear. We define Δu, Δv, and Δw as the perturba-
tions of the equilibrium solution u0 and its real and imaginary
parts, v0 andw0, respectively. Using the same discretization as
in Section 4.A, we linearize Eq. (9) to obtain the linear eigen-
value problem

λ

�
Δv
Δw

�
� d

dz

�
Δv
Δw

�
≈ J

�
Δv
Δw

�
: (17)

Note that in Eq. (17), the vectors Δv and Δw are not neces-
sarily real since we do not split λ into its real part and imagi-
nary part, so that the eigenmodes Δv and Δw are possibly
complex functions. In Eq. (17), the quantity J is the Jacobian
of the ODE system of Eq. (8),

J � 1
2

�
J11 J12
J21 J22

�
; (18)

and the blocks of J are given by

J11 � Pv �
g

2ω2
g

D2
t −G0

f �v0; v0�; (19a)

J12 � Pw � β00D2
t −G0

f �v0;w0�; (19b)

J21 � Qv − β00D2
t −G0

f �w0; v0�; (19c)

J22 � Qw � g

2ω2
g

D2
t −G0

f �w0;w0�; (19d)

where G0
f is the derivative of the function g�x; y� with respect

to x or y:

G0
f �x; y� �

2g2

g0NP0

�
I� D2

t

2ω2
g

�
�xyT �: (20)

In Eqs. (19) and (20), the variables Pv, Pw, Qv, Qw, and G0
f

are all evaluated at the equilibrium: ϕ � ϕ0, v � v0, and
w � w0. Similarly, we evaluate g as

g � g0

1� �vT0 v0 � wT
0w0�∕�NPsat�

: (21)

The eigenvalue spectrum for the case σ � 0.002; δ � 0.035
is shown in Fig. 3. For this case, to accurately track the loca-
tion of the discrete eigenvalues, the operator D2

t should be
formulated spectrally [35]. There are cases where edge bifur-
cations occur and discrete modes emerge from the continuous
spectra. We will need a different approach to accurately find
those eigenvalues. More details will be discussed in the
following subsections.

1. Continuous Spectrum
The modes of the continuous spectrum represent perturba-
tions that do not vanish as t → ∞. There are two branches
of the continuous spectrum, as seen in Fig. 3, and they add
ripples to the equilibrium solution [36]. The tips of these
two branches of eigenvalues will hit the imaginary axis when
there is not enough amplitude-dependent loss to suppress the
continuous waves, as illustrated in Fig. 4. The continuous
waves then grow. This type of instability is called an essential
singularity [15,16]. An essential instability of the CQME
occurs, for example, when �σ; δ� � �0.002; 0.005�. We can

Fig. 4. Illustration of the variation of eigenvalues distribution where
the continuous spectrum is unstable.
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observe this instability in Fig. 5, where an initial pulse does not
evolve to any steady state, and its envelope continually
fluctuates and exhibits a chaotic-appearing behavior. The
unstable equilibrium solution, which we show in Fig. 6, was
obtained using the procedure that is described in Section 4.A.
The spectrum of Eq. (17) at this equilibrium is shown in Fig. 7,
where one can see that the continuous spectrum extends into
the right half of the complex plane.

Since the modes of the continuous spectrum extend to
t � �∞, their eigenvalues are most easily determined by
studying the modes in that limit, so that u0�t� → 0. The
Jacobian of Eq. (8), if evaluated in the frequency domain,
becomes

J � 1
2

�
g − l − gω2∕�2ω2

g� ϕ − β00ω2

−ϕ� β00ω2 g − l − gω2∕�2ω2
g�
�
; (22)

and the eigenvalues of Eq. (8) are given by

λ� � 1
2

�
g − l − g

ω2

2ω2
g

� i�ϕ − βω2�
�
; (23)

where ω is the frequency. The stability criterion is that the ei-
genvalues with the largest real parts, λk and λ	k , corresponding
to ω � 0 in Eq. (23), should have a negative real part. We then
find the stability condition is

Re λk �
g − l

2
< 0: (24)

We can determine the stability of radiation modes without
finding the eigenvalues of the Jacobian computationally, be-
cause the saturated gain g can be explicitly calculated once
the equilibrium solution is found. The spectrum of the system
of Eq. (8) is shown in Fig. 7, where the continuous spectrum is
found using Eq. (23).

While the computational solution of Eq. (17) will also yield
an estimate of the eigenvalues of the continuous spectrum, we
have found that the finite time window leads to inaccurate es-
timates even when the window is as large as 100 times the
pulse duration. As a consequence, it is not computationally
feasible to determine the eigenvalues of the continuous spec-
trum using this numerical approach. The approach that we are
using effectively assumes that we have a single pulse in an
infinite time window, which is appropriate if the round-trip
time TR is sufficiently large compared to the pulse duration
τ. In passively mode-locked fiber lasers with a single pulse
in the cavity, this ratio is 105 or larger and this assumption
is reasonable. However, this assumption becomes invalid
for mode-locked lasers with high repetition rates or microre-
sonators. A more detailed discussion of this issue may be
found in Appendix B.

We implement the boundary tracking algorithm in this case
by first varying the cubic coefficient δ, while the quintic coef-
ficient σ remains fixed (σ � σk), and determining the variation
of the λk. Eventually, we encounter a case p1 � �σ1; δ1� in
which we cross the stability boundary, as shown schemati-
cally in Fig. 8(a), indicating that the corresponding equilib-
rium solution has become unstable via a Hopf bifurcation.
We may then use two nearby stable points, here denoted
by p2 � �σk; δ2� and p3 � �σk; δ3�, to find the boundary using
quadratic interpolation. At a nearby value of σ (σk�1), we once
again find one unstable and two stable points and again inter-
polate to find the stability boundary. From these two points on
the stability boundary, we obtain an estimate for the slope of
the boundary dδ∕dσ, which allows us to predict where the

Fig. 5. When σ � 0.002 and δ � 0.005, starting with an initial pulse
u�t � 0; z� � 0.2 exp�−�t∕5�2�, the system never reaches a steady state
(equilibrium).

Fig. 6. Equilibrium solution u0�t� for the case �σ; δ� � �0.002; 0.005�.
False color indicates the phase of the pulse in radians.

Fig. 7. Eigenvalue spectrum corresponding to the equilibrium
solution of the CQME when �σ; δ� � �0.002; 0.005�.

Fig. 8. Boundary tracking algorithm for radiation modes: (a) finding
the stability boundary for the case when σ � σk, and (b) tracking the
stability boundary from σ � σk to σ � σk�1.
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three points surrounding the boundary will be when σ � σk�2.
We quadratically interpolate to find the boundary at σ � σk�1,
we correct these predictions, and we obtain a new prediction
for the slope. In this way, we accurately and rapidly map out
the entire boundary. In this paper, the spacing between the δ
values for extrapolation is about 0.001, and we change σ by
0.002 when tracking this stability boundary. These choices
yield a good balance between accuracy and efficiency.

2. Discrete Spectrum
As noted previously, the discrete spectrum consists of four
eigenvalues until δ becomes quite large. Two of them, which
correspond to time and phase translations (λt and λϕ), are nec-
essarily equal to zero. One of them, which corresponds to a
frequency shift (λω), is always negative; the corresponding ei-
genmode never goes unstable because of our assumption of a
parabolic gain profile. By contrast, the eigenmode that corre-
sponds to a change in the pulse amplitude and energy does go
unstable when the nonlinear gain becomes too large to be
overcome by the lossy terms in Eq. (1). When that occurs,
the corresponding eigenvalue (λa) crosses through zero, as
shown schematically in Fig. 9. This instability has been de-
scribed in detail for the HME [15], in which case the solution
quickly grows, as shown in Fig. 10, and eventually “blows up.”
This instability has been referred to as the exploding soliton
instability in the mode-locked laser literature, and the instabil-
ity limit is derived in [15] and occurs at δ � 0.0348. In the
CQME, the quintic loss term that equals −σjuj4u saturates
the nonlinear growth, so that the CQME is expected to have
an enlarged stability region in the �σ; δ� parameter space. That
is indeed the case. We find that as long as σ > 0, there is a
stable solution until δ ≈ 9.5, almost a factor of 280 greater than
the HME’s stability limit, indicating that the behavior is
qualitatively, not just quantitatively, changed by the addition

of the quintic term. It is possible to demonstrate that an equi-
librium solution exists for arbitrary small, positive values of σ
at values of δ, such as δ � 6, that are far larger than the sta-
bility limit of the HME. We will publish this result separately.

The amplitude eigenmode becomes unstable via a saddle-
node bifurcation so that the equilibrium ceases to exist when,
given a fixed value of σ, the value of δ changes beyond the
value at which λa � 0. As a consequence, we must modify
the boundary tracking algorithm that we used to find the
stability boundary for the continuous spectrum. Instead of
using quadratic interpolation, we use quadratic extrapolation,
following three trajectories in the stable region, as shown
schematically in Fig. 11. Otherwise, the algorithm is the same.
A typical spacing between the δ values that we use in our
extrapolation is about 0.0001, and we typically change σ by
0.0004 when tracking the boundary. We adjust the spacings
of both δ and σ as system parameters vary in order to balance
the convergence rate of the root-finding procedure and the
computational efficiency.

Another point worth noting is that one should use a spectral
differentiation scheme for D2

t in the Jacobian of Eq. (19) when
computing λa and the other eigenvalues that correspond to the
eigenmodes that are well confined in the time window T [9].
Otherwise, the computation of these eigenvalues is either in-
accurate or inefficient. With this choice, the operator D2

t

becomes a dense and symmetric Toeplitz matrix [37]:

D2
t �

4π2

T2

2
66666666664

d0 d1 d2 
 
 
 dN−2 dN−1

d1 d0 d1
. .
.

dN−2

d2 d1
. .
. . .

. . .
. ..

.

..

. . .
. . .

. . .
.

d1 d2

dN−2
. .
.

d1 d0 d1
dN−1 dN−2 
 
 
 d2 d1 d0

3
77777777775
; (25)

where the entries are

d0 � −�N2 � 2�∕12; dk � �−1�k−1 csc2�kπ∕N�∕2; k
� 1;…; N − 1: (26)

We use the MATLAB routine eig to find the eigenvalues,
including λa. Since we are interested only in λa, we could in
principle greatly increase the efficiency of finding λa by using
an iterative scheme in which only this eigenvalue is computed.
However, the computational time that is required to find λa is
in any case small compared to the computational time that is

Fig. 9. When a saddle-node bifurcation due to the amplitude eigen-
mode occurs, the amplitude eigenvalue λa approaches 0.

Fig. 10. When σ � 0 and δ � 0.035, the peak of the initial pulse u�t �
0; z� � 0.2 exp�−�t∕5�2� grows exponentially as the pulse evolves.

Fig. 11. Boundary tracking algorithm for the amplitude eigenmode:
(a) finding the stability boundary for the case σ � σk and (b) tracking
the stability boundary from σ � σk to σ � σk�1.
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required to find the equilibrium solution. So we did not
implement this improvement.

3. Appearance of New Discrete Modes
As we shall discuss in more detail in Section 5, the stability
boundaries of the continuous modes and the discrete modes
are found in the range 0.01 < δ < 0.05 and 0 < σ < 0.01. When
δ ≈ 9.5, we find that a pair of new discrete eigenvalues, λe and
λ	e , emerge via an edge bifurcation from the continuous spec-
trum. Here, we will use λe to denote the new discrete eigen-
value whose imaginary part is positive and λ	e to denote its
complex conjugate. With a small additional increase in δ,
Δδ ≈ 0.001, the corresponding eigenmodes become unstable
via a Hopf bifurcation. We show this process schematically
in Fig. 12. As δ increases, further edge bifurcations occur,
so that more discrete eigenmodes appear and then go unstable
via Hopf bifurcations.

As δ continues to increase, so do the real parts of λe and λ	e
for the first pair of eigenmodes that become unstable, and
these corresponding eigenmodes become increasingly nar-
row. In Figs. 13(a) and 14 we show a comparison of both
the equilibrium pulse solutions and the corresponding eigenm-
odes for λe, respectively, when �σ; δ� � �0.003; 9.509� and
�σ; δ� � �0.003; 13�. In the first case the eigenmode is stable,
while in the second case it is unstable. We note that both
Δv and Δw are even and complex in contrast to the original
four discrete eigenmodes for which the eigenmodes corre-
sponding to λt and λω are odd and real, while those corre-
sponding to λϕ and λa are even and real. When δ � 9.509,
which is shortly after the edge bifurcation has occurred,
the decay as jtj increases is barely visible. By contrast, the
decay is clearly visible when δ � 13.

Accurately finding the eigenmodes and eigenvalues that
appear right after the edge bifurcation is a difficult computa-
tional problem. On one hand, the analytical approach that we
used to obtain the continuous spectrum is no longer appli-
cable. On the other hand, as discussed in more detail in
Appendix B, very large computational windows are needed
to obtain accurate results—too large to be feasible. If the lin-
ear eigenvalue problem could be formulated as a differential
equation, then we could use shooting methods. However, that
is also not possible in this case because of the gain depend-
ence on the pulse energy, so that the linear equation is an in-
tegro-differential equation that is non-local in time. We avoid
these difficulties by formulating the eigenvalue problem as an
overdetermined set of linear equations L�λe;Δu�t�; σ; δ� � 0,
where we demand that the solution is exponentially decaying
as t → �∞. Given a pair �σ; δ� and a choice of λe that matches
these boundary conditions, the equation L � 0 will not, in

general, have a solution. However, if we have a good initial
guess for �λe;Δu�t��, we can find this pair iteratively using a
root-finding procedure. We use the secant method, so that
we do not need to provide the Jacobian of L � 0.

Explicitly, we first combine Eqs. (8) and (9) to obtain

�
iβ00

2
−

g

4ω2
g

�
∂2Δu
∂t2

�
�
−λ−iϕ0�

g− l

2
�2�iγ�δ�ju0j2−3σju0j4

�
Δu

−

g2

g0TRPsat
Re�hu0;Δui�

�
1� 1

2ω2
g

d2

dt2

�
u0

���iγ�δ�u2
0−2σju0j2u2

0�Δu	; (27)

as well as the conjugate equation for Δu	, where g � g�ju0j�.
Since u0�t� → 0 as t → �∞, we find that Eq. (27) becomes, in
this limit,

�
iβ00

2
−

g

4ω2
g

�
∂2Δu
∂t2

�
�
−λ − iϕ0 �

g − l

2

�
Δu; (28)

which has a solution Δu�z; t� � C exp�ηt� iλz�, where

η2 � g − l − 2�λ� iϕ0�
iβ00 − g∕�2ω2

g�
: (29)

This equation is coupled to a similar equation for Δu	. When a
discrete eigenmode exists and λ � λe, we can find a solution
for which Re�η� > 0 as t → −∞ and Re�η� < 0 as t → �∞. To
find this solution computationally, we first obtain Δv and Δw
using the same splitting of Δu that we used in Eq. (17). The
decay rate of Δv and Δw as t → �∞ should equal that of Δu.

Fig. 12. Illustration of the emergence and destablization of the cor-
responding eigenmodes of new discrete eigenvalues as δ grows: from
(a) an edge bifurcation to (b) a Hopf bifurcation.

Fig. 13. (a) Amplitudes of the equilibrium pulse solutions when
δ � 9.509 and δ � 13, while the quintic coefficient σ � 0.003 for both.
We use T � 0.842 and T � 0.845, respectively, in a computation. The
pulse amplitudes are shown in both logarithmic and linear coordi-
nates. The amplitudes decay exponentially on the wings as jtj in-
creases. (b) According to the pulse amplitude, we split the
computational window into three regions: Rp, where the pulse ampli-
tude is significant, as well as Rl and Rr , where u0�t� ≈ 0.
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We now split our computational window into three regions, as
illustrated in Figs. 13(b) and 15. In the regions denoted Rl and
Rr at the left and right edges of the time window, we assume
that u0�t� is negligible. We have found that ju0�t�j < 10−6 is
sufficient in practice. In the region Rl we have

Δv � cv1 exp�η1t� � cv2 exp�η2t�; (30a)

Δw � cw1 exp�η1t� � cw2 exp�η2t�; (30b)

where

η1�λ� �
�
−

g − l − 2�λ� iϕ0�
g∕�2ω2

g� − iβ00

�
1∕2

; (31)

as well as

η2�λ� �
�
−

g − l − 2�λ − iϕ0�
g∕�2ω2

g� � iβ00

�
1∕2

; (32)

and we choose the square roots, so that Re�η1;2� > 0 and the
solution decays as t → −∞. We similarly choose solutions for
Δv and Δw in Rr that decay as t → �∞. We will only keep
elements in the discretized formulation in the region that is
labeled Rp in Fig. 15. At the boundaries that are labeled tk
and tN�1−k in Fig. 15, we use the boundary conditions that
the solutions are exponentially decaying in accordance with
Eq. (30).

When discretized, Eq. (27) becomes

�
D2

tΔv
D2

tΔw

�
� C−1�A� S�

�
Δv
Δw

�
; (33)

where D2
t is a second-order difference operator. We use a

seven-point difference. The matrices A and C are block-wise
diagonal and may be written

C �
�
g∕�2ω2

g�I β00I

β00I −g∕�2ω2
g�I

�
;

A �
�
−Pv � 2λI −Pw

Qv Qw − 2λI

�
; (34)

in which g, Pv, Pw,Qv, andQw are evaluated at the equilibrium
pulse solution as in Eq. (19), and S is a dense matrix:

S �
�

G0
f �v0; v0� G0

f �v0;w0�
−G0

f �w0; v0� −G0
f �w0;w0�

�
; (35)

where G0
f is defined following Eq. (20). Note that in Eqs. (33)–

(35) and all following equations in this section, the size of
the square matrices D2

t , I, Pv, Pw, Qv, and Qw is K × K , and
the length of the vectors v0, w0, Δv, and Δv is K , where
K � �N − 2k�—not N anymore—as illustrated in Fig. 15, since
we consider only the elements of the matrices/vectors that are
numbered between k and N � 1 − k. We obtain, from Eq. (33),

M
�
Δv
Δw

�
� 0; (36)

where the matrix M is

M � C−1�A� S� −
�
D2

t 0
0 D2

t

�
; (37)

which is dependent on λ through A, and also throughD2
t , as we

will explain later.
Equation (36) may be written as an eigenvalue problem:

M
�
Δv
Δw

�
� m

�
Δv
Δw

�
; (38)

where m is an eigenvalue of M. For Eq. (38), the matrix M is
dependent on the value of λ, so thatm is a function of λ,m�λ�.
According to Eq. (36), the eigenvalue of interest is the one that
yieldsm�λ� � 0, which is true only if λ � λe. Therefore, we can
treat this eigenvalue problem as a root-finding problem:

�an eigenvalue ofM� � m�λ� � 0; (39)

where the root is λ � λe.

Fig. 14. When σ � 0.003, the shapes of the eigenmodes correspond-
ing to λe: (a) when δ � 9.509 and λe � −0.40� 1.05 × 104i, and
(b) when δ � 13 and λe � �0.31� 1.33� × 104i.

Fig. 15. Illustration of setting t.
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Thus far, we have formulated a root-finding problem based
on our previous eigenvalue problem of Eq. (9), and we intend
to search for an eigenvalue λ that makes m�λ� � 0. We note
that the dependence of m on λ through A is linear, so that it
appears as though Eq. (39) could be solved using the MATLAB
routine eig or another linear eigenvalue solution routine.
However, we must take the boundary conditions into consid-
eration. The eigenmodes must decay as t → �∞, which af-
fects our formulation of the matrix D2

t as we will describe
shortly. Our formulation of D2

t leads to a nonlinear depend-
ence of m on λ. Therefore, we use the MATLAB routine
fsolve to solve this nonlinear root-finding problem itera-
tively. In each iteration, we find the eigenvalues of M that
are close to 0 using the routine eigs.

Before closing this section, we describe our reformulation
of D2

t at the boundary of the time window Rp: we cannot use
Eq. (15) to build D2

t because the periodic boundary conditions
that we have been using when finding u0�t� do not apply since
Δu�t� ≠ 0 at t ≈ �T∕2, as shown in Fig. 14. Here, we construct
D2

t using the boundary conditions of Eq. (30).
Using the seven-point central difference as in Section 4.A,

we approximate the second-order differentiation of, for
example, Δv to t, as

�D2
tΔv�l �

1
�δt�2 �c0Δvl � c1�Δvl−1 � Δvl�1�

� c2�Δvl−2 � Δvl�2� � c3�Δvl−3 � Δvl�3��; (40)

where 1 ≤ l ≤ K . We note that the values of Δvn, where
n ∈ f−2;−1; 0; K � 1; K � 2; K � 3g, are unknown, but are
needed to evaluate �D2

tΔv�l for l ∈ f1; 2; 3; K − 2; K − 1; Kg.
We recall that the eigenmodes can be characterized by
Eq. (30) in the region where u0�t� ≈ 0, which enables us to
formulate Δvn in terms of Δvl and to construct D2

t .
We now give an example. We use sub-indices to enumerate

the iterations when solving for m�λ�. Suppose we are at iter-
ation s, where s > 1. We can derive η1;s and η2;s from λs using
Eqs. (31) and (32). Assume we intend to evaluate ��D2

t �sΔv�1
only from Δv1, Δv2, and Δv3. Using Eq. (30a), we have

Δv1 � cv1 exp�η1;st1� � cv2 exp�η2;st1�;
Δv2 � cv1 exp�η1;st2� � cv2 exp�η2;st2�: (41)

We can determine cv1 and cv2 in terms of Δv1;s−1 and Δv2;s−1
as

�
cv1
cv2

�
�

�
eη1;st1 eη2;st1

eη1;st2 eη2;st2

�
−1
�
Δv1;s
Δv2;s

�
: (42)

Nowwe write vn; n � −2;−1; 0 as a combination ofΔv1;s−1 and
Δv2;s−1 using Eq. (30a). For example, Δv0 can be written as

Δv0 �
	
exp�η1;st0� exp�η2;st0�


� cv1
cv2

�
; (43)

which, combining with Eq. (42), leads to

Δv0;s � p1Δv1;s−1 � p2Δv2;s−1; (44)

where p1 � �exp�η1;st0 � η2;st2� − exp�η2;st0 � η1;st2��∕y, and
p2 � �− exp�η1;st0 � η2;st1� � exp�η2;st0 � η1;st1��∕y, in which

y � exp�η1;st1 � η2;st2� − exp�η2;st1 � η1;st2�. Likewise, we
can write Δv

−1 and Δv
−2 as

Δv
−1;s � p3Δv1;s−1 � p4Δv2;s−1;

Δv
−2;s � p5Δv1;s−1 � p6Δv2;s−1; (45)

where p3, p4, p5, and p6 can be determined in a similar fashion
as in Eqs. (43) and (44). Nowwe are able to write ��D2

t �sΔv�1 by
combining Eqs. (40), (44), and (45) to obtain

��D2
t �sΔv�1 �

1
�δt�2 ��c0 � c1p1 � c2p3 � c3p5�Δv1;s

� �c1 � c1p2 � c2p4 � c3p6�Δv2;s
� c2Δv3;s � c3Δv4;s�: (46)

Then we can put the coefficients Δv1;s, Δv2;s, Δv3;s, and Δv4;s
in row 1 of �D2

t �s. Rows 2 and 3 of �D2
t �s can be obtained in a

similar fashion, and rows K , K − 1, and K − 2 can be found
from rows 1, 2, and 3, respectively, due to the even symmetry.
Once �D2

t �s is constructed, we can constructMs using Eq. (37),
and evaluate its eigenvalue that is closest to 0 and the corre-
sponding eigenvector. These results can then be used to
construct �D2

t �s�1.
The algorithm for finding the new discrete eigenvalues via a

nonlinear root-find problem is summarized in the following
pseudo-code:

Algorithm 1

Find the equilibrium solution u0�t�;
Define Rp;
Initialize tol, λ, Δv, and Δw;
s←1;
λs←λ, Δvs←Δv, and Δws←Δw;
While jλsj > tol do
Form As, Ss, and Cs using Eqs. (34) and (35);
Obtain η1;s and η2;s using Eqs. (31) and (32);
Form �D2

t �s using Δvs, Δws, and the approach that is described by
Eqs. (40)–(46);
Form Ms using Eq. (37);
λs←min jeigs�Ms�j;
�Δvs;Δws�T← the eigenvector corresponding to λs;
end while

in which tol is the tolerance, i.e., how much λs deviates
from 0. The nonlinear root-finding problem is solved using
a fixed-point method in the pseudo-code. In practice, we
use the MATLAB routine fsolve to handle the nonlinear
root-finding problem in order to obtain faster convergence
than is the case when we use the fixed-point method.

The algorithm to track the stability boundary due to edge
bifurcations is similar to the one that is illustrated in Fig. 8(a).
We obtain λe�δ� when the iteration converges to m�λ� � 0; we
track the variation of Re�λe� as δ varies, and we use second-
order polynomial interpolation to find the zero of Re�λe�δ��,
since we are still able to find the equilibrium pulse solution
even if it is unstable. Then we track the stability boundary
as σ varies in the same way that is illustrated in Fig. 8(b).

5. RESULTS
When σ � 0, the CQME becomes the HME. The equilibrium
pulse solution that is given in Eq. (A3) can be obtained
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analytically, and the stability range is δ ∈ �0.01; 0.0348� [15].
The radiation modes become unstable when δ < 0.01 because
the nonlinear saturable absorption is too small to stabilize the
pulse. The amplitude eigenmode becomes unstable because
excessive nonlinear gain causes the pulse solution to blow
up, as shown in Fig. 9(b). The boundary tracking algorithm
is started from this known case of the HME, and we then
gradually increases σ.

Figure 16 shows the stability regions of the CQME in the
parameter space �σ; δ�. In general, we have found that the sta-
bility regions are characterized by three curves C1, C2, and C3

in the parameter range that we studied. The blue-hatched re-
gion, which is marked f2lg, represents the stability region of
the solution that is a continuation of the known pulse solution
of the HME. We call this solution “the low-amplitude solution.”
The δ axis corresponds to the HME solution. Stability region
f2lg has the upper bound curve C3 and the lower bound curve
C1. The continuous modes become unstable below C1, and
this region is labeled f1g in Fig. 16. Another pulse solution
is stable in the red-hatched region labeled f2hg in Fig. 16.
We call this solution “the high-amplitude solution.” Region
f2hg has the lower bound curve C2, at which the amplitude
eigenmode becomes unstable. These lower and the higher am-
plitude solutions coexist in a triangular-shaped region (la-
beled f3g), in which the energy of the higher amplitude
solution is always greater than that of the low-amplitude sol-
ution, as in the example shown in Fig. 17. The two solutions
merge together into a single stable solution in a continuous
fashion in region f2h∕lg, which is colored green. In region
f1g, which is unhatched, the lower-amplitude solution
becomes unstable due to the continuum modes.

The instability mechanisms of the lower amplitude solution
is similar to that of the HME. Below C1 the saturable absorp-
tion is too weak to prevent the continuum modes from grow-
ing. Meanwhile, the interplay between the cubic and the
quintic terms in the fast saturable absorption greatly affects
the stability at the boundary of region f3g. The saddle-node
bifurcation appears because the quintic term, −σjuj4u, which
is lossy, is not able to provide sufficient loss to offset the non-
linear gain that is introduced by the cubic term, δjuj2u. We see
from Fig. 16 that the low-amplitude solution becomes unstable
when δ increases and reaches C3, at which the nonlinear gain
from the cubic term becomes too large to be compensated by
the quintic term. This mechanism resembles the instability
mechanism of the HME. However, the high-amplitude solution

becomes unstable when δ decreases and reaches C2. The en-
ergy of both solutions grows as δ increases, and the energy of
the high-amplitude solution is greater than that of the low-
amplitude solution in region f3g, so that the former experien-
ces more loss from −σjuj4u than does the latter, which
explains why the high-amplitude solution is stable while the
low-amplitude solution is unstable on C2. As δ decreases,
the energy of the high-amplitude solution becomes smaller,
and so is the nonlinear loss induced by the quintic term. Then
the high-amplitude solution eventually becomes unstable as δ
keeps decreasing and reaches C2 because the nonlinear loss
from the quintic term becomes too small to be able to offset
the nonlinear gain from the cubic term.

The amplitude instability occurs for the high-amplitude sol-
ution on C2, while it occurs for the low-amplitude solution on
C3. Figure 18 shows the variation of the amplitude eigenvalue
λa for both solutions near C2 and C3 for different values of σ.
As δ increases, for the case σ � 0.005 and σ � 0.006, the
eigenvalue λa of the low-amplitude solution grows and
eventually approaches 0. However, the eigenvalue λa of the

Fig. 16. Stability regions of the CQME. The stability boundaries are
marked by three curves, C1, C2, and C3.

Fig. 17. The two coexisting equilibrium pulse solutions for the case
σ � 0.006; δ � 0.0413.

Fig. 18. Variation of the amplitude eigenvalues of the two equilib-
rium solutions, the low-amplitude solution ul

0�t� and the high-
amplitude solution uh

0�t�, near curves C2 and C3 as in Fig. 16. For
the case σ � 0.007, we have one single equilibrium solution.
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high-amplitude solution grows and approaches 0 as δ de-
creases. For both solutions, we find that δ at the instability
threshold when σ � 0.006 is greater than that when
σ � 0.005. However, the separation between the stability
boundaries of these two solutions decreases when σ increases
and becomes zero at σ � 0.068, as shown in Fig. 16, at which
point the two solutions merge into a single stable solution. In
Fig. 18 we see that when σ � 0.007, the eigenvalue λa first in-
creases as δ, but then starts to decrease before it reaches 0.

For any position in region f3g, there are two equilibrium
solutions. Which equilibrium solution ultimately appears de-
pends on the specific initial condition. An example is shown
in Fig. 19, which corresponds to �σ; δ� � �0.006; 0.0413� in re-
gion f3g. The CQME evolves to the low-amplitude solution,
which has lower energy than the high-amplitude solution, if
we start from an initial pulse 0.8uh

0�t�, where uh
0�t� is the

high-amplitude solution, as shown in Fig. 19(a). On the con-
trary, if we start from an initial pulse of higher energy,
0.9uh

0�t�, the CQME evolves to the high-amplitude solution
as shown in Fig. 19(b).

The high-amplitude solution remains stable for a very large
range of both σ and δ. The lower bound of the stability region
is shown by curve C2 as in Fig. 16, and is bounded on the left
by the δ axis. As we will discuss in detail elsewhere, a self-
similar solution of the CQME always exists when σ > 0 until
δ ≈ 9.51, which is larger than the boundary for the low-
amplitude solution and, hence, for the HME to become unsta-
ble by almost a factor of 280. The upper bound of the stability
region of the high-amplitude solution is the onset of edge
bifurcation, followed shortly thereafter as δ increases by a
Hopf bifurcation of the new discrete modes.

We show this stability boundary in Fig. 20, and we see that
the boundary for δ increases slightly as σ increases. When this

system becomes unstable, the solution develops a shelf-like
envelope, as shown in Fig. 21 for the parameter set
(σ � 0.003; δ � 13). We do not show the stability boundary
for σ < 7 × 10−3 because the equilibrium pulse shape changes
rapidly as δ and σ vary, and tracking the boundary becomes
computationally time consuming. Indeed, the parameter set at
this relatively large value of δ is sufficiently extreme that it
seems unlikely that they correspond to any physical laser sys-
tem. We present these results here because they illustrate the
power of the algorithms that we have developed. The scenario
that we have described here in which new discrete modes ap-
pear via an edge bifurcation and then become unstable via a
Hopf bifurcation appear in practice, for example, when relax-
ation oscillations appear and then become unstable [38].

6. CONCLUSION
We have developed boundary-tracking algorithms that allow
us to rapidly and accurately find the stability boundaries in a
passively mode-locked laser system as the system parameters
vary. We have applied this approach to determining the stabil-
ity boundaries for the cubic–quintic mode-locking equations
as the parameters that govern the staturable absorption, σ
and δ, are allowed to vary. This model is one of the most com-
monly used models for passively mode-locked lasers and in-
cludes the even more commonly used Haus mode-locking
equation as a special limit corresponding to σ � 0.

We have found a rich dynamical structure in which, de-
pending on the parameter, no stable solutions exist, one stable
solution exists, or two stable solutions exist. The spectrum of
the mode-locked or equilibrium solutions includes both con-
tinuous and discrete components. The continuous component

Fig. 19. Evolution of CQME for the case �σ; δ� � �0.006; 0.0413�. We
start from different initial conditions: (a) 0.8uh

0�t� and (b) 0.9uh
0�t�,

where uh
0�t� is the high-amplitude solution. In the first case, the

low-amplitude solution emerges. In the second case, the high-
amplitude solution emerges.

Fig. 20. Stability boundary of the high-amplitude solution due to the
edge bifurcation as illustrated in Fig. 12.

Fig. 21. The pulse evolves to a shelf-like envelope when the
eigenmode corresponding to λe becomes unstable.
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can become unstable via a Hopf bifurcation and the discrete
mode that corresponds to an amplitude change can become
unstable via a saddle-node bifurcation. Additionally, we have
found that in some extreme parameter ranges, new discrete
modes appear in the spectrum, which then become unstable
via a Hopf bifurcation.

In future work, we intend to apply these algorithms to in-
creasingly realistic and specialized models of passively mode-
locked laser systems. So, we will close with a brief discussion
of how the algorithms that we have presented here must be
modified to be applied correctly to realistic systems. First—
and simplest—are the laser systems in which the CQME is a
useful model, but that operate with net zero or normal
dispersion. We expect that the methods described in this
paper will work equally well in this case. Preliminary work
suggests that as we cross from the anomalous to the normal
dispersion regime, new discrete modes bifurcate out of the
continuous spectrum.

In some solid-state lasers, the gain recovery time is short
enough to lead to relaxation oscillations. In this case, the par-
tial differential equations that describe the evolution of the
light envelope in the cavity must be supplemented by ordinary
differential equations that describe the evolution of the gain
[38]. Similarly, modern-day comb lasers include electronic
feedback systems that once again lead to equations in which
ordinary differential equations are coupled to the partial dif-
ferential equations that describe the evolution of the light
envelope [39]. In both cases, new degrees of freedom are in-
troduced that lead to new discrete modes, but the basic
algorithms do not have to be changed.

Somewhat more difficult is dealing with large pulse varia-
tions in one round trip in the laser cavity. In this case, the equi-
librium is only periodically stationary rather than stationary.
Models for analyzing the stability of periodically stationary
systems have been developed since the 19th century [7].
In this case, we must calculate the transfer matrix that de-
scribe the signals evolution in one round trip. Its equilibrium
solutions correspond to the mode-locked pulses, and—
after linearization about a solution—its eigenvalues
determine the mode-locked pulse’s stability. Computational
approaches for generating this transfer matrix have been
discussed by Holzlöhner et al. [40], as well as Deconinck
and Kutz [9].

As a final issue, we may discuss extending this approach to
three or more parameters. In a three-parameter space, the sta-
bility boundary will become a two-dimensional surface, and
tracing the boundary would require a two-dimensional search.
On a desktop computer, tracing the stability boundary for the
amplitude eigenmode requires a few hours (about four hours
in our case) in two parameter dimensions due to the rapid
changes of the equilibrium solution at the boundary. By con-
trast, tracing the other the stability boundaries typically re-
quires less than an hour on a desktop computer, and we
have therefore paid little attention to computational optimiza-
tion. We use standard MATLAB routines and, when finding the
discrete eigenmodes, we use MATLAB’s eig routine, which
generates all the matrix eigenvalues, although we typically
need only the amplitude eigenvalue and eigenmode. Clearly,
much can be done in the future to speed up the computations,
and the speedup will be needed for higher dimensional
parameter studies.

APPENDIX A: ON ANALYTICAL
SOLUTIONS OF THE CQME
In this section, we will discuss analytical solutions of the
CQME and their relationship to the solutions that we have
found computationally in the main text. We will find that
the analytical solutions have a special and complicated rela-
tion among the parameters, so that a global search for the sta-
bility boundaries in which two or more parameters are
allowed to vary while all the others are held constant is
not possible. We will also find that the chirp parameter β must
be positive in order for the solution to be stable, which is not
the case for the computational solutions that we found.

The CQME is also referred as the complex Ginzburg–Lan-
dau equation (CGLE) when the saturated gain in Eq. (2) is re-
placed by a constant gain gc:

∂u
∂z

� gcu�
�
1
ω
−

iβ00

2

�
∂2t u� �δ� iγ�juj2u − σjuj4u; (A1)

where gc is a constant gain, δ; γ and δ > 0, and β00 < 0. Com-
paring to Eq. (1), we make the following correspondence:

gc↔
1
2
�g�juj� − l�; 1

ω
↔

g�juj�
2ω2

g

: (A2)

An analytical equilibrium pulse solution of this equation has
been be found to exist in certain parameter regimes
[5,12,14,28] that may be written

u0�t; z� �
�������������������������������

A

B� cosh�t∕τ�

s

× exp
�
−

iβ

2
ln
�
B� cosh

t

τ

�
� iϕ0z

�
; (A3)

where A;B; β, and τ can be written in terms of the coefficients
in Eq. (A1). We may choose A > 0 to avoid the ambiguity of
the sign of the square root. With this choice, we find
B� cosh�t∕τ� > 0, which implies B > −1.

We define

a�t� � �B� cosh�t∕τ��−1∕2; (A4)

and substitute a�t� into Eq. (A1). Equating the coefficients of a
of the same power, we obtain the following three equations:

gc − iϕ� 1

4τ2

�
1
ω
−

iβ00

2

�
�1 − β2 � 2iβ� � 0; (A5a)

�δ� iγ�A −

1

2τ2

�
1
ω
−

iβ00

2

�
�2 − β2 � 3iβ�B � 0; (A5b)

1

4τ2

�
1
ω
−

iβ00

2

�
�3 − β2 � 4iβ��B2

− 1� − σA2 � 0: (A5c)

By splitting Eq. (A5) into real and imaginary parts, we obtain

4gcωτ2 � 1 − β2 � β00ωβ � 0; (A6a)
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8ϕ0τ
2ω − 4β� β00ω�1 − β2� � 0; (A6b)

2�β2 − 2�B − 3β00ωβB� 4δAτ2ω � 0; (A6c)

−6βB� β00ωB�2 − β2� � 4γAτ2ω � 0; (A6d)

�B2
− 1��3 − β2 � 2β00βω� − 4σA2τ2ω � 0; (A6e)

�B2
− 1��8β� β00ω�β2 − 3�� � 0: (A6f)

Equation (A6f) implies that there are two cases: B2 ≠ 1 and
B2 � 1. If B2 � 1, then Eq. (A6e) implies that the system has a
solution when σ � 0. This solution corresponds to a mode-
locking equation that only has a cubic nonlinearity [28] and
whose known analytical solutions are chirped hyperbolic
secant pulses [28]. These solutions exist only when a special
relation among the coefficients of Eq. (A1) holds.

We now consider the case B ≠ 1 in the parameter regime
β00 < 0. We introduce an intermediate variable Δ as in [12]:

Δ �
��������������������������
3β002ω2 � 16

q
: (A7)

Then, using Eq. (A6f) we can write the exponential chirp β as

β� � 4� Δ
β00ω

: (A8)

We next write all the pulse parameters in terms of β and the
coefficients in Eq. (A1). From Eqs. (A6a) and (A8) we obtain

τ �
��������������������������������������������
−

β00�β2 � 1��β2 � 3�
32gcβ

s
: (A9)

From Eqs. (A6d), (A8), and (A9) we obtain

A � −

2βgcB
γ�β2 � 3� ; (A10)

and from Eqs. (A6e) and (A10) we obtain

B2 � γ2�β2 � 3��β2 � 9�
γ2�β2 � 3��β2 � 9� � 4σgcβ2

: (A11)

In theory, we can rewrite A by combining Eqs. (A10) and
(A11) directly. If we do not put any limit on the coefficients of
Eq. (A1), the sign of B can be either positive or negative,
which leads to two different expressions for A and, hence,
two branches of solutions [5]. We do not further elabo-
rate them.

We now take a close look at this analytical solution. From
Eqs. (A6c) and (A6d), we obtain

2�β2 − 2� − 3β00ωβ
δ

� β00ω�2 − β2� − 6β
γ

: (A12)

Meanwhile, from Eq. (A6f), we obtain

ω � 8β
β00�3 − β2� : (A13)

Combining Eq. (A12) and (A13), we finally obtain

δ

γ
� β2 � 6

β
: (A14)

So, we conclude that for this solution to exist, it is required
that β > 0 and

β � 4 − Δ
β00ω

: (A15)

From Eqs. (A14) and (A15), we have

δ

γ
� 32� 9β002ω2

− 8
��������������������������
16� 3β002ω2

p
β003ω3 : (A16)

Hence, the coefficients of CGLE must have a special relation
for this analytical solution to exist. However, for cases where
Eq. (A16) is not satisfied, such as in the CQME, one can still
find equilibrium solutions computationally, which implies the
existence of more general solutions, for which no analytical
solutions are known.

If we require β > 0, we must have gc > 0 from Eq. (A9)
since β00 < 0, which indicates that this solution is unstable
to modes of the continuous spectrum according to the inequal-
ities in Eqs. (24) and (A2). However, we have found that this
statement is not true for the numerical solutions that we have
found in the text. Therefore, we can conclude that numerical
techniques are needed to study the stability of Eq. (1) and
more complex models.

APPENDIX B: NUMERICAL EVALUATION
OF THE CONTINUOUS EIGENVALUES
The computational requirement that T ≪ TR poses no diffi-
culty for discrete modes except immediately after an edge
bifurcation, since these modes rapidly tend to zero away from
the mode-locked pulse. However, it does pose a problem for
the modes of the continuous spectrum. We dealt with this
problem in the main text by using the same infinite-line
approximation that is used in analytical studies of the CQME
that is described in Section 4.B.1. This approach allows us to
determine the stability of the continuous spectrum by study-
ing the dispersion relation away from the mode-locked pulse.
We could in principle use an approach analogous to the
approach that we used to study edge bifurcations, where
we would assume that beyond a limited time window the
mode undergoes sinusoidal oscillations that repeat with a
period TR. However, this approach would be computationally
inefficient. It is thus reasonable to ask on one hand how large
TR must be for the eigenvalues of the discrete radiation modes
that we found in a time window of duration T to converge to
the continuous spectrum. They must converge for T ≪ TR in
order for our approach to be legitimate. On the other hand, it
is also reasonable to ask whether it is really necessary to use
different algorithms to compute the stability of modes of the
continuous spectrum and the discrete modes, or whether it is
possible to simply use the spectrum of the radiation modes
that are calculated using a limited time window.
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In Fig. 22, we show how the maximum of the real part of the
entire continuous spectrum, which is obtained by solving the
eigenvalue problem that is described in Section 4.B.2, changes
as the duration of the time window T varies. We have set δ �
0.1 and σ � 0.003 in this plot, but we have verified that the
results are typical in the range shown in Fig. 16. The discrete
radiation spectrum has two branches, which has been previ-
ously observed in computational solutions of the HME [9]. We
see that max�Re�λ�� only converges slowly to the continuum
value, and is positive until T > 90τ, even though the true value
is negative. We note that, if one simply solved the evolution
equations, starting from computational noise with a window
∼10τ, as is often done in practice, one would observe unstable
behavior and incorrectly predict that the laser system is
unstable.

Convergence to the maximum of the real part of the infinite-
line continuous spectrum is slow as τ → 0 and appears to be
nonanalytic in 1∕T . The reason is that the most unstable (or
least stable) mode keeps changing as T increases. We find
that, with a time window that is 2000 times the pulse duration,
the least stable eigenvalue differs from the infinite-line value
by about 10%. This result has important consequences for
modeling high-repetition-rate lasers (∼10 GHz) or microreso-
nators, where an infinite line model is often used in analytical
studies, but is almost certainly invalid when making
predictions of the systems’ stability.
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