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Cnoidal waves are the periodic analog of solitons. Like solitons, they can be generated in microresonators and
correspond to frequency combs. The generation of frequency combs in nonlinear microresonators is modeled by
the Lugiato–Lefever equation. In this paper, we study the Lugiato–Lefever equation for a microresonator in the
anomalous dispersion regime. In the lossless case, we show that the cnoidal waves can be expressed as a combi-
nation of Jacobi elliptic functions. These solutions reduce to known soliton-like solutions in particular cases. The
properties of cnoidal waves in the realistic lossy case and their potential uses are also discussed. © 2017 Optical

Society of America
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1. INTRODUCTION

Octave-spanning (broadband) combs that are generated in
externally pumped, high-quality (Q) microresonators with a
Kerr nonlinearity have important potential applications to met-
rology, high-resolution spectroscopy, and microwave photonics
[1–7]. However, narrowband combs also have important poten-
tial applications that include the nonlinear generation of new
frequencies [8], quantum networking [9], and astrocombs
[10]. Soliton generation appears at present to be the best path
toward achieving an octave-spanning comb [1,5]. However,
solitons are not always easy to obtain, and it has been found com-
putationally that periodic solutions will often appear instead in a
microresonator [11,12]. Thus, it is important to understand the
circumstances under which these periodic solutions appear and
whether they can be used to create a broadband comb.

The generation of frequency combs in a nonlinear micro-
resonator is governed by the Lugiato–Levefer equation (LLE)
[4,11–17]. Periodic solutions called Turing rolls have been ex-
perimentally observed [3] and computationally studied [12] in
microresonators. However, the relationship of these solutions
to solitons has been unclear. Our paper aims at filling
this gap.

The LLE has analytical soliton solution when loss is ne-
glected. While analytical solutions no longer exist when loss
is included, these solutions still have great value since the sol-
iton solutions in the presence of loss, sometimes referred to as
dissipative solitons, closely resemble their lossless counterparts.

Moreover, the analytical relationships among the soliton ampli-
tude, duration, and pedestal size have been a useful guide to
experiments and a useful starting point for computational and
perturbative studies. It is reasonable to anticipate that the peri-
odic solutions of the lossless LLE will be similarly useful.

In this work, we study the cnoidal wave solutions of the LLE
in the anomalous dispersion regime of a microresonator, which
are the periodic generalization of the soliton solutions. We show
that the family of solutions that includes solitons and Turing
rolls can all be represented analytically as Jacobi elliptic functions
[18] when loss is neglected. These cnoidal wave solutions come
in two generic forms, corresponding to two different types of
Jacobi elliptic functions [dn�xjk2�, cn�xjk2�], where k is the
modulus of these functions. Themodulus k determines how rap-
idly the Fourier spectrum of these functions falls off. For Jacobi
elliptic functions, when k → 0, dn�xjk2� → 1, cn�xjk2� →
cos�x�, and sn�xjk2� → sin�x�; when k → 1, dn�xjk2� →
sech�x�, cn�xjk2� → sech�x�, and sn�xjk2� → tanh�x�. For the
LLE, when k → 1, the cnoidal wave solutions reduce to the sol-
iton solutions that Matsko et al. [13] found. The period of the
cnoidal waves is given by 4K �k�, where K �k� is a complete el-
liptic integral of the first kind [18]. We have K �k� → π∕2 as
k → 0 and K �k� → ln�4∕�1 − k2�1∕2� as k → 1.

Like solitons, cnoidal wave solutions—also referred to as
Turing rolls when they are stable—develop a chirp when
damping is present and do not have an exact analytical expres-
sion. However, the cnoidal wave solutions when the damping is
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zero and k ≠ 1 are characterized by an exponential falloff in the
envelope of the comb spectrum that is more rapid than in the
comb for the soliton solutions for which k → 1, and we find
that this exponential falloff is still present when the damping is
nonzero. Due to this more rapid exponential falloff, these
cnoidal wave solutions are not suitable for broadband comb
generation, but are well-suited to narrowband comb applica-
tions, where limiting the number of comb lines and precisely
controlling their amplitudes is desirable.

The outline of this paper is as follows: Section 2 presents the
general Hamiltonian description of the lossless LLE equation
for stationary (time-independent) solutions. Section 3 focuses
on the derivation of the stationary cnoidal wave solutions in
terms of Jacobi elliptic functions and elucidates the conditions
under which the general family of solutions reduces to the
soliton solution that has been described in [13]. Moreover,
we discuss their periodicity, stability, and spectral properties.
From an experimental perspective, it is also important to assess
the spectral properties of the frequency combs generated by
these cnoidal waves, as well as their accessibility from a broad
range of initial conditions in the case of nonzero damping when
analytical solutions are no longer available. Hence, in Section 4
we computationally study the periodic solutions in the presence
of loss. We characterize their spectral properties, and we discuss
their accessibility from impulsive initial conditions as a func-
tion of the external pump strength (h) and the damping or loss
coefficient (α). We also discuss how these solutions apply to
microresonators. Finally, in Section 5 we give our conclusions.

2. HAMILTONIAN APPROACH AND
QUALITATIVE ANALYSIS

In this section, we qualitatively study the stationary solutions
admitted by the LLE using a Hamiltonian approach. We cat-
egorize the different kinds of solutions and determine the
parameter regime in which they are found. Following [13],
we start with the master equation for the field evolution in
microresonators:

τ0
∂A
∂τ

� i
2
β2Σ

∂2A
∂ξ2

− iγΣjAj2A

� −

�
αΣ �

T c

2
� iδ0

�
A�

ffiffiffiffiffiffi
T c

p
Ain; (1)

where A�τ; ξ� is the slowly varying envelope of the electric field,
τ is the slow time that parameterizes the evolution of the
envelope, and ξ is the retarded time, also called fast time.
We may write τ � z∕V g , where z is the coordinate along
the resonator circumference, V g is the group velocity, and
we may also write τ0 � 2πR∕V g , where τ0 is the round-trip
time and R is the radius of the resonator. We then find that
ωFSR � 2π∕τ0 is the free spectral range (FSR) in the resonator.
If we denote the mode number of the dominant mode in the
resonator as m and we denote the corresponding frequency as
ωm, we may write the normalized group velocity parameter
β2Σ � �2ωm − ωm�1 − ωm−1�τ0∕ω2

FSR . The parameter γΣ is
the Kerr nonlinearity strength, αΣ is the amplitude attenuation
parameter per round trip, and T c∕2 is the coupling loss
per round trip. If we let ωp denote the frequency of the
external pump, then we may define δ0 � τ0�ωm − ωp� as

the normalized detuning of the frequency of the dominant
mode from the frequency of the external pump. We also write
the pump amplitude Ain �

ffiffiffiffiffi
P0

p
exp�iϕin�, where P0 is the

pump power, and ϕin is the pump phase. In this work, we
consider the case of anomalous dispersion, i.e., β2Σ < 0.
Equation (1) can be recast in the form of a nondimensional
LLE:

i
∂ψ
∂t

� ∂2ψ
∂x2

− ψ � 2jψ j2ψ � −iαψ − h; (2)

where ψ � A�γΣ∕�2δ0��1∕2 is the normalized complex envelope
of the intracavity field, t � τδ0∕τ0 is the normalized slow time,
x � ξ�2δ0∕jβ2Σj�1∕2 is the normalized fast time, α �
�αΣ � T c∕2�∕δ0 is the normalized damping or loss parameter,
and h � �T cγΣP0∕�2δ30��1∕2�−i exp�iϕin�� is the normalized
external pump amplitude, which is real and positive if we
set ϕin � π∕2.

To obtain the stationary solutions of Eq. (2), we set the
temporal derivative equal to zero, and obtain the equation

d 2ψ

dx2
� h� �iα − 1�ψ � 2jψ j2ψ � 0: (3)

This equation does not have analytical solutions that are
expressible as Jacobi elliptic functions for α ≠ 0. Thus, our
analytical discussion of solutions is focused on the lossless case.
Without loss of generality, for α � 0, the field ψ can be con-
sidered real, and Eq. (3) becomes

d 2ψ

dx2
� h − ψ � 2ψ3 � 0. (4)

Equation (4) has the Hamiltonian

H � 1

2

�
dψ
dx

�
2

� V �ψ�; (5)

where V is the potential:

V � hψ −
ψ2

2
� ψ4

2
: (6)

The Hamiltonian is constant at all x. Equation (5) can be
integrated to yield the first-order differential equation:

dψ
dx

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2H − 2hψ � ψ2 − ψ4

q
; (7)

which can be solved by quadrature in terms of elliptic
integrals [18]:Z

dx �
Z

dψffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2H − 2hψ � ψ2 − ψ4

p : (8)

The period of the solution is a function of h and H . In a micro-
resonator, this period will be quantized, and we consider this
issue explicitly in Section 4.

We observe that the potential in Eq. (6) is asymmetric with
respect to ψ when the pump h ≠ 0. As consequence, the cnoi-
dal wave solutions will have a nonzero pedestal. This pedestal
was already noted in the special case of solitons [13]. From
Eq. (8), we obtain the equation

−ψ4 � ψ2 − 2hψ � 2H � 0: (9)

In the next section we will study the analytical solutions of
Eq. (8); here, we provide a qualitative analysis that elucidates
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the different regimes. The radicand of Eq. (8) is a quartic
polynomial that has three extrema when h <

ffiffiffiffiffiffiffiffiffiffi
2∕27

p
, while

it has only one extremum when h >
ffiffiffiffiffiffiffiffiffiffi
2∕27

p
. The discriminant

of Eq. (9) is

Δ � −2048H 3 − 512H 2 � 1152h2H − 32H

−432h4 � 16h2: (10)

We can rewrite Eq. (9) as

−�ψ − ψ1��ψ − ψ2��ψ − ψ3��ψ − ψ4� � 0; (11)

where the four roots ψ1, ψ2, ψ3, ψ4 of the quartic polynomial
are, respectively,

ψ1 �
1

2

ffiffiffiffi
t3

p � 1

2

�
2 − t3 −

4hffiffiffiffi
t3

p
�

1∕2
;

ψ2 �
1

2

ffiffiffiffi
t3

p
−
1

2

�
2 − t3 −

4hffiffiffiffi
t3

p
�

1∕2
;

ψ3 � −
1

2

ffiffiffiffi
t3

p � 1

2

�
2 − t3 �

4hffiffiffiffi
t3

p
�

1∕2
;

ψ4 � −
1

2

ffiffiffiffi
t3

p
−
1

2

�
2 − t3 �

4hffiffiffiffi
t3

p
�

1∕2
; (12)

with

t1 � −4�1–24H �3 � �2–108h2 � 144H �2;
t2 � −2� 108h2 − 144H −

ffiffiffiffi
t1

p
;

t3 �
2

3
�

ffiffiffi
23

p �1–24H �
3

ffiffiffiffi
t23

p �
ffiffiffiffi
t23

p

3
ffiffiffi
23

p : (13)

Figures 1(a) and 1(b) show the potential V as a function of
ψ for h � 0.1, so that h <

ffiffiffiffiffiffiffiffiffiffi
2∕27

p
, and for h � 0.5, so that

h >
ffiffiffiffiffiffiffiffiffiffi
2∕27

p
. Their corresponding phase portraits are shown in

Figs. 1(c) and 1(d), respectively. As shown in Fig. 1(a), for
h � 0.1, the potential has three extrema, two of them are
minima and one is a local maximum. The Hamiltonian at the
local maximum corresponds to the soliton solutions of Eq. (4),
which are represented by the separatrix of the phase space that
is shown as line b in Fig. 1(c). The separatrix consists of two
homoclinic orbits, which correspond to two different types of
soliton solutions: the separatrix on the right corresponds to a
positive soliton solution, and the separatrix on the left corre-
sponds to a negative soliton solution with a positive pedestal.
The positive and negative solitons are solutions of an externally
driven damped nonlinear Schrödinger equation on an infinite
line [19]. The periodic orbits, which are also called cycles, are
related to the cnoidal wave solutions. Specifically, as we will
discuss in Section 3, cycles outside the separatrix correspond
to solutions that can be expressed in terms of the Jacobi elliptic
cn functions, which we call cn-wave solutions. Cycles inside the
separatrix can be expressed in terms of either dn or cn func-
tions, and we call them dn-wave solutions. It is important
to note that the soliton solutions are accessible when
h ≤

ffiffiffiffiffiffiffiffiffiffi
2∕27

p
, as shown in Fig. 1(c), while they are not accessible

when h >
ffiffiffiffiffiffiffiffiffiffi
2∕27

p
, as shown Fig. 1(d).

We may separate the solutions of Eq. (4) into three cases:

(1) When Δ > 0 and Re�2 − t3 − 4h∕ ffiffiffiffi
t3

p � > 0, the radi-
cand of Eq. (8) has four real solutions, which corresponds to
regions I and II in Fig. 1.

(2) When Δ < 0, Re�2 − t3 − 4h∕ ffiffiffiffi
t3

p � < 0 and
Re�2 − t3 � 4h∕ ffiffiffiffi

t3
p � > 0, the radicand of Eq. (8) has two real

solutions and two complex conjugate solutions, which corre-
sponds to region III in Fig. 1.

(3) When Δ < 0 and Re�2 − t3 − 4h∕ ffiffiffiffi
t3

p � > 0, the radi-
cand of Eq. (8) also has two real solutions and two complex
conjugate solutions, which corresponds to region IV in Fig. 1.

In Section 3, we discuss the analytical solutions for
these cases.

3. CNOIDAL WAVE SOLUTIONS WITH ZERO
DAMPING (α � 0)

In this section, we separately analyze the three cases that we
have just identified, and we then show how the cnoidal wave
solutions that are expressible in terms of Jacobi elliptic func-
tions reduce to the soliton solutions that are expressible in
terms of hyperbolic functions when the parameter k of the
elliptic functions becomes equal to one. Finally, we analyze
the periodicity, stability, and spectral properties of the cnoidal
waves.

For each of the three cases, the solutions can be grouped into
two sets: for k � 1, Set I reduces to the positive soliton
solutions already found in [13], while Set II reduces to the
negative soliton solutions of [13]. Figures 2 and 3 show, respec-
tively, several examples of cnoidal wave solutions for Set I and
Set II.

Fig. 1. Potential V and phase portraits of Eq. (4) for different mag-
nitudes of the external pump h. The potential V is shown as a function
of ψ , respectively, in (a) for h � 0.1 (three extrema) and in (b) for h �
0.5 (one extremum). The shaded areas are the regions where the sol-
utions exist. Referring to (a), regions I and II are bounded by lines
b and e, region III is below line e, and region IV is above line b. The lines
a, b, c, and d correspond, respectively, to values of the Hamiltonian
H � 0.05, H � 0.00505, H � −0.03, and H � −0.1. The radicand
of Eq. (8) has four real solutions in regions I and II, while it has two real and
two complex conjugate solutions in regions III and IV. The corresponding
phase portraits are shown in the �ψ ; dψ∕dx�-plane, respectively, in (c) for
h � 0.1 and in (d) for h � 0.5.
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A. Cnoidal Wave Solutions of Set I

1. Δ > 0 and Re�2 − t3 − 4h∕ ffiffiffiffi
t3

p � > 0

When Δ > 0 and Re�2 − t3 − 4h∕ ffiffiffiffi
t3

p � > 0, the radicand of
Eq. (8) has four real roots.

For ψ4 ≤ ψ < ψ3, we have

ψ � ψ�dn1 �
Fψ3 − Cψ2

F − C
×

"
1�

2FC�ψ2−ψ3�
�Fψ3−Cψ2��F�C�

1� F−C
F�C nd

�
x
gnd

��k2nd�
#
;

(14)

and for ψ2 ≤ ψ < ψ1, we have

ψ � ψ�dn2 �
Fψ1 � Bψ4

F � B
×

"
1�

2FB�ψ1−ψ4�
�Fψ1�Bψ4��F−B�

1� F�B
F−B nd

�
x
gnd

��k2nd�
#
;

(15)

where nd�xjk2� � 1∕dn�xjk2� is the inverse of dn�xjk2� [18]:
B � ψ1 − ψ2 �

�
2 − t3 − 4h∕

ffiffiffiffi
t3

p 	
1∕2

;

C � ψ3 − ψ4 �
�
2 − t3 � 4h∕

ffiffiffiffi
t3

p 	
1∕2

;

F � �ψ2 − ψ4�kd ;
gnd � gd∕�1� kd �;
knd � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kd∕�1� kd �

p
; (16)

with

gd � 2∕
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ψ1 − ψ3��ψ2 − ψ4�

p
; (17)

and

kd �

�ψ1 − ψ2��ψ3 − ψ4�
�ψ1 − ψ3��ψ2 − ψ4�

�
1∕2

: (18)

The profiles of the cnoidal wave solutions for H � 0 and
h � 0.1 are shown in Fig. 2(c).

2. Δ< 0, Re�2 − t3 − 4h∕ ffiffiffiffi
t3

p � < 0, and Re�2− t3�4h∕ ffiffiffiffi
t3

p �> 0

When Δ < 0, Re�2 − t3 − 4h∕ ffiffiffiffi
t3

p � < 0, and Re�2 − t3�
4h∕ ffiffiffiffi

t3
p � > 0, the radicand of Eq. (8) has two real roots

and a pair of complex conjugate roots. Here, the real roots are
ψ3 and ψ4, while the complex conjugate roots are ψ1 and ψ2.
We let ψ1 � ρc1 � iηc1 and ψ2 � ρc1 − iηc1.

For ψ4 ≤ ψ < ψ3, we have

ψ � ψ�cn3 �
Bc1ψ3 � Ac1ψ4

Bc1 � Ac1

×

"
1�

2Ac1Bc1�ψ3−ψ4�
�Bc1ψ3�Ac1ψ4��Bc1−Ac1�

1� Bc1�Ac1
Bc1−Ac1

nc
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

Ac1Bc1
p

x
��k23�

#
; (19)

where nc�xjk2� � 1∕cn�xjk2� is the inverse of the Jacobian el-
liptic cosine function cn�xjk2� [18]:

Ac1 � ��ρc1 − ψ3�2 � η2c1�1∕2;
Bc1 � ��ρc1 − ψ4�2 � η2c1�1∕2;

k3 �

�ψ3 − ψ4�2 − �Ac1 − Bc1�2

4Ac1Bc1

�
1∕2

: (20)

The profile of the cnoidal wave solution for H � −0.1 and
h � 0.1 is shown in Fig. 2(d).

3. Δ < 0 and Re�2 − t3 − 4h∕ ffiffiffiffi
t3

p � > 0

When Δ < 0 and Re�2 − t3 − 4h∕ ffiffiffiffi
t3

p � > 0, the radicand of
Eq. (8) also has two real roots and a pair of complex conjugate

Fig. 2. Profiles of the cnoidal wave solutions ψ of Set I as a function
of x with different values of HamiltonianH for h � 0.1. The solutions
in (a)–(d) correspond to the lines a, b, c, and d in Figs. 1(a) and 1(c),
respectively. Line b is the separatrix where soliton solutions are found.
(a) We show the cnoidal wave solution at H � 0.05. (b) We show the
two possible solutions at H � 0.00505, the positive soliton solution
(black curve) and the continuous-wave solution (red curve). (c) We
show the cnoidal wave solutions with H � −0.03. The upper curve
(positive cnoidal wave) is the solution corresponding to the closed
orbit c located at ψ > 0 in Fig. 1(c). The lower curve (negative cnoidal
wave) is the solution corresponding to the closed orbit c located at
ψ < 0 in Fig. 1(c). (d) We show the cnoidal wave solution with
H � −0.1 corresponding to the closed orbit d.

Fig. 3. Solutions ψ of Set II as a function of x at different values of
the Hamiltonian H for h � 0.1. The solutions in (a)–(d) correspond
to the lines a, b, c, and d in Figs. 1(a) and 1(c), respectively. We show
(a) the cnoidal wave solution at H � 0.05, (b) the negative soliton
solution and the continuous-wave solution at H � 0.00505,
(c) the positive and negative cnoidal wave solutions at H � −0.03,
and (d) the cnoidal wave solution at H � −0.1.
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roots. Here, the real roots are ψ1 and ψ4, while the complex
conjugate roots are ψ2 and ψ3. We let ψ2 � ρc2 � iηc2
and ψ3 � ρc2 − iηc2.

For ψ4 ≤ ψ < ψ1, we have

ψ � ψ�cn4 �
Bc2ψ1 � Ac2ψ4

Bc2 � Ac2

×

"
1�

2Ac2Bc2�ψ1−ψ4�
�Bc2ψ1�Ac2ψ4��Bc2−Ac2�

1� Bc2�Ac2
Bc2−Ac2

nc
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

Ac2Bc2
p

x
��k24�

#
; (21)

where

Ac2 � ��ρc2 − ψ1�2 � η2c2�1∕2;
Bc2 � ��ρc2 − ψ4�2 � η2c2�1∕2;

k4 �

�ψ1 − ψ4�2 − �Ac2 − Bc2�2

4Ac2Bc2

�
1∕2

: (22)

We show the profile of the cnoidal wave solution forH � 0.01
and h � 0.1 in Fig. 2(a).

B. Cnoidal Wave Solutions of Set II

1. Δ > 0 and Re�2 − t3 − 4h∕ ffiffiffiffi
t3

p � > 0

When Δ > 0 and Re�2 − t3 − 4h∕ ffiffiffiffi
t3

p � > 0, the radicand of
Eq. (8) has four real roots.

For ψ4 < ψ ≤ ψ3, we have

ψ � ψ−dn1 �
Cψ1 � Eψ4

C � E
×

"
1�

2 CE�ψ1−ψ4�
�Cψ1�Eψ4��C−E�

1 − C�E
C−E nd

�
x
gnd

��k2nd�
#
;

(23)

and for ψ2 < ψ ≤ ψ1, we have

ψ � ψ−dn2 �
Bψ3 − Eψ2

B − E
×

"
1�

2BE�ψ2−ψ3�
�Bψ3−Eψ2��B�E�

1 − B−E
B�E nd

�
x
gnd

��k2nd�
#
;

(24)

where E � �ψ1 − ψ3�kd , B, C , gnd, knd are defined in Eq. (14).
The profile of the cnoidal wave solutions for H � 0 and
h � 0.1 is shown in Fig. 3(c).

2. Δ < 0, Re�2− t3 − 4h∕ ffiffiffiffi
t3

p �< 0, and Re�2− t3�4h∕ ffiffiffiffi
t3

p �> 0

When Δ < 0, Re�2 − t3 − 4h∕ ffiffiffiffi
t3

p � < 0, and Re�2 − t3 � 4h∕ffiffiffiffi
t3

p � > 0, the radicand of Eq. (8) has two real roots and a pair
of complex conjugate roots. Here, the real roots are ψ3 and
ψ4, while the complex conjugate roots are ψ1 and ψ2. We
let ψ1 � ρc1 � iηc1 and ψ2 � ρc1 − iηc1.

For ψ4 < ψ ≤ ψ3, we have

ψ � ψ−cn3 �
Bc1ψ3 � Ac1ψ4

Bc1 � Ac1

×

"
1�

2Ac1Bc1�ψ3−ψ4�
�Bc1ψ3�Ac1ψ4��Bc1−Ac1�

1 − Bc1�Ac1
Bc1−Ac1

nc
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

Ac1Bc1
p

x
��k23�

#
; (25)

where Ac1, Bc1, and k3 are defined in Eq. (19). The profile of
the cnoidal wave solution for H � −0.1 and h � 0.1 is shown
in Fig. 3(d).

3. Δ < 0 and Re�2 − t3 − 4h∕ ffiffiffiffi
t3

p � > 0

When Δ < 0 and Re�2 − t3 − 4h∕ ffiffiffiffi
t3

p � > 0, the radicand of
Eq. (8) also has two real roots and a pair of complex conjugate
roots. Here the real roots are ψ1 and ψ4, while the complex
conjugate roots are ψ2 and ψ3. We let ψ2 � ρc2 � iηc2 and
ψ3 � ρc2 − iηc2.

For ψ4 < ψ ≤ ψ1, we have

ψ � ψ−cn4 �
Bc2ψ1 � Ac2ψ4

Bc2 � Ac2

×

"
1�

2Ac2Bc2�ψ1−ψ4�
�Ac2ψ4�Bc2ψ1��Bc2−Ac2�

1 − Bc2�Ac2
Bc2−Ac2

nc
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

Ac2Bc2
p

x
��k24�

#
; (26)

where Ac2, Bc2, and k4 are defined in Eq. (21). The profile of
the cnoidal wave solution for H � 0.01 and h � 0.1 is shown
in Fig. 3(a).

C. Limiting Case of the Lossless Soliton Solutions

The cnoidal waves that are expressible in terms of Jacobi elliptic
functions reduce to soliton solutions that are expressible in
terms of hyperbolic functions when the parameter k of the
elliptic functions cn�xjk2� and dn�xjk2� becomes equal to 1.

We first write the positive and negative soliton solutions of
the LLE as [13]

ψ� � ψ0



1� M 1

1�M 2 cosh�M 3x�

�
; (27)

where

M 1 � 2�X − 1�;
M 2 �

ffiffiffiffi
X

p
;

M 3 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�X − 1�∕�2X � 1�

p
;

ψ0 � 1∕
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�1� 2X �

p
; (28)

and X is the solution of the equationffiffiffi
2

p
X∕�1� 2X �3∕2 � h: (29)

We find that our Eqs. (15) and (21) reduce to the positive
soliton solution of Eq. (27), as shown in Fig. 2(b), while
Eqs. (23) and (26) reduce to the negative soliton solution of
Eq. (27) as shown in Fig. 3(b).

D. Periodicity, Stability, and Spectral Properties of
the Lossless Cnoidal Wave Solutions

Figure 4 shows the period P in the �h; H � plane. For a fixed
value of h, the period P of different cnoidal waves will be differ-
ent. As a consequence, the spacing of the comb lines in their
Fourier spectrum is different. In particular, as k approaches 1
and the solutions approach soliton solutions, the period P tends
to infinity, and the comb lines become more closely spaced.
Moreover, only stable cnoidal waves can generate reliable fre-
quency combs. Thus, it is important to study both the perio-
dicity and the stability of the cnoidal wave solutions. The
computational study of the stability of cnoidal waves has been
performed by the numerical integration of Eq. (2) in the time
domain with α � 0 using a split-step algorithm [20] in which
the initial conditions are the stationary cnoidal wave solutions
of Eq. (4) that we have just derived. We show the results in
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Fig. 5. The small numerical noise intrinsic to the numerical
method that we use to calculate the temporal evolution acts
as a perturbation on the analytical solution. Hence, we expect

that the profile of the analytical solution remains nearly un-
changed during its temporal evolution if the solution is stable;
otherwise we expect that the solution diverges from the station-
ary solution. In this case, we find computationally that the sol-
ution undergoes periodic oscillations or becomes chaotic. This

Fig. 4. Period of the cnoidal waves in the �h; H � plane. The solid
line indicates the loci of points in the parameter space where soliton
solutions exist for which P → �∞. The region bounded by the solid
line and by the dashed line is where positive and negative cnoidal
wave/soliton solutions coexist. The vertical dashed–dotted line indi-
cates the value of the pump at h �

ffiffiffiffiffiffiffiffiffiffi
2∕27

p
.

Fig. 5. (a) Results of a computational study to assess the stability of
the cnoidal waves in the �h; H � plane. The solid line indicates the loci
of points in the parameter space where soliton solutions exist. The
region bounded by the solid line and by the dashed line is where pos-
itive and negative cnoidal wave/soliton solutions coexist. Here we re-
port the results of the stability study for the negative solutions. The
dotted line indicates the boundary of the existence region of cnoidal
wave solutions, and the vertical dashed–dotted line indicates the value
of the pump at h �

ffiffiffiffiffiffiffiffiffiffi
2∕27

p
. (b) Magnification of the region where

positive and negative solution coexist. Here we report the results of the
stability study for the positive solutions. The solutions are always un-
stable for h ≠ 0. (c) The solutions are the same as in (b) except that
here we report the results for the negative solutions. In this case, stable
negative soliton solutions and stable cnoidal waves exist.

Fig. 6. Spatiotemporal evolution of the intensity of the cnoidal wave
for different values of H and h. The x-coordinate runs over one period
of the cnoidal wave. The figure exemplifies four typical cases. (a) The
cnoidal wave remains stable for h � 0.7 andH � 0.2. (b) The cnoidal
wave evolves to a breather for h � 0.16 and H � 1. (c) The cnoidal
wave generates temporal chaos for h � 0.26 andH � 1. (d) The cnoi-
dal wave generates spatiotemporal chaos for h � 0.45 and H � 1.

Fig. 7. Absolute value of the Fourier transform (F t ) of the cnoidal
wave solutions that are plotted in Figs. 2 and 3, respectively. The wave-
number equals �m − m̄�2π∕P, where m̄ is the mode number of the
dominant mode. (a) Fourier spectra of the cnoidal waves that are plot-
ted in Figs. 2(a) and 3(a) with H � 0.05. The Fourier spectra are the
same because the solutions in Figs. 2(a) and 3(a) are the same except
for a constant shift. (b) Fourier spectra of the positive soliton solution
(narrower spectrum) that are plotted in Fig. 2(b) and of the negative
soliton solution (wider spectrum) that are plotted in Fig. 3(b) with
H � −0.00505. (c) Fourier spectra of the positive and negative cnoi-
dal waves that are plotted in Figs. 2(c) and 3(c) with H � −0.03. The
Fourier spectra of the positive and negative solutions of Figs. 2(c) and
3(c) are the same. (d) Fourier spectra of the cnoidal waves that are
plotted in Figs. 2(d) and 3(d) with H � −0.1.
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approach produces ambiguous results near the stability boun-
dary, as is apparent in Fig. 5. Linearization of the evolution
equations, combined with a spectral analysis of the linearized
equations, would have to be used to unambiguously determine
the boundary. However, the ambiguous region is narrow in this
case and does not affect our conclusions. So, we did not carry
out this more refined study. Three regions of stability for the
cnoidal waves in the �h; H � plane are present. The first one lies
at the border of the domain of the allowed solutions, close to
where the Hamiltonian H intersects the potential V at its ab-
solute minimum. These solutions might not be interesting
from an experimental perspective because of their small ampli-
tude. A second region of stability is visible in Fig. 5(c).
The stable solutions lie in the region bounded by the soliton
line, the dashed–dotted line, and the h � 0 axis. These cnoidal
wave solutions are akin to the stable negative soliton solutions
studied in the past for the ac-driven, nonlinear Schrödinger
equation on an infinite line [19]. However, we note that the
stability region is confined to small values of the external pump

h with h ≲ 0.05. Hence, small fluctuations of the average power
of the external pump might destabilize the system, turning the
stable solutions into breathers or chaotic states.

Yet a third region of stability is visible in Fig. 5(a). In this
case, the stable solutions are obtained for h ≳ 0.5, H ≳ 0, and
periodicity 4 ≲ P ≲ 6. These solutions should be visible in ex-
periments, especially in practical situations where loss in the
microresonator is important and, thus, higher pump power
would be needed to generate a comb. A study of the accessibil-
ity of these stable solutions in the practical case where losses are
considered will be presented in the next section. An example of
the evolution of the cnoidal waves for different values of H and
h is provided in Fig. 6.

It may seem surprising at first that it is possible to obtain
stable solutions when α � 0 since the pump is nonzero.
However, an analysis of Eq. (2) shows that the pump
adds no energy to the solution when

R P∕2
−P∕2 h�ψ − ψ	�dx � 0,

which is the case for all the analytical solutions. Physically,
this condition implies that the pump is out of phase with

Fig. 8. First row: the stationary analytical solutions (dashed line) calculated for H � 0.72 and h � 0.8 (P � 5) and used as initial conditions for
the numerical integration are compared to the computational solutions (continuous line) at t � 400 for α � 0.3, 0.5, and 0.7, respectively. At this
time, the solution has converged to its stationary value. Second row: the phases of the analytical and computational solutions are compared. Third
row: Fourier spectra of the analytical and computational solutions. Fourth row: spatiotemporal evolution of the numerical solutions.
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the cnoidal waves. We have found that even when the
solutions are unstable, they are chaotic or oscillatory and do not
blow up.

In Fig. 7, we show the Fourier spectra of the cnoidal waves
and of the positive and negative solitons for the solutions re-
ported in Figs. 2 and 3. It is seen that the Fourier spectra all
have a triangular shape on a logarithmic scale, indicating an
exponential falloff. This triangular shape is a typical signature
of the spectrum of parametrically driven systems where the
energy is transferred from the dominant spectral component
to the sideband spectral components due to the modulational
instability induced by four-wave mixing [21]. We see that all
the spectra look similar, except for the spacing of the spectral
lines. As the period grows, the spacing of the spectral lines
diminishes. In principle, for the soliton solution at k � 1
for which P → ∞, the spacing becomes zero and there are
no longer individual spectral lines.

In a microresonator, the spacing between the comb lines is
fixed by the device, and the spacing of the spectral lines must be
a multiple M of the device’s FSR. The soliton solutions in
microresonators correspond to k-values that are slightly less

Fig. 9. Same as in Fig. 8 except that here h � 0.8 and H � 0.3 (P � 5.4).

Fig. 10. Accessibility chart for period P � 5 in the �h;α� plane.
Purple squares are stable cnoidal waves; yellow upward triangles are
cw waves; red downward triangles are bistable solutions; cyan circles
are breathers; black diamonds are chaos.
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than 1. By appropriately choosing the device parameters and
pump strength when the cnoidal waves exist stably and are
accessible, it is possible to choose a desirable k-value and multi-
ple M of the FSR and thereby tailor a comb with a desired
spectral spacing and exponential falloff. In particular, we note
that cnoidal waves in regions II, III, and IV that are near the
bottom of the potential well will have nearly sinusoidal oscil-
lations and a rapid spectral falloff. Generating cnoidal waves
with M periods in the microresonator will lead to a spectral
spacing that is M times the FSR. Widely spaced comb lines
with a rapid exponential falloff would be useful, for example,
in the search for earth-like planets [10].

4. CNOIDAL WAVES IN THE CASE OF
NONZERO DAMPING (α ≠ 0)

When α ≠ 0, we no longer find stationary solutions analyti-
cally. Instead, we find them, when they are stable, by numeri-
cally integrating Eq. (2) with a split-step algorithm [20] using
the analytical solutions of Eq. (4) as the initial conditions. We
find that the stationary solutions are no longer real functions, as
was the case with zero damping. They are complex functions
ψ�x� � jψ�x�j exp�iΦ�x�� with a periodic phase modulation
Φ�x�. Figures 8 and 9 show a comparison between the station-
ary analytical solutions calculated for α � 0 and the numerical
solutions calculated by integration of Eq. (2) for α � 0.3, 0.5,
and 0.7 and for the initial conditions that are given by the
analytical solutions of Eq. (4) with the following parameters:
h � 0.8 and H � 0.72 (P � 5) for Fig. 8, and h � 0.8
and H � 0.3 (P � 5.4) for Fig. 9. In both figures, it is appar-
ent that the stationary analytical solution used as the initial con-
dition rapidly evolves into a stable stationary solution. While it
is not a solution that can be expressed analytically in terms of
Jacobi elliptic functions, the period, shape, and spectral proper-
ties remain closely to those of the analytical solutions that are
used as the initial conditions. We also note that the stationary
analytical solution used in Fig. 8 is unstable as shown in Fig. 5,
while the numerical calculation shows that the final state that is
reached with loss is stable. The introduction of loss enlarges the
parameter range in which the cnoidal waves are stable. This
behavior is expected because the loss acts as a filter that damps
the high wave vector components of the field, thereby improv-
ing the solution’s stability. The damping of the high wave vector
components can be seen in Figs. 8 and 9 by comparing the
narrower Fourier spectra of the computational solutions with
the slightly broader Fourier spectra of the analytical solutions.
To demonstrate that these cnoidal wave solutions are accessible
from a broader set of initial conditions than the analytical cnoi-
dal wave solutions at α � 0, we have solved Eq. (2) numerically
using two impulsive functions as the initial conditions. The
first impulsive function is 105 at x � 0 and 0 everywhere else.
The second impulsive function is 10−5 at x � 0 and 0 every-
where else. In Fig. 10 we show an accessibility chart in the
�h; α� plane for P � 5. If both initial conditions lead to unsta-
ble chaotic behavior, we plot a diamond. If both initial condi-
tions lead to breathers that are periodic in t as well as in x, we
plot a dot. If both solutions are plane waves, we plot a triangle.
If the larger impulsive function leads to a breather and the
smaller impulsive function leads to a plane wave, we plot an

inverted triangle. Finally, if both initial conditions lead to a
cnoidal wave, we plot a square. We see that there is a broad
range of parameters from which the cnoidal waves are accessible
from impulsive initial conditions. We also note that the param-
eter range in which stable cnoidal waves exist is significantly
larger, but, as α decreases, the stable solutions no longer can
be accessed from impulsive initial conditions. In Fig. 11, we
show four typical examples of the spatiotemporal evolution
of the field intensity with the low amplitude impulsive function
as the initial condition. A systematic study of the accessibility of
cnoidal waves with nonzero damping will be the subject of
future investigations.

We now present an example to show how the nondimen-
sional parameters are related to the physical parameters of a
microresonator. We consider a microresonator made of magne-
sium fluoride (MgF2) with radius R � 0.1 cm, and with
linear and nonlinear refractive indices n0 � 1.38 and n2 �
0.9 × 10−16 cm2∕W at the wavelength λ0 � 1.5 μm [13].
The group velocity dispersion parameter is β2Σ � −2.8 ×
10−5 ps2. For a mode volume V � 2 × 10−7 cm3, we obtain
the Kerr nonlinearity strength γΣ � �2πR�2n2ω0∕�cV � �
7.9 × 10−6 W−1. The round-trip time τ0 can be approximately
calculated as τ0 ≃ 2πRn0∕c, which implies for the current
choice of parameters τ0 ≃ 29 ps. For a detuning �ωm − ωp�≃
2 MHz, the normalized detuning is δ0 � τ0�ωm − ωp�≃
5.8 × 10−5. For a coupling parameter T c ≃ 4 × 10−5 and an am-
plitude loss per round trip aΣ ≃ 2 × 10−5, the normalized loss
parameter is α � �αΣ � T c∕2�∕δ0 ≃ 0.7. For these values, we
find that the fast time ξ in picoseconds is related to the nor-
malized fast time x as ξ�ps� ≃ 0.5x, the slow time τ in micro-
seconds is related to the normalized slow time t as τ�μs� ≃ 0.5t,
and the external pump power P0 in milliwatts is related to
the normalized field amplitude h as P0�mW� ≃ 100h2. The

Fig. 11. Spatiotemporal evolution of the field intensity for different
values of α and h corresponding to the points contained in the acces-
sibility chart of Fig. 10. In this case, the initial condition is the small
amplitude (10−5) impulsive function. We show four typical cases.
(a) The impulsive function evolves to a stable cnoidal wave for α �
0.7 and h � 0.8. (b) The impulsive function evolves to a breather for
α � 0.4 and h � 0.6. (c) The impulsive function generates temporal
chaos for α � 0.25 and h � 0.45. (d) The impulsive function gener-
ates spatiotemporal chaos for α � 0.05 and h � 0.75.
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cnoidal wave described in the third column of Fig. 9 (P � 5.4,
h � 0.8, α � 0.7) will have a period of 2.7 ps and, hence, we
expect 10 or 11 periods will appear in the resonator round-trip
time of 29 ps for a pump level of approximately 60 mW. With
10 periods in the resonator, the comb lines are spaced 340 GHz
apart. The amplitudes of the lines at m � m̄� 1 are down
from the peak line at m � m̄ by 2 dB, and the amplitudes
of the lines at m � m̄� 2 are down from the peak by 10 dB.

5. CONCLUSIONS

In conclusion, we have studied both analytically and computa-
tionally the family of cnoidal wave solutions to the LLE. We
have shown computationally that these cnoidal waves can be
stable and are accessible from a wide range of values of the ex-
ternal pump and of the damping. Hence, these cnoidal waves
can be used for nonlinear frequency comb generation in cases in
which solitons are difficult to generate and/or the microreso-
nator losses are substantial and, hence, higher external power
are necessary to sustain the comb generation. Moreover, their
inherently coarse-tooth characteristic will be useful when limit-
ing the number of comb lines and precisely controlling their
amplitudes is required, as, for example, in the precise genera-
tion of new frequencies [8], quantum networking [9], or astro-
combs [10]. In future work, we will investigate in greater detail
the accessibility and stability of cnoidal wave solutions when
loss is included. The approach used in this paper can also
be applied to Kerr comb generation in the normal dispersion
regime, which should also be the subject of future work.
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