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Abstract: We study the transverse mode instability (TMI) in the limit where a single higher-order
mode (HOM) is present. We demonstrate that when the beat length between the fundamental
mode and the HOM is small compared to the length scales on which the pump amplitude and
the optical mode amplitudes vary, TMI is a three-wave mixing process in which the two optical
modes beat with the phase-matched component of the index of refraction that is induced by the
thermal grating. This limit is the usual limit in applications, and in this limit TMI is identified as
a stimulated thermal Rayleigh scattering (STRS) process. We demonstrate that a phase-matched
model that is based on the three-wave mixing equations can have a large computational advantage
over current coupled mode methods that must use longitudinal step sizes that are small compared
to the beat length.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Ytterbium-doped fiber amplifiers that produce kilowatt output powers have been developed in
the past decade [1–7]. However, the thermal or transverse mode instability (TMI) has become a
major barrier to achieving even higher output powers [8–10]. Despite almost a decade of work
since the original observation of TMI in fiber amplifiers by Jauregui et al. [11] and Eidam et al.
[12], it still remains only partially understood, and computationally-efficient methods that are
sufficiently accurate for amplifier design have been lacking. It was recognized early by Smith
and Smith [13] that the instability could be explained by a thermal grating that is induced by
the beating of the fundamental mode of the optical fiber with a higher-order mode (HOM) at a
slightly lower frequency and the quantum defect heating that ensues.

Subsequent work by Jauregui et al. [14], Dong [15], and Smith and Smith [16] identified the
instability as a stimulated thermal Rayleigh scattering (STRS) process. In particular, Dong [15]
developed a three-wave mixing model that is analogous to models of the Brillouin instability due
to stimulated Brillouin scattering (SBS). This identification has remained somewhat controversial,
although Kong et al. [17] directly observed the STRS process in a fiber amplifier. Ward et
al. [18] and Naderi et al. [19] developed a model of TMI based on a coupled mode method
that makes no reference to three-wave interactions. The complexity of TMI has obscured its
identification as an STRS-driven, three-wave process. The conditions that are required to treat
TMI as a three-wave instability have not been elucidated.

In this work, we demonstrate that the key requirement is that the beat length LB = 2π/∆β must
be small compared to any other longitudinal scale lengths, where ∆β is the difference between
the wavenumber of the fundamental mode and any HOMs at the same frequency. This condition
usually applies in practice. In this limit, we derive the three-wave equations that govern TMI.
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Terms that are not phase-matched are neglected. This approach is similar to Dong’s approach
[15], but is more general.

We further demonstrate that this approach has a large computational advantage. Approaches
that use the coupled mode method, like the approach of Naderi et al. [19], must use longitudinal
steps in their computations that are small compared to the beat length. As a result, Naderi et al.
[19] limited their study to a high-gain amplifier with a length of 1.6 m, which is substantially
shorter than typical ytterbium-doped fiber amplifiers. Approaches that use the finite-element
method to calculate the optical mode profile on each longitudinal step like that of Ward [20]
must take steps that are small compared to the optical wavelength and typically require large
computational resources. Our approach is only limited by the longitudinal scale lengths over
which the amplitudes of the optical modes, the thermal mode, and the pump mode change. These
lengths are typically far larger than the beat length. For the examples that we consider in this
paper, which correspond to realistic Yb3+-doped fiber amplifiers, the computational speedup is
more than a factor of 100.

2. Theoretical model

We may write the index of refraction as n(r⊥, z, t) = n0(r⊥) + ∆n(r⊥, z, t), where n0(r⊥) is the
unperturbed index of refraction, and we set ∆n ≪ n0, which is always the case (∆n/n0 ∼ 10−5).
We will use the slowly varying envelope approximation, which is an excellent approximation
in this system due to the large discrepancy between the wavelength and the next-smallest scale,
which is the intermodal beat length LB. We will also assume that time derivatives of the index of
refraction can be ignored when calculating the inter-modal coupling. That is again an excellent
approximation, given the large disparity between the light period and the time scale on which
either the gain changes (microseconds) or the temperature changes (milliseconds). We assume as
well that the only coupling is between modes that are propagating in the forward direction. We
start with the expression from coupled mode theory for two coupled modes [21,22],

dA0
dz =

iω2

βc2

∫
d2r⊥n0∆n

[︁
|E0 |

2A0 + E∗
0 · E1 exp(−i∆βz)A1

]︁
,

dA1
dz =

iω2

βc2

∫
d2r⊥n0∆n

[︁
|E1 |

2A1 + E∗
1 · E0 exp(i∆βz)A0

]︁
,

(1)

where E0 and E1 are the normalized transverse mode profiles for the fundamental mode and
the HOM, while A0 and A1 are the corresponding amplitudes. We have set β ≡ β0 ≈ β1 since
∆β = β0 − β1 ≪ β0,1. Equation (1) is valid when only a single HOM is present or when the
amplitudes of the other HOMs are small compared to A0 and A1.

To solve Eq. (1) at any point in time t, we must find ∆n(r⊥, z, t). Due to the factors exp(±i∆βz)
that appear in Eq. (1), it is necessary to determine ∆n(r⊥, z, t) with a computational resolution
∆z that is small compared to the beat length LB = 2π/∆β even though the field amplitudes vary
slowly compared to this length. Since we must determine the transverse dependence of ∆n as
well, this constraint is computationally demanding. We can bypass this difficulty by replacing the
field ∆n(r⊥, z, t) with three fields ∆n0(r⊥, z, t), ∆n+(r⊥, z, t), and ∆n−(r⊥, z, t), which are defined
so that

∆n = ∆n0 +
1
2
[∆n+ exp(i∆βz) + ∆n− exp(−i∆βz)], (2)

and ∆n0, ∆n+, and ∆n− all vary slowly compared to the beat length LB. When we substitute
Eq. (2) into Eq. (1) and keep only the phase-matched terms, we obtain
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The terms that are not phase-matched are rapidly oscillating and do not contribute significantly
to the integrals. All terms in Eq. (3) vary slowly in z. It then becomes possible to integrate Eq. (3)
with no loss of accuracy while using a resolution in z that is far larger than is necessary with
Eq. (1).

The form of Eq. (3) makes clear that in the limit where Eq. (3) is valid, TMI is effectively a
three-wave process in which two optical fields combine with a density field. The condition for
Eq. (3) to be valid is that all terms must vary slowly compared to the beat length. This condition
is almost always met in practice. Since the density field is thermally driven, this process is
a stimulated Rayleigh scattering process. We discuss this identification in more detail in the
Appendix.

The procedure that we use to obtain ∆n0, ∆n+, and ∆n− in terms of the field and as a function
of time is analogous to the procedure that is used by Naderi et al. [19] that is illustrated in Fig. 1.

Fig. 1. Schematic flow diagram of the computational procedure. The time step occurs when
T(t + ∆t) is calculated using Q(t).

We begin by writing the signal intensity Is(r⊥, z, t) as

Is(r⊥, z, t) = Is0 +
1
2
[Is+ exp(i∆βz) + Is− exp(−i∆βz)] , (4)

where

Is0 =
β

2µ0ω

(︂
|E0 |

2 |A0 |
2 + |E1 |

2 |A1 |
2
)︂

, Is+ = I∗s− =
β

µ0ω
E∗

1 · E0A∗
1A0, (5)

all vary slowly compared to LB. The behavior of a Yb-doped fiber amplifier is accurately
described as a two-level system at realistic power levels [2]. Given Is(r⊥, z, t) and the pump
intensity Ip(z, t), we next compute the upper state density N2(r⊥, z, t) of the Yb ions, which is
given by

N2 =
σ(a)

p (Ip/ℏωp) + σ
(a)
s (Is/ℏω)[︂

σ(a)
p + σ

(e)
p

]︂
(Ip/ℏωp) +

[︂
σ(a)

s + σ
(e)
s

]︂
(Is/ℏω) + 1/τ

N0, (6)

where ω and ωp are the signal and pump angular frequencies, respectively, τ is the spontaneous
decay time of the upper level, N0 is the total density of Yb ions, and σ(a)

p , σ(e)
p , σ(a)

s , and σ(e)
s

are the absorption and emission cross-sections at the pump and signal frequencies. Because
Is appears in both the numerator and denominator of Eq. (6), the density N2 will have higher
harmonics that are proportional to exp(±im∆β) with m>1. We will truncate this expression since
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the harmonics with m>1 are not phase-matched. Explicitly, we find that Eq. (6) has the form

N2 =
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N0, (7)
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∗
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(8)

We note that D<C and B<C is a consequence of Is+<Is0, which in turn follows from the
Cauchy-Schwartz inequality. We now write

N2 ≃ N20 +
1
2
[N2+ exp(i∆βz) + N2− exp(−i∆βz)] , (9)

where
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C
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(10)

with r = (1 − D2/C2)1/2 [23]. Equation (10) is an exact truncation, not an expansion. We will
show in Sec. 3 that the contributions of higher harmonics with m>1 are negligible.

The next stages in the procedure are more straightforward. TMI is generated by the heat
deposition due to the quantum defect between the pump and the signal, which in turn leads
to a time-delayed temperature response that changes the index of refraction. The temperature
response depends linearly on the heat deposition, which in turn depends linearly on the upper
state density. From the expression for the heat deposition Q,

Q =
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)︃ [︂
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we find
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)︂
N2+Ip,

(12)

where Q = Q0 + (1/2)[Q+ exp(i∆βz) + Q− exp(−∆βz)]. Similarly, from the expression for the
temperature evolution,

ρC
∂T
∂t

− κ∇2
⊥T = Q, (13)

where ρ is the density, C is the heat capacity, and κ is the heat diffusivity, we find

ρC
∂T0
∂t

− κ∇2
⊥T0 = Q0, ρC

∂T+
∂t

− κ∇2
⊥T+=Q+, (14)

where T = T0 + (1/2)[T+ exp(i∆βz) + T− exp(−∆βz)] and T− = T∗
+. Integrating Eq. (13) over

time in the full model and Eq. (14) over time in the phase-matched model, we can now obtain
T(r⊥, z, t + ∆t) − T(r⊥, z, t). Since the temperature tends to a constant Troom at large radius,
the appropriate boundary conditions for both T and T0 at large radius are T = T0 = Troom,
and the appropriate boundary condition for T+ is T+ = 0. This integration is where the basic
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time step occurs, as we show schematically in Fig. 1, and it is this step that is computationally
time-consuming.

We can now find the change in the index of refraction. There are two contributions to the index
of refraction that we must take into account. The first contribution is from the temperature change,
for which ∆nT = (dn/dT)(T − Troom) and ∆nT0 = (dn/dT)(T0 − Troom), ∆nT+ = (dn/dT)T+ in
the phase-matched model. The second contribution is from the gain,

g(r⊥, z, t) =
(︂
σ(e)

s + σ
(a)
s

)︂
N2(r⊥, z, t) − σ(a)

s N0(r⊥), (15)

from which we find

∆ng = −i
c

2ω

[︂(︂
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s + σ
(a)
s

)︂
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]︂

. (16)

It follows that
∆ng0 = −i c
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,
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s
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(17)

where∆ng = ∆ng0+(1/2)[∆ng+ exp(i∆βz)+∆ng− exp(−i∆βz)]. Although∆ng is purely imaginary,
the components ∆ng+ and ∆ng− are not. Naderi et al. [19] have pointed out that the corresponding
phase shift does not contribute to the instability, but plays an important role in the energy balance.
Finally, we obtain ∆n0 = ∆nT0 + ∆ng0, ∆n+ = ∆nT+ + ∆ng+, and ∆n− = ∆nT− + ∆ng−. In the
full model, the terms that are not phase-matched are rapidly oscillating and do not contribute
significantly to the overall gain or loss. In the phase-matched model, the slowly varying terms
∆n0, ∆n+, and ∆n− are used to replace ∆n, as shown in Eq. (2), and the overall gain or loss for
the fundamental mode and HOM can be predicted.

To complete the model equations, we must obtain the pump intensity Ip(z, t). We use the
expression

dIp

dz
= ±

[︂(︂
σ(e)

p + σ
(a)
p

)︂
N2 − N0

]︂
Ip, (18)

where the overbar indicates that the population densities are averaged over the cross-section
of the pump. The sign depends on whether the pump is forward- or backward- propagating.
Equation (18) becomes

dIp

dz
= ±

[︂(︂
σ(e)

p + σ
(a)
p

)︂
N20 − N0

]︂
Ip, (19)

in the phase-matched model.
In this paper, we focused on the contribution to TMI due to the quantum defect heating. It has

been shown that photodarkening can also contribute to TMI [24,25]. Photodarkening contributes
to the thermally induced index grating coherently with quantum defect heating [8]. Hence, the
heat source term and absorption term from photodarkening [24] could be added to Eqs. (11,12)
and Eqs. (15,16), respectively, to include the photodarkening effect in the phase-matched model
for TMI.

3. Verification, accuracy, and timing of the phase-matched model

In this section, we first verify the phase-matched model, [Eqs. (3), (8), (12), (14), (17), (19)] by
comparing its predictions to those of the full model, [Eqs. (1), (6), (11), (13), (16), (18)]. We
will show that agreement is excellent for a realistic amplifier system similar to the system that
Naderi et al. [19] considered, but using a fiber length of 10 m, which is a typical experimental
length [7,26]. We then consider in more detail the error as a function of the step size ∆z and
show that the phase-matched model has a significant computational advantage.
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3.1. Verification

We show the basic set of parameters that we are considering in Table 1. These parameters are
similar to those used in [19], but with a more realistic amplifier length of 10 m. We use the
alternating-direct-implicit (ADI) method to integrate the temperature equations, and we used the
Runge-Kutta method to carry out the z-integration. In all the simulations reported here, we used
a 140 × 140 µm2 square grid for the transverse integration with a 2 × 2 µm2 grid spacing. We
verified that using a larger grid size of 160 × 160 µm2 with a smaller grid spacing of 1 × 1 µm2

makes a negligible difference in Figs. 2 and 3. We chose the z-step sufficiently small so that the
relative error is below 1%. In all the simulations reported here, we used a noise seed ratio at
the entry to the optical fiber of 10−4 between the HOM and the fundamental mode. We verified
that using a noise seed ratio of 10−3 or 10−5 does not change the agreement between the full and
phase-matched models that we present in Figs. 2 and 3.

Fig. 2. Power ratio ρ(t) = PHOM(t)/Ptotal(t) at the end of the amplifier vs. time t. The
pump power equals 250 W.

Table 1. Simulation Parameters

Lfiber = 10 m ncore = 1.45031 σ
(e)
p = 1.87 × 10−27 m2

Dcore = 50 µm N.A. = 0.03 σ
(a)
p = 1.53 × 10−24 m2

Dcladding = 250 µm λpump = 977 nm σ
(e)
s = 6 × 10−27 m2

N0 = 1 × 1025 m−3 λsignal = 1064 nm σ
(a)
s = 3.58 × 10−25 m2

In Fig. 2, we show a comparison of the ratio ρ(t) = PHOM(t)/Ptotal(t) of the power in the HOM
PHOM(t) to the total power Ptotal(t) at the end of the fiber as a function of time. In the case that
we show here, the input pump power Ppump equals 250 W. With this pump power, we find that
ρ(t) rises to a maximum of 17%, shown as a dot in Fig. 2, before returning to a value that is close
to the initial HOM seeding. We observe excellent agreement between the full model and the
phase-matched model. As the pump power increases, we continue to observe excellent agreement
between the two models, although when the pump power is large enough where both models
predict chaotic oscillations, the agreement is qualitative rather than quantitative. This behavior is
expected since small changes in the seeding ratio also produce large changes in this limit due to
the butterfly effect [27].

In Fig. 3, we show max[ρ(t)] vs. Ppump and a dotted line that corresponds to a ratio of 1%. We
observe excellent agreement between the phase-matched model and the full model. In this work,
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Fig. 3. Maximum power ratio max[ρ(t)] at the amplifier end vs. input pump power Ppump.
The threshold ratio of 1% occurs when Ppump = 207 W.

we define the threshold power as the lowest pump power at which max[ρ(t)]>0.01, i.e., the ratio
of PHOM(t)/Ptotal(t) exceeds 1% at any time. Beyond this threshold, the beam quality rapidly
degrades [11,12,28,29]. This definition of the threshold is consistent with studies of amplifier
limits due to SBS. In the case considered here, the threshold power equals 207 W.

In Fig. 4, we show the temperature as a function of longitudinal position z and the absolute
value of its spatial Fourier transform at a distance of 10 µm from the amplifier center and a time
t = 0.5 ms. We set Ppump = 450 W. In Fig. 4(a), where we show the temperature as a function
of position, we see that the agreement between the full model and the phase-matched model
appears excellent. In the inset, where we show the spatial oscillations, the two models appear
indistinguishable. However, the subtle difference is visible in Fig. 4(b), where we show the
absolute value of the spatial Fourier transform, |FT(T)| = |

∫
T(z) exp(ikz) dz|. Agreement is

excellent for the central harmonic, as well as the two surrounding harmonics which are located
at k = ±∆β = ±528 m−1. However, the phase-matched model has no contribution from the
harmonics at ±n∆β, where n ≥ 2. It is precisely these higher harmonics that we are neglecting.

3.2. Accuracy and timing

In the phase-matched model, the number of dependent variables is almost twice as large as in the
full model. In particular, it is necessary to solve the temperature equation, Eq. (14), for both T0
and T+ instead of just solving the temperature equation, Eq. (13), for the single temperature T . As
a result, we have found that the computational load on each z-step increases by roughly a factor
of two. However, it is possible to take significantly larger steps, leading to a large computational
advantage. In Fig. 5, we show max[ρ(t)] for both the full model and phase-matched model as
a function of LB/∆z when Ppump = 250 W, so that the pump power is slightly above threshold.
As expected, the full model requires an LB/∆z>60 to converge, while the phase-matched model
appears to have converged in this case when LB/∆z ≃ 2.

To quantify the convergence, we define the relative error, ϵ , as the difference between our
computation at a given ∆z and a four-point Richardson extrapolation [30]. For the full model, we
used LB/∆z = 80, 40, 20, and 10 for the extrapolation. For the phase-matched model, we used
LB/∆z = 40, 20, 10, and 5.
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Fig. 4. Temperature T at a point that is 10 µm from the amplifier center when t = 0.5
ms. (a) T vs. z. Agreement is excellent between the full model and the phase-matched
model. The inset shows that the details of the temperature oscillations agree. (b) |FT(T)| vs.
k, where k is the spatial Fourier transform variable. Agreement for the central harmonic
and the harmonics at k = ±∆β is excellent. The inset shows excellent agreement for the
harmonic at k = ∆β. However, the harmonics at k = ±n∆β for n ≥ 2 are not present in the
phase-matched model.

In Fig. 6(a), we show the relative error as a function of LB/∆z. We see that achieving a relative
error of 1% with the full model requires LB/∆z ≃ 90, while the same relative error can be
obtained with the phase-matched model when LB/∆z ≃ 2. Figure 6(a) also illustrates that the full
model is second-order accurate in ∆z, so that the relative error decreases proportional to (∆z)−2.
This result is consistent with the result of Naderi et al. [19], but may be surprising since our
integration in z is done using the Runge-Kutta method. This result indicates that the global error
is dominated by the accumulated error in computing the index of refraction. The variation of the
relative error in the phase-matched model is more complex since it depends on the rate at which
all the dependent variables change as a function of z. A complete error analysis is beyond the
scope of this paper, but Fig. 6(a) indicates that it decreases rapidly as ∆z increases until it has
become quite small.



Research Article Vol. 29, No. 12 / 7 June 2021 / Optics Express 17754

Fig. 5. Convergence of the maximum power ratio at the amplifier end as LB/∆z increases.
We set Ppump = 250 W.

Fig. 6. (a) Relative error vs. LB/∆z for the cases shown in Fig. 4. (b) Runtime vs. LB/∆z.
The runtime for the phase-matched model is approximately twice as long as the runtime
for the full model. Dots indicate the corresponding runtime with a relative error of 1%, as
shown in (a).

In Fig. 6(b), we show the runtime of both the full model and the phase-matched model using 16
cores in a shared memory system that consists of dual Intel E5-2695 V4 processors. We observe
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that the runtime for the phase-matched model is approximately twice as the runtime for the full
model, which is consistent with the greater computational load per step in the phase-matched
model. When we compare the runtime corresponding to a relative error of 1%, shown with
dots, we found a runtime of 163 hours for the full model and 1.17 hours for the phase-matched
model, indicating that the phase-matched model runs a factor of 139 faster in this case. While we
obtain a speedup of 139 in our study, this number will vary with different simulation parameters.
Nevertheless, the advantage of using phase-matched model is clear.

4. Conclusions and discussion

In this work, we derived the three-wave mixing equations that govern TMI in the limit where a
single HOM is present, and the longitudinal rate of change of all quantities is slow compared to
the beat length. This limit normally applies in practice. In this limit, TMI can be identified as
an STRS process. We review the theoretical justification for this identification in the Appendix,
where we also discuss similarities and differences between STRS and SBS. We verified the
accuracy of the phase-matched model in a Yb3+-doped fiber amplifier with a relatively simple
step index profile. The amplifier that we considered is like that of Naderi et al. [19], but has a
more realistic 10-m length. We demonstrated that this model reproduces the nonlinear saturation
of the HOM and the instability threshold that are predicted by the full model. We demonstrated a
computational speedup that is more than a factor of 100.

We derived the three-wave mixing equations in the case that a single HOM is present, but
we expect this result to be more broadly applicable when several HOMs are present. In the
linear limit below threshold when HOMs have low power, HOMs will only interact with the
fundamental mode. In that case, the three-wave mixing equations can be extended by adding a
new set of equations for the index of refraction, Yb3+ population density, heat, temperature, and
optical mode amplitude for each of the HOMs. The computational complexity scales proportional
to M, where M is the number of modes. More generally, we anticipate that the three-wave mixing
equations can be extended to include a coupling between all the modes as long as none of the
beat lengths between any of mode pairs becomes large enough to be comparable to the scale
length on which any of the amplitudes change. However, the computational complexity grows
proportional to M2, and higher-order nonlinear interactions with a slowly varying amplitude
could invalidate this approach.

Appendix

TMI as an STRS process
The identification of TMI as an STRS process has remained somewhat controversial due to the

complexity of TMI. Here, we will briefly argue in favor of this identification in the limit where
the phase-matched model holds. We then point out some of the similarities and differences with
the instability due to stimulated Brillouin scattering (SBS), which is another important effect
limiting the performance of high-energy fiber laser amplifiers [31].

Rayleigh scattering is commonly observed as a spontaneous process. It is well known as the
reason the sky is blue [32] and imposes a fundamental loss limit on optical fiber transmission
[33]. It also imposes a fundamental limit on fiber interferometers and hence on opto-electronic
oscillators [34].

Observation of STRS has proved more elusive, particularly in optical fibers. Zhu et al. [35]
reported an observation of STRS in 2010, and Kong et al. [17] reported an observation of STRS
in 2016. It is difficult to observe directly, and another observation that was reported in 2012 [36]
was later shown to be incorrect [37].

STRS and SBS can be treated together theoretically because both are due to density fluctuations
[26]. Rayleigh scattering is driven by isobaric processes, while Brillouin scattering is driven by
isentropic processes. Both are three-wave scattering processes in which two optical fields couple
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to density fluctuations. When Eq. (3) holds, it is evident that TMI can be treated as a three-wave
scattering process in which two optical modes couple to density fluctuations and that this process
is isobaric. Hence, it is reasonable to identify TMI as an STRS-driven process.

While both STRS and SBS are three-wave processes in which two optical modes couple to
density fluctuations, there are important differences—particularly in optical fibers. Rayleigh
scattering is often referred to as an inelastic process, but that is almost never strictly true. Energy
and momentum conservation implies that there is typically a small frequency offset. In the
case of TMI this offset is quite small—on the order of a few kilohertz [13–16]. This offset
plays a critical role in driving the instability, but it lies well within the linewidth of the optical
modes, which is typically on the order of 100 MHz. While there is a significant difference
between the wavenumbers of the fundamental and HOMs, this difference is small compared to
the wavenumber of both modes (∆β/β ∼ 10−5). Both modes propagate in the same direction,
but have different mode profiles. By contrast, the two optical modes that become unstable due to
SBS are both fundamental modes, but they propagate in opposite directions. As a consequence,
the wavenumber offset equals twice the wavenumber of each of the optical modes. The frequency
offset, which is given by (the acoustic velocity)×(twice the wavenumber of the optical modes), is
around 10–20 GHz and much larger than the linewidth of the optical modes. These differences can
be traced to the fundamental physical difference between pressure fluctuations, which propagate,
and entropy fluctuations, which do not.
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