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Abstract—We investigate the computational cost of the non-
linear Fourier transform (NFT) based on the Zakharov-Shabat
scattering problem as a nonlinear compensation technique for
quadrature-phase-shift keyed (QPSK) signals with raised cosine
frequency characteristic in optical fiber transmission systems with
normal dispersion fibers. We show that the primary sources of com-
putational errors that arise from the use of the NFT is the finite
eigenvalue resolution of the left and the right reflection spectra. We
show that this effect and, consequently, the computational cost of
the NFT as a nonlinear mitigation technique in the normal disper-
sion regime increases exponentially or faster with both the channel
power and the number of symbols per data frame even using the
most efficient NFT algorithms that are currently known. We find
that the computational cost of this approach becomes unacceptably
large at data frame lengths and powers that are too small for this
approach to be competitive with standard transmission methods.
We explain the physical reasons for these limits.

Index Terms—Discrete transforms, fiber nonlinear optics, opti-
cal fiber communication, signal processing algorithms.

I. INTRODUCTION

ONLINEARITY in optical fibers limits the achievable
N signal-to-noise ratio and, consequently, the transmission
capacity of optical fiber communications systems [1]. The prin-
cipal source of nonlinearity in optical fibers is the Kerr non-
linearity, and it has been known since the 1980s that to lowest
order in the nonlinearity strength and chromatic dispersion, light
propagation can be modeled by the nonlinear Schrodinger equa-
tion (NLSE) [2], [3]. The NLSE is one of a very special class
of nonlinear equations that can be solved using a nonlinear ana-
logue of the Fourier transform [4], [5] that was first found by
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Zakharov and Shabat [6]. In general, this transformation will
produce both a discrete (solitons) and continuous (reflection)
spectrum. Due to the nonlinearity, the evolution of initial data in
the time domain can be quite complex, but all this complexity
disappears in the transform domain, and the evolution becomes
linear and quite simple. It is this observation that is at the heart
of efforts in the 1980s and 1990s to use solitons in commu-
nications systems, since the evolution of solitons is simple in
systems that obey the NLSE.

With the advent of coherent communications and advanced
signal processing techniques in optical fiber communications
systems, this basic idea has undergone a renaissance. Yousefi
and Kschischang [7]-[9] have proposed to combine high-order
soliton solutions with advanced signal processing techniques to
achieve high spectral efficiency.

Several research groups have investigated the use of the con-
tinuous spectrum of the Zakharov-Shabat scattering problem
(ZSSP) [9]-[13]. This approach has some attractive features.
First, the continuous spectrum reduces to the usual Fourier
transform at low intensities, so that it is possible to carry over
standard modulation formats in a straightforward way. Second,
a continuous spectrum can be generated in both the normal and
the anomalous dispersion regimes, while a discrete spectrum
(solitons) can only be generated in the anomalous dispersion
regime.

Experimental studies have demonstrated the use of the NFT
for nonlinear mitigation uisng the discrete spectrum [14]-[16]
and both the discrete and the continuous spectrum [17]. These
studies use the Darboux transform as the INFT algorithm, which
was combined in [17] with the INFT algorithm in [10] to recon-
struct the waveform from the nonlinear spectrum using both the
continuous and the discrete part of the spectrum. However, the
symbol rates, the spectral efficiency, and the total signal band-
width in these studies is still well below those of current optical
fiber transmission systems.

While the idea of using the continuous spectrum is attrac-
tive, work to date has pointed to several issues that must
be addressed if this idea is going to have practical value. First,
the computational complexity of carrying out the analogue of
the Fourier transform and its inverse is high. The nonlinear
Fourier transform (NFT) and its inverse (INFT) are given by the
solution to the ZSSP. In the forward direction, the most widely
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used computational methods have a computational complexity
that is proportional to N2, where N is the number of points in
the waveform that is being processed [18], [19]. In the back-
ward direction (INFT), the most commonly used methods have
a computational complexity that is either proportional to N2 in
differential layer peeling methods [20] or N2 log N in the inte-
gral layer peeling method [21]. The complexity of these methods
scales too rapidly with N to be acceptable in practice. Wahls
et al. [22], [23] recently proposed NFT and INFT algorithms
that scale proportional to N log? N. However, it was shown
in [23] that the fast NFT that they developed breaks down when
the magnitude of the left reflection spectrum is significantly
lower than what can be achieved with the integral layer peeling
method. Since higher launch powers and longer frame durations
lead to magnitudes of the left reflection spectrum very close to
1, achieving high power levels with fast NFT algorithms is still
a challenge.

Work to date points to the existence of additional problems
with algorithms that are based on the ZSSP. These algorithms
rely fundamentally on the assumption that the signal is zero
at the edges of the time domain that is being considered. For
this reason, the data must be carved into data frames that re-
side inside larger signal frames or total time frames that are
sufficiently large to accommodate any spread in the data that
is due to chromatic dispersion. In this respect, these systems
resemble orthogonal frequency domain multiplexed (OFDM)
systems [24]. In studies to date of the NFT and INFT in
both the normal [25], [26] and the anomalous [10] dispersion
regimes, the data frame only occupies a small fraction of the
total time frame. In the normal dispersion regime, the fraction
occupied was a little over 1% [25]; in the anomalous disper-
sion regime, the fraction occupied was a little over 10% [10].
The data frame occupies such a small percentage of the total
frame because of the relatively small size of the data frame
compared with the required guard time that is needed to pre-
vent inter-frame cross-talk due to chromatic dispersion. The
duration of the guard time is proportional to the second-order
dispersion parameter, the signal bandwidth, and the propagation
distance.

There are reasons to believe that there may be a limit to
the size of the data frames that can be used with the NFT for
a finite number of points used to discretize the left reflection
spectrum. In the normal dispersion regime, the waveform en-
coding the symbols act as barriers in the forward ZSSP. As
the reflection coefficient approaches 1 with the increase in the
frame duration, the waveform containing the symbols in the
center of the data frame become increasingly difficult to re-
solve. In the anomalous dispersion regime, for a fixed power,
standard estimates indicate that the number of solitons should
grow with the data length [5]. Wahls er al. [22] also devel-
oped an NFT algorithm for periodic signals, but further work
is needed to assess the effectiveness of the NFT for periodic
signals.

Just as there may be limits on the size of the data frames, there
may be limits on the signal power within those frames. In the
anomalous dispersion regime, increased power is expected to
lead to soliton generation [5]. In the normal dispersion regime,

5057

increase of the channel power or the data frame lead to an
increase in the number of points used to discretize the reflection
spectrum.

There are two approaches for the encoding and decoding of
data that can be carried out using the NFT. The NFT can be
used to encode data directly on the eigenvalues of the ZSSP at
the transmitter using an INFT algorithm, which is decoded with
the NFT at the receiver [9], [10]. The other approach uses the
NFT as a digital-back-propagation algorithm at the receiver to
compensate for the nonlinearity and the dispersion along the
direction of propagation [25]. In this work, we investigate the
latter application of the NFT for data decoding at the receiver
while using standard QPSK encoding at the transmitter.

We analyze the scaling of the back end processing time as a
function of the signal power and the size of the data frame. To
do so, we used the same quaternary-phase-shift-keyed (QPSK)
format that Le ef al. [10] studied, although we focus here on the
normal dispersion regime. We find that the use of the NFT and
the INFT in the signal processing results in a computational cost
that grows exponentially with the channel power and the data
frame duration. For realistic fiber parameters, the onset of this
exponential growth occurs at a combination of signal powers and
data frame lengths that are too low for this scheme to be com-
petitive as an alternative to standard quasilinear transmission.
When the channel power is set to 3 dBm in a QPSK modulation
format at 56 Gbaud with 512 symbols per data frame, the num-
ber of points required to discretize each of the reflection spectra
exceeds 2!93. We stress that this exponential increase in the back
end processing time is not due to the computational complexity
of the algorithms. Rather, it is a limitation of the method, which
is due to the rapid increase in the resolution of the reflection
spectra that is required to decode the waveform. The increase in
the required spectral resolution of the reflection spectra arises
because it contains all the necessary information to decode the
signal at any distance.

In [13], a nonlinear OFDM signal with launch power per
data frame equal to 0 dBm was simulated with 15 channels
with 4 GHz of bandwidth per channel in an optical fiber
transmission system with second-order dispersion parameter
B> = 21.7 ps*/km with 16,384 points to discretize the reflection
spectrum. The reflection spectrum at that power corresponds
to the reflection spectrum at —6.37 dBm of average launch
power per data frame in the optical fiber transmission system
with 8, =5 psz/km that we consider here. In [12], a fast NFT
and a fast INFT algorithm was used to decode and digitally
back-propagate a waveform in a fiber transmission system with
B> = 20.4 ps>/km. Despite using 65,536 points to discretize the
reflection spectrum of QPSK data frame with 128 symbols at
56 GBd, the performance peaked at 3 dBm of average launch
power per data frame, which corresponds to —6.07 dBm of
channel power due to the required guard time. The reflection
spectrum required for this fiber at 3 dBm of average launch
power corresponds to —3.23 dBm of average launch power per
data frame in the fiber that we consider in this study. The results
of those studies are consistent with our finding that the num-
ber of points required to discretize the reflection spectrum and,
consequently, the computational cost of the NFT to mitigate the
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nonlinear Kerr effect increases rapidly just when the nonlinear
distortion becomes significant.

The remainder of this paper is organized as follows: In
Section II, we review the ZSSP and we describe the compu-
tational algorithms that we used to solve the NFT and INFT
and the motivation for our choices. In Section III, we present
numerical results relating the computational cost of the NFT
and the INFT as a function of the launch power and the frame
duration. In Section IV, we describe the underlying reasons for
the exponential increase of the computational cost of the NFT
and the INFT with both the launch power and the frame dura-
tion. We find that the limits on the data frame length and signal
power are surprisingly low compared to quasilinear systems.
Section V contains the conclusion.

II. NUMERICAL METHODS

The time and the space dependence of the slowly varying
envelope of the optical signal propagating in optical fibers is
modeled by the nonlinear Schrodinger (NLS) equation [27],

DAL ) o) fr8°AG.2)
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where A(t, z) is the slowly varying envelope of the optical signal,
z is the space coordinate along the direction of propagation, y
is the nonlinear parameter, S, is the second-order dispersion
parameter, and «(z) is the attenuation coefficient or gain. The
most efficient techniques to solve the NLS equation in optical
fiber communications systems is the split-step Fourier method.
In the particular case in which the losses can be either neglected
or mitigated through the use of distributed amplification (o =
0), the normalized slowly varying envelope of the optical signal
q(t, z) satisfy the ZSSP, which is defined in terms of the [6]

i

dugt 9 icu(t, &) +q(t, 2)v(t, £),
dvgt’ 9 —i¢v(t, §) + ¢, u(t, §), @)

where u(t, ¢) and v(z, ¢) are the eigenfunctions of the ZSSP
associated to the eigenvalue ¢. The eigenfunctions also depend
implicitly on z. To apply the ZSSP in (2) to optical fibers with
the slowly varying envelope of the optical signal A(z, z), we use

the expression
_ |
q(t,z) = [—=A(, 2). (3)
B2

The term (y/|B>])'/? in (3) is the normalization coefficient of
the ZSSP, so that (2) can be applied to lossless optical fibers with
arbitrary nonlinear parameter y and second-order dispersion ;.

The QPSK frame of symbols is located near the center of
the computation time window [0, T;,] with boundary conditions
A0, z) = A(Ty, z) =0 for z € [0, L], where L is the propa-
gation distance. The left and the right reflection spectra at the
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receiver are given by

N ERLCILY
v(Ty, ) u(0,¢)=0
“)
The advantage of using the reflection spectra to represent
the waveform, compared to the Fourier spectrum, is that the
magnitude of the reflection spectra at each eigenvalue ¢ does
not change with z if the medium does not have losses. More-
over, the phase of the reflection spectra evolves linearly, so that
the reflection spectra calculated at the receiver can be propa-
gated forward or backward to any point along z using a single
propagation step that compensates for the combined effects of
nonlinearity and dispersion along the transmission. The reflec-
tion spectra at the transmitter (z = 0) can be computed from the
calculated reflection spectra at the receiver (z = L) using the

_ w0
ru(¢, L) = u(0, 8) lyer,.0=0

rr(¢.0) = r.(¢, Lyexp (+i2¢°BoL)
rr(¢,0) = rr(¢, Lyexp (—i2¢%BoL) . )

It is the resolution in ¢ that is required to accurately determine
the original data that in turn determines the value of 7. In
practical cases, the value of T, is much larger than that of a
single data frame.

A. Nonlinear Fourier Transform

In this work, we use the piece-wise constant approximation
(PCA) to calculate the NFT [19] or, equivalently, to solve the
direct scattering problem. Most studies so far have only made
use of the left reflection spectrum. However, there is no compu-
tational cost required to calculate the right reflection spectrum
together with the left reflection spectrum using the PCA method.
Moreover, there is also little additional computational cost in
using both the left reflection spectrum, to construct the first half
of the time-domain waveform of the optical signal in our
computation of the INFT, and the right reflection spectrum,
to construct the second half of the time-domain waveform, in
our computation of the same INFT. The most efficient methods
to compute the INFT are based on iterative procedures, whose
computational error accumulates as the number of iterations
increases. The computational error in the symbols near the
right end of the frame dominate the overall computational
error of INFT procedures that use only the left reflection
spectrum. Therefore, the error in our computation of the INFT
is significantly reduced when the waveform is reconstructed
from both ends of the data frame in time domain.

To calculate both the left and the right reflection spectra using
the PCA, we follow the procedure described in [20]. For every
eigenvalue ¢, we calculate the evolution of the eigenfunctions
during each time-step A,

u(tm-va) _ M(lm, {)
[v(rmﬁ,;)} = Tt () [v(rm,o] ©
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where t,, = mA,;,

cosh(kA;)
+i¢ sinh(kA;)

q*(tm, 2) sinh(kA;)

q(ty, z) sinh(kA,)

cosh(kA;) ’
—i¢ sinh(kA,)

Tn(0) = (7

and k? = |¢|*> — ¢2. We then calculate the transmission matrix

Np—1

T@)= [] Tu(@), ®)

m=1

where Ny is the number of points used to discretize the wave-
form in the time domain. For a given eigenvalue ¢, the left and
the right reflection spectra in (4) can be calculated,

—1>1(¢) T12(2)
Ton(0) ' Too(0)

The eigenvalue spectral range is defined from —m/(2A,) to
/(2A,). If the eigenvalue range is discretized with Ny points,
the eigenvalue resolution A, is given by A, = 7 /(NpA,;). The
eigenvalues of the ZSSP that we compute are evenly spaced be-
cause practical INFT methods make use of the Fourier transform
and/or the inverse Fourier transform of the reflection spectra.
The computational complexity of the PCA is proportional to
Ngamp % Npi, where the constant of proportionality is the num-
ber of operations used to evaluate the 2 x 2 complex matrix
in (5) and to carry out a 2 x 2 complex matrix multiplication.

re(f) = rr(¢) = 9)

B. Inverse Nonlinear Fourier Transform

The first computational method to solve the INFT con-
sisted of integral equations developed by Gelfand, Levitan, and
Marchenko [28]. However, due to the high computational com-
plexity required to directly solve the GLM integral equations
(N?3), more efficient iterative methods have been developed [20],
[21], [29]-[33].

The differential layer peeling (DLP) method is one of the
most efficient INFT methods [31]. The DLP method iteratively
solve the GLM integral equations with computational complex-
ity proportional to Ngmp X Npi, Where Ngmp is the number of
samples used to discretize the waveform in time domain and Ny
is the total number of points used to discretize the left reflection
spectrum [20], [30], [31]. The DLP method that is applied to
fiber grating design requires that the reflection coefficient from
within a discrete space step be small enough so that the reflec-
tion coefficient of that layer can be lumped at the end of the
discrete space step [30]. Otherwise, the computational error in
the result produced by the DLP algorithm, which increases ex-
ponentially along the direction of the profile extraction, would
be unacceptably high. For that reason, strong gratings, in which
the reflection coefficient is close to 1 over a large spectral band,
require a large number of steps along the grating for the DLP
to produce accurate results. In the optical fiber communications
problem that we are considering, a QPSK modulation format
with —3 dBm of channel power and 56 GBd per data frame re-
quires time steps that are significantly smaller than the symbol
period.
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Rosenthal and Horowitz [21] developed an inverse scattering
algorithm—denoted the integral layer peeling (ILP) method—
that consists of solving the GLM integral equations for each
layer using an iterative procedure that includes the recursive
calculation of the local reflection spectrum, starting with the
left reflection spectrum in (9). Because the errors in the ILP
accumulate with the number of iterations, as it is the case in
the other iterative methods for calculating the INFT, we decided
to implement and use the symmetric ILP (SILP) method. In
the SILP method, the left portion of the waveform is computed
from the left edge of the waveform up to the center of the
time window, using the left reflection spectrum. Then, the right
portion of the waveform is computed from the right edge of the
waveform until the center of the time window, using the right
reflection spectrum.

The SILP method uses the Born approximation to define the
local reflection spectra at the time #,,41 = 1, + A,

rL,m(é‘) - fL,m(é‘)

ML) = TP S exp (<20 A
MU L om
PR (6) = %exp(—izmo, (10)
sm" R om
where
24,
FLm(©) = / hi(T) exp (i T) dr,
From(() = f hew(T)exp(—icT)dr,  (11)
(w/A)—24,
and
him(©) = / Fom(D) exp (=it T)dr,
1 o0
hen(@) = 3 / rem(Dexpictyde,  (12)

are the Fourier transform of the left-local reflection spectrum
and the inverse Fourier transform of the right-local reflection
spectrum, respectively. The local reflection spectra at m = 0 are
the reflection spectra calculated with the PCA algorithm in (9).
The recovered waveform at the discrete time #,, = m A, is given
by:

_ B2 _hL,m(thrl)’ m =< Nsamp/2
A(tm’ Z) - \/j x { hR,m(thamp—111+l)a m > 1Vsamp/2 ’
To minimize the discretization error of the NFT-INFT algo-
rithms, we shift A(t,,, z) by A,/2 in the frequency domain at
the end of the INFT. This procedures improves the accuracy of
the NFT-INFT algorithms, especially at low sampling rates.

Since only Ngump values of the time-domain waveform are
generated by the SILP metthod, whose reflection spectra have
a much larger number of discrete values, Ny, it is necessary to
shift the time in the reflection spectra prior to the execution of
the iterative procedure in (10)—(13):

rr.o(¢) = rp(¢)exp [—ig Ay(Npe — Nyamp)/2].
rr.0(¢) = rr(¢) exp [—i¢ Ay(Np — Neamp)/2]-

13)

(14)
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The SILP method is capable of extracting the profile of grat-
ings whose reflection coefficient is very close to 1 across a wide
spectral band. The computational error of the SILP method does
not accumulate as fast as with the DLP method, enabling the
SILP method to reconstruct gratings with reflectivity as large as
1 —107'° [21]. Even though the computational complexity of
the SILP is Ngamp X Nyt - log Ny, as needed to solve (10)—(13),
this method converges significantly faster than the DLP method
in [31] when applied to strong gratings, which correspond to
optical signals with channel powers above —3 dBm.

Belai et al., developed an alternative method to solve the GLM
integral equations based on the iterative inversion of Toeplitz
matrices obtained from the GLM integral equations that was
denoted Toeplitz inner-bordering (TIB) [33] that has numerical
complexity equal to N;t when the iterative matrix inversion
procedure is optimized. This method was shown to perform
comparably to the ILP method when the magnitude of the left
reflection spectrum is below 0.99994 [23], which corresponds
to data frames in the quasi-linear regime. When these results are
extended to optical fiber communications systems operating in
the normal dispersion regime, the maximum magnitude of the
reflection spectra, these results correspond to channel powers in
the quasi-linear regime of operation.

Due to the demonstrated high robustness of the SILP method
in the nonlinear regime, in which the magnitude of the reflection
spectra is very close to 1, such as 1 — 107, over a wide range
of the eigenvalue ¢, we chose the SILP method as the INFT
algorithm in this study. A careful comparison of the performance
of different INFT algorithms is beyond the scope of this study,
especially because we observed that the primary reason for the
rapid increase in the computational cost of the use of the NFT-
INFT algorithms with the increase of the channel power is due
to the rapid increase of the required resolution of the left and/or
right reflection spectra.

C. Modulation Format

We simulate each data frame with a sequence of symbols us-
ing the QPSK modulation format with raised cosine frequency
characteristics as in [34]. We simulate the raised cosine fre-
quency characteristic using a matched receiver filter, in which
the transmitted signal has a root raised cosine frequency charac-
teristic, and the receiver filter has a transfer function H(f) that
is a root raised cosine frequency function given by

1 —e€
LIf] < —<
1= 57
H(f) (==Y |, Loe oy < LE
= {cos — , < = )
2e 27, 27, 27,
1+¢€
07
1> 5r
(15)

where T is the symbol period per data frame and € is the roll-off
factor.

The algorithms that we chose to carry out the NFT-INFT
computation (PCA and the SILP) are applied to the waveform
before the receiver filter. These algorithms could in principle be
implemented experimentally by applying a digital filter whose
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TABLE I
THE RATIO (IN dB) OF THE CHANNEL POWER AND THE AVERAGE LAUNCH
POWER PER DATA FRAME (Pcp/ Pyr), THE EFFECTIVE SYMBOL RATE ( f5), AND
THE SPECTRAL EFFICIENCY (S E) FOR A QPSK MODULATION FORMAT AT
56 GBd PER DATA FRAME AS A FUNCTION OF THE NUMBER OF SYMBOLS PER
DATA FRAME FOR 1,000 KM OF PROPAGATION DISTANCE

| Symbols / Frame || Pun/Pat (dB) | fs (GHz) | SE (bits/s/Hz)

32 —6.7 11.9 0.43
64 —4.5 19.7 0.70
128 —2.8 29.1 1.04
256 —1.7 38.3 1.37
512 —-0.9 45.5 1.62

transfer function is close to the inverse of the receiver filter
in (15) after the signal is demultiplexed and optically filtered at
the receiver. Then, after the left and the right reflection spectra
are digitally propagated backward to the transmitter and the
waveform is extracted from the reflection spectra using the SILP
method, the signal is passed through a filter whose transfer
function is shown in (15).

D. Channel Power and Effective Symbol Rate

In addition to the requirement that the transmission systems
do not have losses for the eigenvalues to remain constant during
the fiber transmission, the nonlinear parameter y, along with
the second-order dispersion f,, must remain constant. There-
fore, each data frame with a fixed number of symbols has
to be separated by a guard time that is large enough to en-
sure that the dispersed frames do not produce inter-data frame
cross-talk along the transmission due to the nonlinearity and,
more importantly, they do not produce inter-data frame inter-
ference at the receiver. Therefore, the requirement of the guard
time leads to a reduction in the channel power, given the average
launch power per data frame, and a reduction in the effective
symbol rate, given the symbol rate in the data frame. The guard
time 7, required to accommodate the chromatic dispersion along
the fiber transmission line is given by

tg = tg.r X 27|Ba| fyar - L, (16)

where f; g is the symbol rate in the data frame, #, ¢ is the relative
guard time, and L is the length of the fiber transmission system.
In the results shown here, we used #, g = 1.2, which provides a
20% margin for the guard time, as in [10]. Given the guard time
in (16), the channel power P, is given by

_ N, sym
Nsym + tg : fs,df
where Py is the average launch power per data frame and Ny

is the number of symbols per data frame. The effective symbol
rate fi is given by

Pen Py, (17)

(18)

In Table I, we show the difference in dB between the average
launch power and the channel power in dB, the ratio between
the symbol rate per data frame and the effective symbol rate, and
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the spectral efficiency for 56 GBd QPSK systems with 32, 64,
128, 256, and 512 symbols per data for 1,000 km of propagation
distance. Therefore, itis desirable to have the number of symbols
per data frame as large as possible in order to minimize the
performance degradation due to the guard time.

E. System Model and Performance Metric

We use the Q-factor calculated from the error-vector mag-
nitude (EVM) [35], [36] due to computational errors from the
nonlinear compensation using the NFT as the performance met-
ric. Each simulation consists of the following steps:

1) We generate the QPSK waveform from a randomly-
chosen data frame and propagate it through all the spans
of a lossless and noise-free optical fiber transmission sys-
tem modeled by (1) using the adaptive split-step Fourier
method presented in [37], which is third-order accurate.
This split-step Fourier method automatically adjusts the
step size to keep the local error constant.

2) We apply the PCA method to the received waveform.

3) We propagate the reflection spectra in the backward di-
rection to the transmitter using a single step, as shown
in (5).

4) We apply the SILP method to reconstruct the waveform
at the transmitter.

5) We apply a time-shift in the frequency domain on half the
time step to cancel the time shift between the NFT and
the INFT;

6) We filter the reconstructed waveform using the transfer
function in (15).

7) We calculate the EVM in the data frame.

8) We repeat the steps 1-6 30 times, and we calculate the
Q-factor from the average EVM. In a QPSK system, the
Q-factor is given by

1 & -
Q:(N;EVM,,) )

We calculate the Q-factor using 30 randomly-chosen data
frames to reduce the variance in the calculation.

19)

III. RESULTS AND DISCUSSIONS

We use computer simulations to assess the effectiveness
of signal processing techniques based on the ZSSP ap-
plied to optical fiber communications systems in the nor-
mal dispersion regime. The optical fiber that we consider has
second-order dispersion 8, = 5 ps*/km and nonlinear parameter
y = 1.27 (W- km)~!. These parameters are close to those of
commercially available single-mode fiber and to those used
in [25]. The total propagation distance that we consider is equal
to 1,000 km. We use the QPSK modulation format with the
raised cosine spectral characteristic described in Section II-C
with a roll-off factor ¢ = 1/7. We use the PCA method to solve
the NFT and the SILP method that we presented in Section II-B
to solve the INFT. When executing the PCA and the SILP meth-
ods, we minimize the computational cost of those methods by
only calculating the NFT and the INFT for the smallest number
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Fig. 1.  Schematic diagram of the nonlinear mitigation technique based on the
NFT. We use here the PCA to compute the NFT and the SILP to compute the
INFT. The numbers here are applicable to a QPSK waveform with 128 symbols
at 56 GBd per data frame and —2.8 dBm of channel power (0 dBm of average
launch power per data frame) with 4 samples per symbol and relative guard
time #g, g = 1.2, resulting in a total of (128 + 119) x 4 = 988 samples. The
reflection spectra are discretized with 2!7 points.

of samples in the time domain that are sufficient to accommo-
date the frame duration and the guard time. In Fig. 1, we show
the schematic representation of the steps 1 through 4 shown in
Section II-E applied to a QPSK system with 128 symbols at
56 GBd per data frame with a channel power equal to —2.8 dBm.
The number of points used to discretize each of the reflection
spectra, Ny = 2!7, is the smallest number of points—in powers
of two—that produces a Q > 15 dB due to discretization errors
in the PCA-ILP algorithms.

A. Reflection Spectra

In this sub-section, we investigate the dependence of the re-
flection spectra resolution on the channel power. Unlike the
equivalent representation of the waveform in the Fourier do-
main, the reflection spectra in (4) and (9), which account for the
combined effects of nonlinearity and dispersion along the fiber
transmission, are also dependent on the channel power.

In Fig. 2, we show the squared magnitude of the left reflection
spectrum of a QPSK waveform at 56 GBd per data frame with
128 symbols, 1,000 km of lossless propagation distance, and rel-
ative guard time #, g = 1.2, which corresponds to an effective
symbol rate of 29 GBd. The left reflection spectrum is shown at
—8.8 dBm of channel power (—6 dBm of average launch power
per data frame) with 2 samples per symbol and —2.8 dBm of
channel power (0 dBm of average launch power per data frame)
with 4 samples per symbol. The number of samples per symbol
used in each case was the minimum number of samples that
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Fig. 2. Squared magnitude of the left reflection spectrum as a function of
the eigenvalue ¢ for channel power equal to —8.8 dBm (with 2!° points) with
2 samples per symbol and —2.8 dBm (with 2!7 points) with 4 samples per
symbol with 128 QPSK symbols per symbol at 56 GBd per data frame with
1,000 km of lossless propagation distance and relative guard time #, g = 1.2,
which corresponds to and effective symbol rate of 29 GBd. The channel power
is —2.8 dB lower than the average launch power per data frame.

enabled Q > 15 dB due to numerical errors in the NFT-INFT
algorithms. Therefore, the larger sample rate required by the
NFT could be achieved using upsampling. We observed that
the system with —8.8 dBm of channel power has a left reflec-
tion spectrum whose magnitudes are clustered toward 1, but
vary broadly between 0 and 1. By contrast, in the system with
—2.8 dBm of channel power, the magnitude of the non-zero left
reflection spectrum is close to 1 at almost all values of ¢. How-
ever, the left reflection spectrum is punctuated by a set of sharp
spikes that must be resolved in order to accurately calculate the
INFT. The largest value of the left reflection spectrum magnitude
with —2.8 dBm of channel power is equal to 1 — 1.9 x 1072,
while the largest value of the left reflection spectrum magnitude
with —8.8 dBm of channel power is equal to 0.9993. The maxi-
mum possible value that the reflection spectra magnitudes in (9)
in a system with positive second-order dispersion can take is
equal to 1, as in the case of fiber Bragg gratings, and it should
approach 1 as the channel power or the number of symbols per
data frame increase. Therefore, optical fiber communications
systems with normal dispersion fibers and distributed gain that
compensates for the fiber loss have reflection spectra that are
very close to 1 at channel powers as low as —2.8 dBm with as
little as 128 symbols per data frame. If the channel power in this
system is increased to as little as —1.2 dBm of channel power
(1.7 dB of average launch power per data frame), the magnitude
of the left reflection spectrum in at least one of the eigenvalues
¢ becomes so close to 1 that it exceeds the accuracy of the float-
ing point numerical representation with double precision, which
leads to numerical errors in any INFT algorithm that makes use
of the reflection spectra, regardless of the spectral resolution
that is used.

In Fig. 3, which was generated using a sub-set of the data
shown in Fig. 2, we observed that the QPSK waveform with
—2.8 dBm of channel power (0 dBm of average launch power
per data frame) requires a much higher eigenvalue resolution of
the reflection spectra than the same waveform with —8.8 dBm
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Fig. 3. The same results shown in Fig. 2 for the eigenvalue ¢ from —28 to
—23 Grad/s.

of channel power (—6 dBm of average launch power per data
frame). With —8.8 dBm of channel power and 2'° points in
each of the reflection spectra, we found that O = 20.0 dB. With
—2.8 dBm of channel power and 2! points in the reflection
spectra, we found that O = 16.6 dB.

To quantify the rapid increase of the required eigenvalue res-
olution of the reflection spectra with the channel power, we also
calculated the maximum value of the magnitude of the deriva-
tive of the left reflection spectrum with respect to the eigenvalue
¢ for the results shown in Fig. 2. For —8.8 dBm of channel
power, the maximum value of the derivative of the left reflec-
tion spectrum with respect to the eigenvalue ¢ was equal to
5.80 x 10~ (rad/s), while for —2.8 dBm of channel power the
corresponding number was equal to 3.73 x 1077 (rad/s). There-
fore, a factor of four increase in the channel power produces
an increase of two orders of magnitude in the derivative of the
left reflection spectrum with respect to the eigenvalue ¢. These
results indicate that there is a trade-off between the channel
power and the eigenvalue resolution of the NFT, which is one of
the main factors that determines the computational cost of the
algorithm.

B. NFT and Channel Power

In the previous sub-section, we indicated that the eigenvalue
resolution required to apply the NFT to a frame with 128 QPSK
symbols at —2.8 dBm of channel power was more than two or-
ders of magnitude higher than the eigenvalue resolution required
to apply the NFT to the same QPSK frame with —8.8 dBm of
channel power. To investigate the dependence of the computa-
tional error of the NFT-INFT algorithms that we used on the
channel power, the number of points used to discretize each of
the reflection spectra, and the number of QPSK symbols per
data frame, we carried out a channel power sweep for eight
different number of points used to discretize each of the reflec-
tion spectra: 210, 211 212 213 214 215 216 "and 217 points, and
five different number of symbols per data frame: 32, 64, 128,
256, and 512 symbols. For every channel power, we determined
the number of points required in powers of two to discretize
each of the reflection spectra that results in Q > 15 dB from the
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Fig. 4. The logarithm (base 2) of the number of points used to discretize
each of the reflection spectra as a function the channel power and Q > 15 dB
due to the numerical error of the NFT-INFT algorithms. The symbol rate per
data frame is equal to 56 GBd and the relative guard time t, g = 1.2. The
results are parametrized by the number of symbols per data frame. The Q-
factor is calculated from the EVM using 30 randomly-chosen data frames. The
difference in dB between the channel power and the average launch power per
data frame is given in Table I.
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Fig. 5. Same results shown in Fig. 4 presented with the channel power given
in mW.

average EVM due to discretization errors in 30 randomly-chosen
data frames with the NFT-INFT algorithms. Since the number of
samples per symbol in these cases was equal to 4 and the range
of eigenvalues ¢ is fixed, the increase in the number of points
used to represent the reflection spectra increases only the resolu-
tion of the reflection spectra. The results of this study are shown
in Fig. 4 with the relative guard time #, g = 1.2. At 56 GBd per
data frame, the effective symbol rates of: 11.9 GBd for 32 sym-
bols per data frame, 19.7 GBd for 64 symbols per data frame,
29.1 GBd for 128 symbols per data frame, 38.3 GBd for 256
symbols per dta frame, and 45.5 GBd for 512 symbols per data
frame. In Fig. 5 we show the same results in Fig. 4 presented
with the channel power in linear scale (in mW). We observed
that the number of points required to discretize each of the reflec-
tion spectra increases exponentially or faster with the channel
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Fig. 6. The logarithm (base 2) of the number of steps in the adaptive split-step

Fourier method used for data frames with 32, 64, 128, 256, and 512 symbols.
The symbol rate per data frame is equal to 56 GBd and the relative guard time
tg.r = 1.2. The results are parametrized by the number of symbols per data
frame. The number of steps shown is calculated from averaging 30 randomly-
chosen data frames. The difference in dB between the channel power and the
average launch power per data frame is given in Table I.

power. For the QPSK system with 512 symbols to operate at
Q > 15 dB at 3 dBm, we extrapolate from the results in Fig. 5
that the reflection spectra have to be discretized with at least 2!'%3
points, which is not computationally feasible. Therefore, even
if the numerical complexity of the NFT-INFT algorithms could
be made as low as that of the Fourier transform (N log N), the
computational cost of using the existing NFT-INFT algorithms
to encode/decode data would not be practical even when the
system is operating a the quasi-linear regime.

To put the rapid increase of the computational cost of the
NFT-INFT algorithms with the channel power into perspective,
we show in Fig. 6 how the number of steps of the adaptive split-
step Fourier method that we use [37] increase with the channel
power for the system with 1,000 km with the same 32, 64, 128,
256, and 512 QPSK symbols that were transmitted in Fig. 5. The
time and the frequency domain were discretized with 2'° points
for 32, 64, and 128 symbols, with 21T for 256, and with 2'2
points for 512 symbols. We observed a much smaller increase
of the computational cost with the channel power in the split-
step Fourier method when compared to that of the NFT-INFT
algorithms.

For the case that we considered here with 128 QPSK sym-
bols at —2.9 dBm of channel power, the NFT method requires
a reflection spectra resolution that is sufficiently large to ex-
tract the nonlinear evolution of the signal that goes out to to
3 x 103 km of propagation distance, before the signal disperses
sufficiently for the nonlinearity to no longer matter. By contrast,
the split-step Fourier method only needs to numerically solve
the nonlinear evolution of the signal over the system propaga-
tion distance, 10° km in the case that we consider here. We
hypothesize that the reason for the rapid increase of the NFT
method with the channel power when compared to the split-step
Fourier method is because the reflection spectrum has to contain
all the information that is needed to extract the waveform at any
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Fig. 7. Q-factor of the received waveform as a function of the channel power

for a QPSK waveform with 128 symbols and 56 GBd per data frame with
relative guard time f, g = 1.2. The reflection spectra are discretized with 215
points with 2, 4, and 8 samples per symbol. The Q-factor is calculated from the
EVM using 30 randomly-chosen data frames. The channel power is —2.8 dB
lower than the average launch power per data frame.

distance from O km to the distance at which its evolution be-
comes quasilinear, after which the evolution is fully described
by its Fourier modes. While this hypothesis is consistent with
our results, as we will discuss in more detail in Section IV-A, a
rigorous mathematical analysis has yet to be carried out.

C. NFT and Time Discretization

In Fig. 7, we show the Q-factor due to numerical error in the
NFT-INFT algorithms for a QPSK waveform with 56 GBd of
symbol rate per data frame and relative guard time 7, g = 1.2
as a function of the channel power for 2, 4, and 8 samples per
symbol with the reflection spectra discretized with 2! points. At
a channel power below —10 dBm, the use of a larger number of
samples per symbol produces more accurate results, as shown in
Fig. 7. In the linear regime of operation, the residual numerical
error reduces by 12 dB for every doubling of the number of
samples per symbol. This residual error is the result of the Born
approximation, whose accuracy increases with the decrease of
Ay

As the average launch power per data frame increases for
a fixed number of samples per symbol, the computational er-
ror in the calculation of the INFT also increases. This increase
in the computational error with the channel power is due to the
Born (zero-order) approximation [21], which is used in the SILP
method. The computational error due to the Born approximation
increases with the channel power, and accumulates with each
iteration of the SILP method. We found that the Q-factor de-
creased slowly with the increase of channel power until reaching
a channel power threshold beyond which the Q-factor decreases
much faster with the channel power due to the limited resolution
of the reflection spectra. Therefore, the computational error in
the results shown in Fig. 7, before the Q-factor decreased rapidly
with the channel power, is the result of the Born approximation,
which produces a computational error that increases as the chan-
nel power increases. Hence, the Born approximation can limit
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the use of the INFT algorithms for nonlinear mitigation. The
reason why the performance of the system with 8 samples per
symbol is worse than that with 2 samples per symbol at channel
powers larger than —3.5 dBm is because the former system has
only one quarter of the reflection spectra resolution of the latter,
since the total number of points used to discretize the reflection
spectra in these systems is fixed at 2'.

Using the DLP algorithm in [30], the magnitude of the lumped
local reflectance in (6) at the end of a time step At is given by

|p| = tanh [Jému, Z)'A’} .

The numerical approximation due to the lumping of the dis-
tributed reflection at the end of each step A, requires that
|p| < 1 for all layers. Since the normalization coefficient of
the ZSSP in (3) for the optical fiber that we are considering is
given by

(20)

Y 504x 10" W25
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we find that the average launch power per time step has to be
below —3 dBm at 224 Gsamp/s per data frame for |p| < 5% at
the center of a symbol. This rate corresponds, for example, to
56 Gbd per data frame with 4 samples per symbol. For 128 QPSK
symbols per data frame with relative guard time f, p = 1.2,
this limit corresponds to —5.8 dBm of channel power. As the
magnitude of the local reflection increases, the approximation
due to the lumping the reflection at the end of the layer becomes
less accurate, leading to an increase in the computational error
of the calculation of the waveform in each layer with duration
A;. This error accumulates during the layer peeling procedure.
The magnitude of the lumped local reflection per layer close
to the center of the symbols calculated for the results shown
in Fig. 7 at —12 dBm of channel power are 5%, 2.5%, and
1.2% for 2, 4, and 8 points per symbol, respectively. These
values of the lumped local reflection per layer (time step A,)
are much smaller than 1, as required by lumping the reflection
at the end of the layer. However, at 0 dB of channel power,
the corresponding magnitude of the local reflection is 19.7%,
9.9%, and 4.9% for 2, 4, and 8 samples per symbol, respectively.
Therefore, the computational error that results from lumping the
reflection at the end of the layer increases as the average launch
power per data frame increases, which requires an increase in
the number of samples per symbol used in the DLP algorithm. If
the channel power is increased to 3 dBm, it would be necessary
to have at least 16 samples per symbol to achieve |p| < 5%.
Even though the Fourier bandwidth of the waveform increases
very little due to the nonlinear effects in the quasi-linear regimes
that we investigated, an increase in the channel power requires
an increase in the number of samples per symbol that is needed
to minimize the error in the DLP method or in any other layer
peeling method that relies on numerical approximations such
as the Born approximation in the SILP. The increase in the
number of samples used in the INFT algorithm can, in principle,
be accomplished by interpolating the sampled values from the
waveform.

2
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Fig. 8. The logarithm with base 2 of the number of points used to discretize
each of the reflection spectra as a function the number of symbols per data
frame (in linear scale) for Q > 15 dB due to the numerical error of the NFT-
INFT algorithms. The symbol rate per data frame is equal to 56 GBd and the
relative guard time fy g = 1.2. The results are parametrized by the channel
power. The Q-factor is calculated from the EVM using 30 random data frames.
The difference in dB between the channel power and the average launch power
per data frame is given in Table 1.

The Born (zero-order) approximation that is used in the
numerical discretization of the SILP is given in terms of the
kernel functions and the Fourier transform of the reflection
spectra, as opposed to lumping the reflection at the end of each
step A,. However, accuracy in the SILP method also requires
that |p| < 1. The computational error in the SILP accumulates
slower than in the DLP during the iterative layer peeling pro-
cedure because of the higher numerical robustness of the SILP
method.

D. NFT and Number of Symbols Per Data Frame

In Fig. 5, we observed the performance of the computational
NFT in a QPSK modulation format at 56 GBd per data frame
with 128 symbols per data frame and a minimum allowed value
of O = 15 dB due to numerical error. The maximum power was
limited to —4 dBm using Ny = 2'7 to discretize each of the
reflection spectra. For a minimum allowed Q = 15 dB and 2!7
points to discretize each of the reflection spectra for 256 and
512 symbols per data frame we observed that the channel power
decrease to —6 dBm and —8 dBm, respectively. In Fig. 8§ we
show that the computational cost of the NFT-INFT algorithms
increases exponentially with the number of symbols for a fixed
channel power.

IV. REFLECTION SPECTRA RESOLUTION

The numerical results shown in the previous section indi-
cate that the eigenvalue resolution of the reflection spectra and,
consequently, the computational cost of the NFT-INFT algo-
rithms increases rapidly as the system moves from the linear to
the quasi-linear regime of operation. The nonlinear effects in
the optical fiber transmission system without in-line dispersion
compensation, which requires the use of a fixed frame followed
by a guard time, increase as a result of the increase in the chan-
nel power, in the number of symbols per data frame, or both.
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Fig. 9. The evolution along the fiber of the relative RMS width of the Fourier
spectrum of the waveform that consists of 128 QPSK symbols with 56 GBd of
symbol rate per data frame with relative guard time t, g = 1.2 for —8.8 dBm,

—5.8 dBm, and —2.8 dBm of channel power with of channel power with 211
213 and 2!7 points to discretize both the reflection spectra and the time win-
dow of simulation, respectively. The results are calculated from the average of
30 random data frames. The channel power is —2.8 dB lower than the average
launch power per data frame.

Since the practical viability of using computational NFT-INFT
algorithms for nonlinear compensation in optical fiber commu-
nications systems depends significantly on the computational
cost of the method, it is important to understand the reason for
the interdependence between the computational cost of the NFT-
INFT algorithms and both the channel power and the number
of symbols per data frame. In what follows, we give an intuitive
explanation for the rapid growth in computational cost with both
the channel power and the data frame length for the NFT-INFT
algorithm that we studied.

A. Reflection Spectra and Computation Time Window

Since the NFT based on the ZSSP described in Section II has
a fixed value of the nonlinear parameter y and the second-order
dispersion f3,, there is always a finite propagation distance at
which the non-zero region of the waveform centered at 7;,/2
would disperse beyond the limits of the computation time win-
dow: [0, T,,]. Since Ty, is in practical cases far larger than the
signal frame, this distance will typically be larger than the prop-
agation distance of 1,000 km. However, this distance always ex-
ists in the normal dispersion regime (8, > 0), since this regime
does not support solitons. Once the waveform exceeds the up-
per or the lower limit of the simulation time window due to
the chromatic dispersion, the signal appears at the opposite end
of the simulation window in our computational algorithm due
to the intrinsic periodicity that arises from our computational
representation of the waveform. In our case, the eigenvalue res-
olution is given by A, = 7 /(NyA;) and T,, = Ny A,. If the
signal is still propagating nonlinearly when the periodic wrap-
ping occurs, then the computational window is not large enough
to resolve the nonlinear evolution. In this case, the INFT al-
gorithm must produce a large error at any distance since its
accuracy is the same at all distances.
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In Fig. 9, we show the relative root-mean-square (RMS) width
increase of the Fourier spectrum of a QPSK waveform with
128 symbols at 56 GBd per data frame with relative guard
time 7, g = 1.2 as a function of the propagation distance. The
initial RMS width of the spectrum waveform at the origin is
equal to 32.5 GHz. The RMS width of the Fourier spectrum
increases until the dispersed waveform spreads out so much
that the nonlinear effects become negligible or the dispersed
waveform exceeds the simulation window. The total duration
of the dispersed data frame Ty in the quasi-linear regime as a
function of the propagation distance L is given by:

Tar = Neym - L + 27| B2l foar - L. (22)

Js.at

For the simulation with 2!'! (for —8.8 dBm of channel power),
213 (for —5.8 dBm of channel power), and 2!7 (for —2.8 dBm of
channel power) to discretize both the reflection spectra and the
time window of simulation, the size of the periodic window is:
3.90 x 103 km, 15.5 x 10° km, and 331 x 10° km, respectively.
These are the number of points used to discretize each of the
reflection spectra that are the minimum to enable Q > 15 dB
due to numerical error in the NFT-INFT algorithms. The number
of points required to discretize the time window in most of the
systems in the quasi-linear regime that we investigated is much
larger than the number of points required to discretize each of
the reflection spectra, since the actual propagation distance that
we are considering, L = 1, 000 km, is short compared to the
propagation length in which the nonlinear effect is significant,
as illustrated in Fig. 9. In the practical cases in which the number
of samples recovered in time domain, Ngymp, 1S smaller than the
number of points used to discretize each of the reflection spectra,
Ny, the time shift in (14) has to be used.

B. Equivalence to Fiber Bragg Gratings

The left reflection spectra associated to the eigenvalues ¢ in
the ZSSP in (2) that models lossless transmission in optical fiber
systems with normal dispersion is equivalent to the reflectance
spectrum of a fiber Bragg grating, which can also be described
by (2) [19]. The slowly varying envelope of a data frame in
a normal dispersion fiber corresponds to the refractive index
profile of an appropriate fiber Bragg grating:

1) A fiber Bragg grating with large value of the refractive
index. This grating corresponds to a waveform with large
optical power that is launched in an optical fiber with
normal dispersion.

2) A wide fiber Bragg grating. This grating corresponds to
a waveform with a long duration that is launched in an
optical fiber with normal dispersion.

In both of these cases, the larger the refractive index of the
fiber grating and/or the larger the fiber grating length, the closer
to the maximum value of 1 the reflectance of the fiber grating will
be over a wide spectral range. Likewise, in both of these cases,
the narrower will be the frequency bands whose reflectance is
significantly lower than 1, since constructive interference in the
forward direction would take place in narrow bands that decrease
with both the refractive index of the fiber grating and the fiber
grating width. Therefore, the reflection spectra of the waveform
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launched in the corresponding optical fiber would also be close
to 1 over a wide range of the eigenvalue ¢ and the reflection
spectra will be different from 1 in narrow eigenvalue bands
whose widths decrease with the launch power and waveform
duration at the transmitter. As a consequence, higher launch
powers and a larger number of symbols per data frame require
higher resolution of the reflection spectra.

The numerical error due to the Born approximation also in-
creases with the the average launch power power, since the error
per time step increases. Moreover, a larger number of symbols
in the frame implies that more iterations are needed in the INFT
algorithms, and the errors will accumulate due to the Born ap-
proximation. The combination of the finite reflection spectra
resolution in the NFT algorithms and the Born approximation
in the INFT algorithms that make use of that approximation
leads to the exponential increase in the errors with both the
channel power and the number of symbols per data frame that
is shown in Figs. 5 and 8.

V. CONCLUSION

We used computationally efficient and robust computational
methods to implement the NFT-INFT algorithms that work well
when the reflection spectra are close to 1. We investigated the
computational cost of nonlinear compensation techniques based
on the NFT that is applied to optical transmission systems with
normal dispersion fibers. We used the QPSK format with raised
cosine spectral characteristic to show that the computational cost
of the NFT-INFT algorithms increases exponentially or faster
with both the channel power and with the number of symbols per
data frame. We showed that the computational cost of the NFT
is primarily limited by the eigenvalue resolution required for the
reflection spectra in the NFT. If the INFT algorithm makes use
of an iterative approximation along At, as does the SILP and
other layer peeling methods, the number of samples per symbol
must be large enough to satisfy that approximation. Since the
computational NFT methods that we investigated require that
the slowly varying envelope of the optical signal converges
towards zero before the edges of the simulation window, the
relative guard time has to be increased beyond 7, p = 1.2 at
higher power levels due to the increase in the spectral bandwidth
along the propagation due to the fiber nonlinearity. This is a
third, additional, effect that contributes to the decrease of the
effectiveness of the NFT as a technique for nonlinear mitigation.

The NFT-INFT algorithm that we have studied is capable of
reconstructing the waveform and its Fourier spectrum at any
propagation distance. The distance over which the Fourier spec-
trum continues to increase can be orders of magnitude larger
than the actual transmission distance when operating in the
nonlinear regime, as shown in Fig. 9. The reflection spectrum
must have sufficient resolution to resolve this entire evolution.
If this condition is not satisfied, the computational error of the
NFT-INFT algorithms will be large at any point along the trans-
mission. For example, to use the NFT to process the signal that
consists of 128 QPSK symbols at 56 GBd per data frame at
—8.8 dBm of channel power, whose left reflection spectrum
is shown in Fig. 2, the NFT requires only 2!° points to achieve
QO > 15 dB. When the channel power is increased to —2.8 dBm,
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the number of points required by the NFT to achieve Q > 15dB
for the same QPSK waveform increases to 2!”. For this system
to operate at Q > 15 dB at 3 dBm, we estimate that the re-
flection spectra have to be discretized with at least 2! points
to process each QPSK frame with 512 symbols. The associ-
ated computational cost is not practical with currently available
technology.

This study only explores data modulation in the time domain
using the QPSK raised cosine modulation format. Le, et al. [10],
carried out a study in which the signal was modulated directly
in the left reflection spectrum in a transmission system that con-
sisted of anomalous dispersion fibers. In that study, the peak
performance was observed at only —4 dBm of average launch
power per data frame, which was 3 dB above the peak perfor-
mance of —7 dBm of average launch power per data frame pro-
duced by modulation in the time domain. Because of the guard
time requirement due to the chromatic dispersion after 2,000 km
of propagation distance, the actual channel power for peak per-
formance in those two cases are —13.3 dBm and —16.6 dBm,
respectively. We anticipate that extending this method to nor-
mal dispersion fibers is challenging. Systems with —2.8 dBm
channel power, which corresponds to 0 dBm of average launch
power per data frame with 128 symbols per data frame, in the
normal dispersion regime have reflection spectra whose magni-
tudes are within 10~'9 of 1 over a large portion of the reflection
spectra. In the case that we considered, in which we directly
modulated the slowly varying envelope of the optical signal, the
maximum magnitude of the reflection spectra magnitude comes
so close to 1 that it exceeds the accuracy of the floating point
numerical representation at —1.2 dBm of channel power, which
corresponds to 1.7 dBm of average launch power per data frame
with 128 symbols per data frame, regardless of the number of
points used to discretize each of the reflection spectra. While our
results apply to a particular data format, we expect that the rapid
increase of the required spectral resolution and, consequently,
of the computational cost of the NFT algorithms with both the
length of the data frame and the average launch power per data
frame will hold generally. These issues should be addressed
when assessing the practicality of the NFT with any modulation
format.
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