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We demonstrate that extended dissipative structures in
Kerr-nonlinear whispering-gallery mode resonators undergo
a spatiotemporal instability, as the pumping parameters are
varied. We show that the dynamics of the patterns beyond
this bifurcation yield specific Kerr comb and sub-comb spec-
tra that can be subjected to a phase of frequency-locking
when optimal conditions are met. Our numerical results
are found to be in agreement with experimental measure-
ments. © 2019 Optical Society of America
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Spatiotemporal instabilities arise when a stationary solution
loses stability via a traveling wave [1]. Although well-known
in the context of the mathematical analysis of nonlinear partial
differential equations, unambiguous examples of such instabil-
ities are not very common in nonlinear optics. Noteworthy
exceptions include Ref. [2], where the authors analyzed spatio-
temporal instability of a constant field (flat state) in a nonlinear
medium with both dispersion and diffraction. More recently,
Anderson et al. investigated theoretically and experimentally
the spatiotemporal instability from a temporal cavity soliton
in a fiber ring resonator [3].

In this Letter, we analyze the spatiotemporal instabilities of a
roll pattern generated in a Kerr-nonlinear whispering-gallery
mode resonator. These systems have several important applica-
tions in areas such as time-frequency metrology, ultra-stable
microwave generation, spectroscopy, and optical telecommuni-
cations [4-9]. Despite the fact that Kerr combs have already
allowed for many technological applications, the stability of roll
patterns is still not fully understood. In particular, emphasis is
generally laid on primary bifurcations leading to their emer-
gence, while only a few works have studied the secondary
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bifurcations leading to their destabilization [10-12]. Indeed,
a deep understanding of both primary and secondary bifurca-
tions is key to defining the stability basin for the solutions of
technological interest. Here we provide a theoretical explana-
tion for the secondary instabilities of roll patterns and identify
them as spatiotemporal instabilities. Our theoretical results are
in agreement with the experimental measurements. We also
expect this Letter to be of interest for a larger community
interested in nonlinear dynamics and pattern formation in
spatially extended systems.

The system under investigation is an ultrahigh-Q WGM res-
onator pumped by a resonant continuous-wave laser [13-16].
The dynamics of the normalized intracavity field w (6, 7) obeys
the following Lugiato—Lefever equation (LLE) [17-19]:

oy . . POy

P ( + i)y + ily|*y 12092+F, (1)
where the normalized parameters are the laser-cavity detuning a,
the second-order dispersion f#, and the pump field 7, while the
variables are the dimensionless time 7 and the azimuthal angle
0 € [-x, 7). This equation does not account for the other third-
order nonlinearities (Brillouin, Raman, ...) of the bulk resona-
tor that could trigger instabilities [20-24].

A wide variety of patterns can be excited inside the resonator
[25-30], but the most prevalent extended dissipative structures
in the cavity are the so-called Turing roll patterns. These pat-
terns emerge from a flat state via Turing instability and consist
of an integer number of rolls along the azimuthal direction of
the resonator. Previous theoretical analyses [31,32] have
shown that at threshold, this number is the closest integer
approximation of Ly, = [2(a -2)/, [3]%

The Kerr comb spectra corresponding to this roll patterns
are sometimes referred to as primary combs, and they feature
multiple free spectral range (FSR) spacing, with a multiplicity
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Fig. 1. Tllustration of a spatiotemporal bifurcation for the rolls in
the LLE. A stable set of Turing rolls, in principle, could undergo sev-
eral types of bifurcations: a spatial bifurcation will lead to a spatially
modulated pattern, while a temporal bifurcation will produce oscilla-
tions along the time coordinate. By contrast, a spatiotemporal
bifurcation leads to patterns that oscillate in both time and space.

exactly equal to Ly,. An open question is to understand how
these rolls lose their stability, as the pump parameters (power
and frequency) are varied. Figure 1 proposes a schematic illus-
tration of the possible destabilization mechanisms for a roll
pattern: these mechanisms include temporal, spatial, and spa-
tiotemporal bifurcations. Our main objective in this Letter is to
show that it is the latter that governs the destabilization of
azimuthal roll patterns in WGM resonators. The stationary
solutions of the LLE satisfy Eq. (1) with d,yy =0. Once a
steady-state solution  has been found, its stabilicy may be
determined by linearizing the LLE about the stationary solu-
tion and finding all the eigenvalues of the linearized equation:

0

— oy = Ly, 2
or

where 8y = (8, Oy;) is the perturbation with real and

imaginary parts 8y, ;, and

— ( -1- 2ll/st,rl//st,i

a-yl, -3yl + ’%rﬁ)
-a + 3Wszt,r + l//szt,i —gaé

-1 + ZWst,rWst,i
3
The eigenvalue equation Ly = Ady is then used to inves-
tigate the stability of the roll patterns. In our computational
procedure, we discretize the system by only keeping an even
number N of modes in the spectral domain, which can be
spanned as

v =5 v, @
2 ) .

with/ = -N/2,..., N /2 - 1. For the results reported here, we
use N =512 or N = 1024. We consistently evaluate the
second derivative of @ in the wavenumber domain and the
nonlinear terms in the O-domain. Given a good initial guess
for a stationary solution, we use the Levenberg—Marquardt
algorithm to find the stationary solution. When finding the
eigenvalues, the vector Sy of the eigenvalue equation becomes
a column vector of length 2/V after modal expansion. We use a
spectral decomposition of the operator 3, which produces
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dense sub-blocks in the matrix representation of £ [33,34].
We then use the QR algorithm to find all the eigenvalues
[35]. We have found that the spectral method adds negligibly
to the computer time that we need for our implementations
while reducing the angular resolution needed and enabling a
direct comparison to our evolutionary studies, based on the
split-step Fourier method. We use the boundary-tracking algo-
rithm, described by Wang ez a/. [34], to find the stable operat-
ing region for the primary combs. We separately find the stable
region for each primary comb of order Z, whose comb spacing
equals L x FSR, with L being a positive integer. We fix f =
-2.2x 107 throughout the Letter, which corresponds to
our experiments, and we find the stable regimes in the two-
dimensional @ - F? parameter space. To find a stable region
for a given value of Z, we first find a solution in a highly stable
region of the parameter space. We can then determine the sta-
tionary solution and its stability as the parameters vary. At some
point, the stable solution becomes unstable or ceases to exist.
We then move along or track the boundary, as described in
Ref. [34]. We note that different bifurcations occur at different
points along the boundary, which is why it is important to de-
termine all the eigenvalues. As a consequence, we observe cusps
in the boundary of the stable region when shifting from one
bifurcation to another. In the laser frequency-power (o - F?)
parameter space, Turing rolls with given muldiplicity Z have
defined basins of attraction that can thereby be determined nu-
merically, as shown in Fig. 2.

The spatiotemporal perturbation has a specific signature in
both the optical and radio-frequency (RF) domains. Indeed, in
the optical domain, the stationary Lth order roll pattern can be
expanded as y, (0) = >, W;;¢*, with all the ¥, being con-
stant. When a spatiotemporal bifurcation occurs, the amplitude
of this pattern is perturbed as

Winod(6:7) = [1 + (0, 1)y (0), (5)

with the traveling-wave perturbation (6, 7) = a,¢’*/-%?_ In

the particular case when L, = L/2, we obtain the so-called sec-
ondary combs, and the resulting pattern can be expanded as

Winod(0,7) = Zqz L+ g efiQarZTkL D0 ()
k k

where the first term in the right-hand side stands for the un-
perturbed pattern ., while the second term stands for the
time-dependent, frequency-shifted comb lines created by the

15 L=17
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Fig. 2. Stability diagram of the Turing patterns in the parameter
space a — F?: within each encompassed area, the Turing pattern with
a given number of rolls L is stable.
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Fig. 3. Experimental transition to secondary combs and chaos obtained with a MgF, resonator by detuning the laser further into resonance
(@ = -1.8, -1.35, -1, and 0.3) with constant pump power F? = 12, corresponding to approximately 100 mW in the experiment. The FSR
of the resonator is ~5.9 GHz, and its intrinsic and coupling quality factors are around 107 at 1550 nm, corresponding to a photon lifetime
Tpn = 0.8 ps. We show corresponding simulation spectra and time-domain evolution in the second and third columns. The last column displays
the eigenvalues in the complex plane: the spatiotemporal bifurcation occurs when the real part of one of them becomes positive, close to the detuning

a = -1.35.

spatiotemporal perturbation. Note that the new spectral com-
ponents of the secondary comb are located between those of the
initial primary comb.

Figure 3 presents a detailed analysis of the spatiotemporal
bifurcation, as the laser detuning is varied. The leftmost col-
umn corresponds to experimental spectra and shows how, from
an initial primary comb with multiplicity L = 64, the secon-
dary comb first emerges and then gradually grows towards a
fully chaotic comb. The second column displays numerical sim-
ulations that are in excellent agreement with the experimental
spectra. We note that the LLE matches the experimental
data over a large dynamical range (80 dB) and for a high-
dimensional system. (There are ~400 oscillating modes in these
spectra.) The numerical simulations presented in the third col-
umn unveil the dynamics of the rolls as they undergo a spatio-
temporal bifurcation. Initially, the roll pattern is stationary with
a well-defined stability basin (see Fig. 2), but after the bifurca-
tion, it starts to oscillate both in space and time. This specific
dynamics actually corresponds to the modulation of the
intensity pattern by a traveling wave following

|Wm0d(9’ T)|2 = [1 + 2|‘lO| COS(L;ZG - QaT)]ll//st((g)P’ (7)

for |ag] < 1. Since L,=L/2, the effect of the instability-
induced traveling wave « is to trigger antiphase oscillations
for adjacent rolls. As the system is driven further from the bi-
furcation, the pattern enters a regime of spatiotemporal chaos,
where the rolls are destroyed. The fourth and last columns of
Fig. 3 display the eigenvalue distribution for the cavity modes.
It can be seen that the bifurcation occurs when two of these
eigenvalues cross the imaginary axis. The crossing of additional

pairs of eigenvalue drives the intracavity field into a regime of
spatiotemporal optical turbulence.

The spectral signature of the spatial bifurcation can be
monitored in the optical spectrum, but the time-averaging
of the Fourier spectra does not allow the direct detection of
the temporal dynamics for these modes. Instead, the temporal
bifurcation can be analyzed via the emergence of modulation
side peaks in the photodetected RF spectra of the combs. The
comparison between theoretical and experimental results is per-
formed via the output optical signal v, = -F + 2py, where
p is the ratio between out-coupling and total losses. After pho-
todetection, an RF signal proportional to the incoming optical
power [y, | is generated, and features a multi-harmonic sig-
nal with spectral components at frequencies 7 x Qggr, with
n=0,1,2,.... The photodetected optical power can be
expanded in the Fourier domain as

1 21
Woul* = EMO + Z [2/\4;1 exp(inQpspt) +cc.|,  (8)
n=1

where M, = 23 W 14,7, , Is the slowly varying envelope
of the microwave spectral component of frequency 7 x Qpsg,
and c.c. stands for the complex conjugate. Therefore, we expect
the temporal bifurcation to induce modulation side peaks
around M, with a spectral spread that is of the order of
WGM resonance linewidths (few megahertz). This behavior
is experimentally observed in Fig. 4, in agreement with our
numerical simulations. These modulation side peaks are due
to an interaction with the main modes via four-wave mixing,
thereby creating sub-combs that play a major role in
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Fig. 4. (a) and (b) Combs and RF beatnotes obtained in a MgF,
polished resonator in the vicinity of the spatiotemporal instability.
(c) and (d) Comb and RF spectra from the numerical simulation
of the LLE with 72 = 12 and @ = -1, demonstrating good agreement
with the experimental results.

phase-locking phenomena across the comb [36-39]. Indeed, as
the system evolves further from the spatiotemporal bifurcation,
the secondary combs in Fig. 3 feature several lines that are
created around the initial bifurcation-induced modes. These
parasitic lines, spaced by one FSR, are strengthened and
amplified by four-wave mixing. They are useful experimentally
because without them, we would not be able to photodetect
beatnotes around the FSR. The “fundamental” tone would
be (L/2) x FSR ~ 150 GHz away from the FSR, which is
beyond the bandwidth of the photodetector.

In conclusion, we have shown that rolls can lose their
stability via a spatiotemporal bifurcation that leads to simulta-
neous oscillations in space and time, corresponding to a
traveling-wave amplitude modulation. The resulting pattern
can lead to the well-known secondary combs. We expect these
results to provide a deeper understanding of the dynamics of
many other dissipative structures in WGM resonators [40,41].
In the light of previous research works that already unveiled
key mathematical properties of the LLE equation [42—45],
we also expect our analysis to lead the way to a stability
enhancement of these patterns, for the benefit of the many
targeted applications [4-9].
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