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The two most commonly used models for passively modelocked lasers with fast saturable absorbers are the Haus
modelocking equation (HME) and the cubic-quintic modelocking equation (CQME). The HME predicts an in-
stability threshold that is unrealistically pessimistic. We use singular perturbation theory to demonstrate that the
CQME has a stable high-energy solution for an arbitrarily small but nonzero quintic contribution to the fast satu-
rable absorber. As a consequence, we find that the CQME predicts the existence of stable modelocked pulses when
the cubic nonlinearity is orders of magnitude larger than the value at which the HME predicts that modelocked
pulses become unstable. Our results suggest a possible path to obtain high-energy and ultrashort pulses by fine
tuning the higher-order nonlinear terms in the fast saturable absorber. © 2016 Optical Society of America
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1. INTRODUCTION

Over the past few decades, ultrashort optical pulses that are
produced by passively modelocked lasers have been used in
many fields [1,2]. The Haus modelocking equation (HME)
is the most widely used model that has been successfully used
to explore many of the qualitative features of passively mode-
locked lasers. However, the predictions from the HME for the
instability thresholds are unrealistically pessimistic due to the
unlimited third-order nonlinear gain [3–5]. Another model
is the complex Ginzburg–Landau equation (CGLE), in which
the modelocked solutions are referred to as dissipative solitons
[6,7]. The CGLE includes a higher-order saturation to the non-
linear gain, which is unlimited in the HME. Computational
studies have shown that this model predicts a large stable re-
gion in the parameter space in which modelocked pulses exist.
However, the CGLE assumes an instantaneous gain that does
not exist in any real laser. A more realistic model of passively
modelocked lasers is the cubic–quintic modelocking equation
(CQME) [8,9], which includes both higher-order saturable
absorption, which is absent in the HME, and a slow saturable
gain, which is absent in the CGLE. We write the CQME as
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where u is the complex field envelope, t is the retarded time,
z is the propagation distance, ϕ is the phase rotation per unit
length, l is the linear loss coefficient, g�juj� is the saturated
gain, β 0 0 is the group velocity dispersion coefficient, γ is the
Kerr coefficient, ωg is the gain bandwidth, and f sa�juj� is
the fast saturable absorption

f sa�u� � δjuj2 − σjuj4; (2)

in which δ is the cubic coefficient of the fast saturable absorp-
tion, and σ is the quintic coefficient that provides a higher-
order saturation to the unlimited third-order nonlinear gain
[6,10,11]. Equation (1) becomes the HME when σ � 0. In
this paper, we focus on the case in which the chromatic dis-
persion is anomalous with β 0 0 < 0. We assumed that the gain
response of the medium is much longer than the roundtrip
time T R , in which case the saturable gain becomes

g�juj� � g0∕�1� Pav�juj�∕Psat�; (3)

where g0 is the unsaturated gain, Pav�juj� is the average power,
and Psat �

R TR∕2
−TR∕2

ju�t; z�j2dt∕TR is the saturation power. It is
conventional to write Eq. (1) without a phase rotation ϕ, in
which case the modelocked pulse solution will have a constant
phase rotation. For computational reasons, it is more conven-
ient to work with equations whose modelocked pulse solution
is strictly stationary. For this reason, we find the stationary
modelocked solution u�t� in parallel with ϕ, as described in [8].
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In prior work [8], we computationally found the stable re-
gion in the �σ; δ� parameter space for Eq. (1), using a parameter
set that corresponds to a soliton laser (β 0 0 < 0). We found that
for a range of σ values, two stable modelocked pulse solutions
exist. There is a low-amplitude solution that coincides with the
stable solution of the HME when σ → 0 and is stable over a
limited range of δ values. Additionally, there is a high-energy
solution—which is referred to as the high-amplitude solution
in [8]—that, for the values of σ that we explored, remains stable
up to δ ≈ 9.51, which is about a factor of 280 greater than the
HME’s stability limit.

However, the work in [8] left open the question of what
happens to the high-amplitude solution when σ → 0. In this
work, we complete the stability study of the CQME in the
anomalous disperison regime by investigating in detail the limit
of Eq. (1) when σ → 0. Using singular perturbation theory, we
will show that the high-amplitude solution persists regardless of
how small σ becomes, as long as it is nonzero.We will also show
that the energy of this solution increases as σ → 0, suggesting a
path toward obtaining high-energy, ultrashort solutions. Since
any real modelocked laser system with a fast saturable absorber
will have a quintic component, this result also shows that the
HME cannot be relied upon to quantitatively determine the
stability in real systems.

In Section 2, we briefly review the stability structure of the
CQME for the parameter set that we consider. In Sections 3
and 4, we study the high-amplitude solution using singular per-
turbation theory [12], which enables us to find the solution to
Eq. (1) when σ → 0 and to determine its stability. The energy
of this solution increases and its duration decreases as σ → 0,
but the range of δ values in which it is stable does not change
significantly. In Section 5, we discuss how these solutions could
be obtained experimentally.

2. REVISITING THE STABILITY OF THE CQME

We show the set of normalized parameters that we use in
Table 1. These values are the same as in Table 1 of [8]; the
value ωg �

ffiffiffiffiffi
10

p
∕2 reported there is an error.

We previously used boundary tracking algorithms [8,13] to
find the stable regions of the regions of the CQME in the �σ; δ�
parameter plane. We found that there is a parameter range in
which a low-amplitude solution (LAS) and a high-amplitude
solution (HAS) can coexist. The LAS continues to exist when
σ � 0 and is stable over a limited range of δ values, 0.01 < δ <
0.0348 [3]. The solution corresponds to the stable, stationary
solution of the HME. By contrast, the HME has no solution
that corresponds to the HAS of the CQME. On the other
hand, the region in the �σ; δ� plane in which the HAS exists
and is stable far larger than the region for the LAS. We have
found computationally that the HAS remains stable up to δ ≈
9.51 when σ ≠ 0—a factor 280 larger than the maximum value
of δ for the LAS. The coexistence of the LAS and the HAS

has recently been observed experimentally [14]. Moreover, the
existence of the HAS explains the experimental observation
that the stable region predicted by the HME is unrealistically
pessimistic [8,9]. Thus, the HAS plays an important role in
practice.

We previously found computationally that when δ is as large
as 9.51, the HAS remains stable when σ is as small as 7 × 10−4

[8]. However, this study did not determine what happens to the
HAS for a physically reasonable range of δ as σ → 0. It was
unclear whether a stable HAS continues to exist, becomes un-
stable, or disappears. In Sections 3 and 4, we will show that the
HAS exists and remains stable for any nonzero σ as long as
δ ≲ 9.51. At the same time, its energy increases and its duration
decreases—opening up a potential path to obtain high-energy
pulses.

3. STATIONARY PULSE AS σ → 0

We previously found computationally that the HAS remains
stable up to δ ≈ 9.51 when σ is as small as 7 × 10−4 [8].
However, the computational approach that we used to obtain
Fig. 16 in [8] does not continue to work well for the HAS when
σ → 0 because the pulse becomes singular; its energy increases
and its duration decreases. This behavior is visible in Fig. 1,
where we see the variation of the peak amplitude A0 and its
FWHM duration as σ decreases. An alternative approach is
therefore required to determine whether a modelocked pulse
exists in this limit and—if it continues to exist—whether it
is stable. We use singular perturbation theory to address these
questions.

A. Dominant Balance

From Fig. 1, we infer for all values of δ that A0 ∝ σ−1∕2 and
τ0 ∝ σ1∕2 as σ → 0. Based on this observation, we seek a sta-
tionary (equilibrium) solution of Eq. (1) that has the form

ϕ0 � ψ0σ
−1; u0�t� � σ−1∕2a0�σ−1∕2t�: (4)

For the stationary solution, we must have da0∕dz �
dψ0∕dz � 0. We will find that the equations that govern
a0 and ψ0 become independent of σ in the limit σ → 0, which
allows us to determine them.

Table 1. Normalized Values of Parameters

Parameter g0 l γ ωg β 0 0 T RPsat

Value 0.4 0.2 4
ffiffiffi
5

p
−2 1

(a) (b)

Fig. 1. (a) The peak amplitude A0 and (b) the FWHM pulse du-
ration τ0 of the computational stationary pulse solution of the CQME
as σ → 0 and δ varies. The slopes of the curves equal −1∕2 and 1/2 in
(a) and (b), respectively.
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We let τ � σ−1∕2t, and we use a prime to denote derivatives
with respect to τ, so that

∂u0
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� a 00σ
−1;
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� a 0 00 σ
−3∕2: (5)

We also find

g�juj� � g0∕�1� Cgσ
−1∕2�; (6)

where Cg �
R
∞
−∞ ja0�τ�j2dτ∕�PsatTR�. After substitution of

Eq. (6) into Eq. (1), we find
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where f ��δ� iγ�ja0j2a0− ja0j4a0− iψa0− iβ 0 0a 0 00 ∕2. As σ → 0
and when a�τ� ≠ 0, the dominant balance of this system is

f � �δ� iγ�ja0j2a0 − ja0j4a0 − iψ0a0 −
iβ 0 0

2
a 0 00 � 0; (8)

from which we solve for the asymptotic stationary solution
�a0�τ�;ψ0�.

The balance of the dominant terms in Eq. (8) implies that,
in the CQME of Eq. (1), as σ → 0, the gain and the loss are
balanced via the cubic term δja0j2a0 and the quintic term
σja0j4a0, while the saturated gain and the linear loss play no
role in forming the stationary pulse. The remaining imaginary
terms imply that the pulse envelope a0�τ� is in general complex,
i.e., a chirp is required to satisfy f � 0 in Eq. (8).

B. Asymptotic Stationary Pulse

We use the nonlinear root-finding method that is described in
[8] to computationally solve Eq. (8). We consider the param-
eter set that is shown in Table 1. In Fig. 2, we show the profile
of the asymptotic solution that we have found computationally,
in which Aa is the peak amplitude of a0�τ�, τa�τa;FWHM∕0.57,
where τa;FWHM is the FWHM width of a0�τ�, and the chirp
coefficient is given by

b � Im

R∞
−∞ τa�0a

0
0dτR∞

−∞ τ2ja0j2dτ
: (9)

As δ increases, the amplitude Aa increases while τa decreases,
i.e., the asymptotic stationary pulse solution becomes increas-
ingly taller and narrower. Meanwhile, we find that Aaτa ≈
1∕

ffiffiffi
2

p
when δ ≈ 0 and decreases as δ grows. Hence, the pulse

shape is close to that of a nonlinear Schrödinger (NLS) equa-
tion soliton when δ is small, and it deviates from the NLS sol-
iton profile as δ grows. In addition, when δ ≈ 0, the phase
rotation rate coefficient ψ is close to 0, while the pulse is almost
chirp-free. Then, as δ increases, we find that ψ increases, and
the chirp across the pulse increases.

The amplitude of the asymptotic pulse solution that we have
found is similar in shape to a hyperbolic-secant pulse, in which
the wings of the pulse decay exponentially as jtj increases. We
show two examples of asymptotic pulses with δ � 0.05 and
δ � 13.00 in Fig. 3, in which θ�τ� is the phase change across
the pulse, i.e., a0�τ� � ja0�τ�j exp�iθ�τ��. The variation of θ�τ�
increases significantly as δ increases, which is consistent with
the change in the chirp parameter b that is shown in Fig. 2.

Afanasjev [15] has reported that the analytical pulse solu-
tions of the CGLE becomes singular when both the linear gain
and the quintic coefficient vanish, which is similar to our result.
However, these analytical solutions are always unstable and
cannot be used to model modelocked lasers [6–8].

4. STABILITY OF THE CQME AS σ → 0

Next, we evaluate the stability of these stationary pulse solu-
tions. We first linearize Eq. (7) about the stationary solution,
and we determine the spectrum (eigenvalues) of this linearized
equation. The spectrum that we find in this case is similar to
the spectrum that appears in soliton perturbation theory
[16,17]. There are two branches of eigenvalues that correspond
to continuous wave perturbations, and there are four discrete
modes that correspond to perturbations of the stationary sol-
ution’s central time, central phase, amplitude, and central

(a)

(b)

Fig. 2. (a) The peak amplitude Aa, the pulse width τa, and their
product Aaτa, (b) the rotation rate coefficient ψ , and the quadratic
chirp coefficient b of the asymptotic stationary solution that is ob-
tained by finding the root of f in Eq. (8).

(a)

(b)

Fig. 3. Asymptotic stationary solution obtained by solving Eq. (8)
with (a) δ � 0.05 and (b) δ � 13.00. Here, θ�τ� is the phase change
across the pulse in radians. Note that the scales of τ are different in the
two subfigures.
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frequency, and whose eigenvalues we will be denoted as λτ, λϕ,
λa, and λf , respectively. The solution is linearly stable if the real
part of the two continuous branches are negative and the dis-
crete eigenvalues λf and λa are both negative, while λτ and λϕ
remain at the origin due to time and phase invariance of Eq. (1).

A. Linearization

When we linearize Eq. (7), we can neglect the terms that are
proportional to σ3∕2, as these terms tend to zero faster than
terms proportional to σx with x < 3∕2 as σ → 0. If we add a
perturbation Δa to the stationary pulse solution a0�τ�, and
then linearize Eq. (7) about a0�τ�, we then obtain

σ
∂Δa
∂z

≈ −
l
2
σΔa� σ1∕2

Cg

�
f a �

g0
4ω2

g
Δa 0 0

�
� f a; (10)

where f a is the derivative of f with respect to Δa,

f a � �δ� iγ��2ja0j2Δa� a20Δa�� − iβ 0 0∕2Δa 0 0

− iψ0Δa − 3ja0j4Δa − 2ja0j2a20Δa�: (11)

B. Continuous Waves

The stability condition for the continuous modes is g�juj� −
l < 0 [8]. This condition becomes −l < 0 in the limit σ → 0
since the pulse energy grows exponentially and thus g�juj� → 0.
This behavior appears in our asymptotic solution. As illustrated
in Fig. 3, the pulse envelope ja0�τ�j decays exponentially as
jτj → ∞, with a decay rate that becomes infinite as σ → 0.
As a consequence, the terms proportional to ja0j2 and ja0j4 in
Eq. (11) become negligible, and Eq. (10) becomes

σ
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In the Fourier domain, Eq. (12) becomes

∂Δã
∂z

� λc�ω�Δã; (13)

where Δã�ω� is the Fourier transform of Δa�τ� and

Refλc�ω�g � −
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1∕2ω2

g
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�
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Equation (14) implies that the stationary pulse solution is al-
ways stable with respect to continuous modes with l > 0.

C. Discrete Modes

The discrete modes can be evaluated computationally by per-
forming an eigenanalysis of the Jacobian of Eq. (10). Here, we
study the case when a0 ≠ 0 and σ → 0. The stability of Δa will
be dominated by the zero-order terms in powers of σ on the
right-hand side of Eq. (10), so that

σ
∂Δa
∂z

� f a; (15)

where f a is defined in Eq. (11). We can then determine the
stability of the asymptotic stationary solution by analyzing the
spectrum of the Jacobian of the system that is given by Eq. (15).
Because Δa� appears in f a, we must extend Eq. (15) to include

the equation for ∂Δa�∕∂z in order to have a complete eigen-
system [11], analogous to what is done in soliton perturbation
theory. Instead of directly solving for ∂Δa∕∂z and ∂Δa∕∂z�, it
is computationally convenient to let a0�τ� � v0�τ� � iw0�τ�.
We then use Δv� �Δa�Δa��∕2 and Δw� �Δa −Δa��∕�2i�
to denote the perturbations to v0 and w0. Similar to [8],
we discretize the system in a computational window
τ ∈ �−T τ∕2; T τ∕2�—where a0�	T τ∕2� ≈ 0—using N equi-
spaced points fτ � τj ; j � 1; 2;…; N g. Using Eq. (15), we
formulate the extended system and then a linear eigenvalue
problem as

d

dz

�
Δv
Δw

�
� J

�
Δv
Δw

�
� λ

�
Δv
Δw

�
; (16)

where the vectors Δv and Δw are defined as Δvj � Δv�τj� and
Δwj � Δw�τj�, and the Jacobian matrix J is

J �
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where the submatrices are defined as
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in which D2
τ is the second-order differentiation matrix in τ [8],

and both V0 and W0 are diagonal matrices with V0;jj � v0�τj�
and W0;jj � w0�τj�.

We can determine the stability of the asymptotic stationary
solution by analyzing the spectrum of the matrix J. First, we
find the contribution of f a, defined in Eq. (11), to the stability
of the continuous modes by setting V0 � W0 � 0 in Eq. (17).
When evaluated in the frequency domain, we have

λ�ω� � 	ijψ0 − β
0 0ω2∕2j: (19)

The continuous spectrum λ�ω� is purely imaginary, which im-
plies that the dominant balance for Eq. (7), given by f in
Eq. (8), does not determine the stability; it only indicates
the rate of phase rotation of the continuous modes. This result
does not affect the stability condition for the continuous modes
that we described earlier. In Fig. 4(a), we show the spectrum of
J when δ � 0.05. There are four real discrete eigenvalues,
which are similar to the spectrum of the stationary solution
for the HME. However, in contrast to the HME, the eigen-
value due to the frequency shift is 0, which occurs because
the dominant balance in Eq. (8) corresponds to an unfiltered
system—the frequency filter scales with the saturated gain,
which vanishes as σ → 0.

In Fig. 4(b), we show the spectrum of J when δ � 13. We
observe that an extra pair of discrete eigenvalues, λe and λ�e ,
now exist on the positive real side of the complex plane, which
implies that the system is unstable at this large value of δ. As
δ decreases, the real part of λe decreases, and both λe and λ�e
approach and eventually become indistinguishable from the
continuous spectrum.
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We use the approach that was described in [8] to calculate
the eigenvalues as δ decreases. We show the result in Fig. 5.
We find that the real part of these eigenvalues becomes 0 at
δ ≈ 9.5094. Thus, the asymptotic stationary solution is stable
as long as δ < 9.5094, where these two eigenvalues merge into
the continuous spectrum and the computation stops. Compared
to the stable range of the HME (0.01 < δ < 0.0348) [3], we
find that the stability range of CQME is significantly larger.
This result is consistent with the stability boundary that we
have found in cases with small but nonzero values of σ in [8].

5. DISCUSSION

The stable self-similar solution that we have found in this paper
sheds further light on the dynamical structure of the CQME
[3,8]. We have found in [8] that, in contrast to the HMEwhere
there is only one stable solution, two stable equilibrium pulse
solutions can coexist in a region of the parameter space. When
σ → 0, the low-amplitude solution tends to the stable solution
of the HME, where an analytical expression is available, as long
as δ is below the HME’s stability limit. In this paper, we prove
that the high-amplitude solution remains stable as σ → 0,
although the pulse energy increases and the pulse duration de-
creases. More significantly, our results show that stabilization of
the laser system is achieved by a balance between the cubic and
the quintic nonlinearity instead of the saturated gain and linear
loss, which is the physical reason that the CQME has a much
larger region of stability than does the HME even when the
quintic term is small. The stability can still be affected by other
system parameters, particularly the group velocity dispersion β 0 0.

In a very large range of δ, when the quintic coefficient dis-
appears, i.e., σ → 0, the energy of the high-amplitude solution
becomes increasingly large. This behavior is consistent with the
way in which unstable solutions of the HME evolve when δ is
above the instability threshold (δ > 0.0348). The propagating
pulse becomes increasingly narrow and energetic, and it even-
tually blows up. However, a quintic nonlinearity—no matter
how small—is always present in any real laser system, and this
quintic nonlinearity will put a halt to the continued growth of
the pulse energy. The blowing-up of the propagating pulse that
is predicted by the HME [3] has only been observed experi-
mentally in dispersion-managed lasers [18] but not in soliton
lasers with anomalous dispersion. Our results provide a theo-
retical explanation. Such physical insights suggest that the
CQME intrinsically provides a better qualitative approxima-
tion to practical modelocked lasers than does the HME.

Our results suggest a possible path toward obtaining high-
energy and ultrashort laser pulses. The balance of the higher-
order nonlinear terms stabilizes these high-energy solutions, so
that such solutions can be accessed by decreasing the quintic
nonlinearity while keeping the cubic nonlinearity fixed. This
result can be achieved in principle by adjusting the parameters
of the saturable absorber. For example, we mentioned in [9]
that, for a laser in which the fast saturable absorber is a two-
level system, the cubic–quintic model is described as

f sa�juj� �
f 0

Pab

ju�t�j2 − f 0

P2
ab

ju�t�j4 � 
 
 
 ; (20)

where f 0 is the saturable absorption, and Pab is the saturation
power of the absorber. In order to obtain such high-energy and
ultrashort laser pulses, one would increase the saturable power
Pab while keeping f 0∕Pab fixed. This insight may be difficult to
apply to real lasers in which the parameters of the saturable
absorber typically lie outside the precise control of experimen-
talist. However, our results demonstrate that there is a strong
motivation to better control these parameters.
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