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It has been previously reported that it is possible to eliminate nonlinear polarization rotation in elliptically
birefringent optical fibers. We show that the same can hold true in twisted optical fibers, even though the
local eigenmodes are linearly polarized, if the twist length becomes equal to /2 times the beat length. The
physical requirements are that the beat length must be short compared with the walk-off length, the dispersive
scale length, and the nonlinear scale length. When the twist length becomes comparable with the beat length,
the twisting leads to a linear coupling between the two polarizations through their time derivatives.

In Ref. 1 Menyuk showed that the equations that govern
light-pulse evolution in a birefringent Kerr medium may
be written as

+ 2 8s + (ul2 + BlvI2)u = 0,

a - + a2 (B1u2 + 1v12)v=O. (1)
ae as 2aS2

where u and v are the normalized envelopes of the two
polarizations, and s are appropriately normalized dis-
tance and time, is proportional to the birefringence
strength, and B depends on the ellipticity of the birefrin-
gent medium. In the derivation of Eqs. (1) it is assumed
that the birefringence is sufficiently large that terms that
are rapidly varying because of a mismatch between the
wave numbers of the two polarizations can be neglected.
This assumption is always valid in present-day optical
fibers when solitons are considered.2 It is not always
valid when quasi-cw pulses are considered,3 but it will
be valid when the birefringence is large, as is the case in
many important applications.4 The coefficient B is given
by the formula

B 2a + 2b sin2 ' (2)
B=2a + b os 2 0(2

where is the angle of ellipticity of the birefringent
medium and a and b are the Kerr coefficients.1 5 We
must be able to neglect contributions of the time deriva-
tives of the electric field to the nonlinear portion of the
polarization field in order for Eqs. (1) to be valid. The
most important effect of this sort in optical fibers is the
Raman effect,6 which limits the validity of Eqs. (1) to
pulse durations that are at least several hundred fem-
toseconds long. For pulses of this duration and longer
we may treat the Kerr effect as instantaneous, so that
a = b.

Menyuk' pointed out previously that when =
tan-1(1/X2) 350, B = 1 and Eqs. (1) become the
Manakov equation. Under these circumstances solitons
will no longer generate shadows when they collide, which
may be important for certain proposed switches.7 Of
even greater importance is that nonlinear polarization
rotation can be eliminated. This effect is a nuisance in
sensor applications, and its elimination would be helpful.
In principle one could make an elliptically birefringent
fiber by elliptically deforming the core and subjecting it
to helical stresses. It would be very difficult to make
such a fiber, and to date it has not been done.4 A
more promising route is to twist a fiber that is linearly
birefringent because of an elliptically deformed core.
Under these circumstances the local eigenmodes are still
linearly polarized, but one can find global "eigenmodes"
that are elliptically polarized in a frame that rotates
along with the fiber's axes of birefringence. (We have
written the word "eigenmodes" in quotes because, strictly
speaking, there are no eigenmodes since the fiber is
inhomogeneous; i.e., its properties change along the
axis of propagation. Nonetheless, when measured in
the rotating frame, these "eigenmodes" are unchanging,
and the distinction between these "eigenmodes" and true
eigenmodes is of no concern to us.) It is not altogether
obvious that Eqs. (1) remain valid in a twisted fiber.
Even if Eqs. (1) remain valid, it is not obvious what the
coefficient B should be. Is it governed by the local or by
the global eigenmodes?

We show in this Communication that under the right
physical conditions, which require a sufficiently large
birefringence, Eqs. (1) remain valid and B is governed by
the global eigenmodes, so that it is possible to obtain B =
1 fibers and eliminate nonlinear polarization rotation. A
similar issue has been briefly addressed in the different
context of counterpropagating cw beams, in which the
effects of dispersion can be ignored.9 The assumption
that the birefringence is big enough to allow us to neglect

0740-3224/94/071305-05$06.00 ©1994 Optical Society of America



1306 J. Opt. Soc. Am. B/Vol. 11, No. 7/July 1994

terms whose wave numbers are mismatched plays an
even larger role in the derivation of Eqs. (1) in twisted
fiber than it does in homogeneous fiber, considered in
Ref. 1. In homogeneous fiber this assumption leads to
the neglect of several nonlinear terms. In twisted fiber
we find that there is an additional linear coupling between
the time derivatives of the two polarizations, which can
be neglected only when this assumption is valid.

Our starting point, as in Ref. 1, is Maxwell's equation,
which in the plane-wave approximation may be written as

a2 E 1 2 D
_ =01

aZ2 a dt2 (3)

where E is the electric field, D is the electric displacement,
c is the speed of light, z is the distance along the fiber
axis, and t is time. In the plane-wave approximation E
and D are two-dimensional vectors, oriented in a direction
transverse to the propagation axis. Use of the plane-
wave approximation drastically reduces the amount of al-
gebra required without changing the result in any signifi-
cant way.'

We begin by determining the relationship between D
and E, neglecting the nonlinear contribution, which we
will take into account later. We recall that

D = E + 41rP, (4)

where

P(z, t) = f x(t - t') E(z, t')dt' (5)

is the polarization field and X is the polarization tensor.
Making the slowly varying approximation, we first sep-
arate E, P, and D into positive and negative frequency
portions: E = E + E-, P = P+ + P, and D = D+ +
D-, where the plus superscripts refer to the positive
frequency portions and the minus superscripts refer to
the negative frequency portions. The positive and the
negative frequency portions are complex conjugates of
each other, which guarantees the reality of the total field.'
We next write

E+(z, t) = U(z, t)exp(ikoz - icoot),

P+(z,t) = ll(z,t)exp(ikoz - iwot),

truncate the series after the third term.' For this trun-
cation to make sense physically, we must assume that
the spectral width of the field El is small compared
with 0 o or, equivalently, that U is slowly varying. This
approximation is just the usual slowly varying envelope
approximation. Letting e(w) = I + 41rk(o), we obtain

v(zt) = g(WOo) U(z,t) + iW'(W0 ) aU(z' t)-~z~t 1 e"(@o aat
- l &(co0) a zt (9)

2 ~~at2

where '(w) = 4rk'(w) and "(@) = 4rxk"(w). From
Eqs. (6) and (9), we obtain

1 a2D+ I" 02 au a2U\= e * U - 2iko*- + koy 
c2 at2 - at -0)

X exp(ikoz - iot), (1-0)

where

a k = (C2 e' + 22i'°e

0 k-2C2 e"+ 2 e +2 e-(1

We assume that the local eigenmodes of the optical
fiber are linearly polarized and rotate as a function of z,
so that e(w) has two orthogonal eigenvectors, 61(z) =
ex cos(flz) + Y sin(flz) and 2 (z) = - sin(flz) +
ey cos(flz), where aX and 6y are fixed. We also assume
that e1 and 62 are independent of Cw over the bandwidth
of interest-a reasonable assumption in many practical
problems.10 In the frame of reference that twists with
the fiber, e, A, and y are all diagonal operators. We
may usefully write them in the form

H= l + Ae6r3 ,

X8 =f1 + A003u3,

Y= y, (12)

where I = 11* + e2e2 * is the identity tensor and 03 is
one of the three Pauli tensors

D(z,t) = A(z,t)exp(ikoz - iot), (6) 0'1 = e261* + e1e2*, 02 = (e2e1* - e1e2),

where U, II, and A are all assumed to vary slowly. If
one defines the Fourier transform

x(z, ) = X(z,t)exp(icot)dt, (7)

where X(z, t) is any quantity, then one finds

I,(zt) = (Wo) * U(z,t) + ik'(Wo) * aU(z't)
at

1 2 , dll(°° ' 2U(Z('t)
obai-q.(),w expan x(). in a Taylorseriesa(8)

2 at2

where k'(w0 ) ak/aawL0 and k"(w)=ak/c 2 . To
obtain Eq. (8), we expand X(o)) in a Taylor series and

U3 = 161* - e2e2*-

If we represent the vector U = U161 + U2 e2 with the
column vector (U1, U2)t, then the three Pauli tensors given
above are represented by the usual Pauli matrices

I °1 ] Xr = [1 

02 = i ok 3 = [o _1 (14)

Since e1 and e2 are real, it is not necessary to include
the complex conjugation in Eqs. (13). We do so because
with the complex conjugation the definitions that we
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have given generalize to situations in which the fiber
is elliptically polarized. The elements and T that
appear in Eqs. (12) are larger than A and A by a
factor of the order of An/n, where An is the index
difference that is due to the birefringence. It is also the
case that 1(c0o

2 /koc)i * U1 >> lf aU/atl >> y 2 U/at2 I
on average, consistent with the slowly varying envelope
approximation. The term (c 2/ 2)Ae-3 U is of the
same order of magnitude as 2ikoTlI au/at, and the term
2ikoA6ff3 aU/at is of the same order of magnitude
as koyl a2 U/at2 ; which term dominates in both these
comparisons depends on the details of the physical
situation.' We have not included the Ay contribution
in Eqs. (12) because it is of the same order of magnitude
as the third-order dispersion, which was neglected in the
truncation leading to Eq. (8). Using the relations

d = fle2, -= -
dz dz

we obtain

a2 E+ = _ 2 + n2k au a2u
aZ2 = - 2iL *k az + aZ2

+2koflo-2 U - 2Mflc2 au!2 ]exp(ikoz - iot). (6

Substituting Eqs. (10), (12), and (16) into the positive-
frequency version of Eq. (3),

and the third terms in Eq. (19). Still using the column
vector representation and the relations

Ra-2R = (sin 0)0-3 + (cos 0)0f2 = - 03 + 0-2,
K K

R3RR' = (cos )ff3 - (sin 0)02 = -3 - -- 0-2, (21)
K K

we find that Eq. (19) becomes

.aV+V. aV n n a avi + K 3 V + d- - 03 + - 0 1
az at ko\K K J az

+ifao -l av + a2V 7a 2V
tK 3-K at 2ko aZ2 2 at2 °

(22)

It is most convenient to view the transformation from
(15) (Ul, U2 )t - (V, V2)t given by Eq. (20) as a coordinate

transformation so that U = V. In this case, V = Va, +
V 2 A2 , where

al= , cos(0/2) + i 2 sin(0/2),
a2 = i sin(0/2) + e2 cos(0/2). (23)

In this vector representation the a-j in Eq. (22) are the
Pauli tensors

1 = fi2 al* + ala2 *, 0-2 = i(a2 &1* - A*),

a2 E+ 1 a2D+
az 2 C2 at2

and using the dispersion relation

(17)

ko - ' - (18)

we obtain

2iko a + °o AEU3 U + 2kofla2 * U + 2ikof3 at

-2fu~ au aU a2 U a2U 0
-2iffT2 * d+ 2ikoAf8-3 t+ ko =

az at az2
-kyat

2

(19)

When the beat length is the shortest scale length in
the optical fiber and the twist length is comparable with
the beat length, then the second and the third terms
in Eq. (19) will dominate the evolution of U. The third
term, which is due to the fiber's twisting, will lead to
coupling between U, and U2. It is useful to find a
set of modes that are not coupled by the second and
the third terms of Eq. (19) and are thus eigenmodes
of the restricted evolution equation, which consists
of the first three terms of Eq. (19). We first define

= o2 Ae/2koc2 , K = (a
2 + l2 )1/2, cos 0 = a/K, and

sin 0 = fl/K. Using the column-vector representation
that we mentioned in the above paragraph, we find that
if we set

(V, U,'
(20)

where R = cos(0/2)1 - i sin(0/2)o-,, then the evolution of
the components V, and V2 is not coupled by the second

0-3 = ilfil* - a2 a2*- (24)

The complex conjugation is required in Eqs. (24). Be-
cause V = U, we may write

E+ = V exp(ikoz - icoot)

= (Vla + V2 a2)exp(ikoz - iot). (25)

This expression will be of use when we consider the
nonlinear contribution to the polarization field.

To obtain a first-order evolution equation for V, we
now eliminate the z derivatives in the fourth and the
sixth terms of Eq. (22) in favor of t derivatives. Noting
that fl/ko << 1, A,8// << 1, and that to be consistent
with the slowly varying envelope approximation we must
assume that the terms with second derivatives in t and z
are small, we find that the lowest-order contributions to
aV/az and a2V/az 2 are given by

av = iK0 * V-- av
az at

a2V =- 2V -a2jh aV + 2 a2V
az 2 at at

(26)

Using Eqs. (26) in Eq. (22), we finally obtain

iav + a (2l2-K2)V + Kl3 V + i fl d V

av ~~~av+ i a + i(a a/ko)-f3 at K at
fl a1T 1 -2 a2 v
- (A - a/ko)f2 - a + a3 /ko - ) t2= °-

(27)
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The second term in Eq. (27) leads to a slight change in the
dispersion relation, Eq. (18), while the fourth term leads
to a slight change in the orientation of the electric field's
polarization ellipse with respect to the twisted fiber's
polarization axes. Neither term adds anything qualita-
tively new to the equation, and both are too small to be
experimentally detectable. We therefore drop them. By
contrast, the seventh term in Eq. (27), the term propor-
tional to 0-2 a aV/at, will lead to coupling between V, and
V2 through their time derivatives, which is a qualitatively
new effect. From Eq. (27) we find that the birefringent
beat length is given by ir/K, while the walk-off length,
the length over which pulses in the two polarizations
shift significantly in time with respect to each other,
is given by 7r/lAP - Ta/kol. When the beat length is
short compared with the walk-off length, the third term
in Eq. (27), K03 * V, will lead to a phase mismatch be-
tween V, and V2. In this case the term proportional to
0-2 a aV/at is rapidly oscillating and can be neglected. In
feasible present-day experiments involving solitons the
beat length is always short compared with the walk-off
length. This will not necessarily be true when broad-
bandwidth, quasi-cw light is launched into a fiber, and
this coupling could then play a significant role.

Because it is our purpose to determine the circum-
stances under which Eqs. (1) hold, we will henceforward
assume that the beat length is short compared with
the walk-off length and drop the term proportional to
0-2 aV/at.

We now turn to consideration of the nonlinear contribu-
tion. We first recall15 that the contribution of the Kerr
effect to the polarization field is given by

Pnj+ = 2a(E+ E-)E- + b(E+ E+)E-, (28)

where Pnl+ is the nonlinear contribution to P+, a and
b are the usual Kerr coefficients, and we assume that
contributions of the time derivatives of the E field to the
nonlinear portion of the polarization field are negligible.
In optical fibers we may also assume that the Kerr re-
sponse of the medium is instantaneous, so that a = b.
From Eqs. (23), (25), and (28) we obtain

Hnl+ = (2a + b cos2 0) (I V1 2 Vat + IV2 12V2 t2)

+ (2a + 2b sin 2 0) (IV21 2 Va, + IV112 V2&2 )

+ b cos 2 0(V 2
2 V,*al + V12 V2 *A2 )

+ ib(cos 0 sin 0)

x [(21V,1 2 V2 - IV2 12 V2 -V2V2*)at

+ (21V2I2V, - IV,12V, - V2
2 V,*)a 2 ], (29)

where Pnl+ = fli+ exp(ikoz - iwot). Under the assump-
tion that the beat length is short compared with the
nonlinear scale length, we find that only the first two
terms in Eq. (29) give phaso-matched contributions to
aV/az.1 The other terms are rapidly oscillating and can
be neglected.

Keeping only phase-matched terms and including the
nonlinear contribution, we find that Eq. (27) becomes

iaV~+V~i~ai~a(AP -fa a,
i V1 + KV1 + i aVl + i(' A pk ) -

az at K ko ) at

+ + ~ 2a + ~
2\\o , )t 2 koc2 K 

+ o2 2a + I2 V2 2V, = 0,
koC2 K 2 J

i d2 - KV 2az

(30a)

+ i}3 dt2 _ i &,8 _ jq aV2
at K (k2 at

a2V2 + 2irwo 2 I2a + 2bfl2 V12)at2 koc 2
K

2
]

+kO2 2a + K2 IV212V2 = 0,
koC2 I2 (30b)

where we have written the two components of V sepa-
rately. As our first step toward reducing Eqs. (30) to the
form of Eqs. (1), we transform V, and V2 by shifting their
wave numbers. We let

W1 = V1 exp(-iKz), W2 = V2 exp(iKz).

We also define a retarded time X = t - ,z. These
changes have the effect of eliminating the second and
the third terms in both Eqs. (30a) and (30b). It is
of great physical significance that the wave-number
shifts in Eqs. (31) are opposite in sign. It is this fact,
plus the assumption that K is large, that leads to
phase mismatches in many terms that would otherwise
contribute to Eqs. (30). To reduce Eqs. (30) to Eqs. (1),
we define the following normalized quantities:

S = r/to,
= (# 2/ko - y)Z/t 2

27rwoo2 2a +ba/K 2

U koc2 2 /ko - y )

1 = ( k °2 / 2 1/22I7roo 2 2a + ba2 K2

V koc2
jq

2 /ko - - 2

= a G - #a/ko
K /ko - 7to,

2a + 2bfl2 /K2

2a + ba 2/K 2

The parameter to is arbitrary and may be chosen as
convenient in any application. We find that B = 1, and
that nonlinear polarization rotation is eliminated when
fi = a/X/; i.e., the twist length is X2 times the beat
length.

In this Communication we have shown that Eqs. (1)
remain valid in twisted optical fibers under certain physi-
cal conditions and that B is still given by Eq. (2), where
tan a = f/la, the ratio of the beat length to the twist
length. The physical requirements for Eqs. (1) to hold
are that the beat length must be small in comparison
with the walk-off length, the dispersive scale length, and
the nonlinear scale length. We have found that when the

(32)
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walk-off length becomes comparable with the beat length,
twisting leads to a coupling of the two polarizations
through their time derivatives. Understanding the effect
of this coupling would be an interesting topic for future
investigation. When Eqs. (1) and (2) hold, we have found
that it is possible to eliminate nonlinear polarization
rotation by twisting the fiber at a rate fi = a/N2.
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