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SYSTEM AND METHOD FOR ESTIMATING
PROBABILITIES OF EVENTS

REFERENCE TO RELATED APPLICATIONS

This application is a Continuation of U.S. application Ser.
No. 10/890,134, filed Jul. 14, 2004, now abandoned which
claims the benefit of U.S. Provisional Application No.
60/486,970, filed Jul. 14, 2003. The entire disclosure of the
prior applications are considered as being part of the disclo-
sure of the accompanying application and are hereby incor-
porated by reference therein.

GOVERNMENT RIGHTS

This invention was made with government support under
Grant Nos. MDA904-01-C0940/2949001 and MDA904-02-
C0428/7956801 awarded by the Department of Defense. The
government has certain rights in this invention.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to estimating the probabilities
of events and, more particularly, to a dual adaptive impor-
tance-sampling system and method.

2. Background of the Related Art

In the field of communications engineering, the perfor-
mance of forward error correction (FEC) codes in digital
communication systems is almost exclusively studied and
compared on the basis of performance curves—plots of bit-
error rate (BER) and/or word-error rate (WER) versus the
information signal power to noise power ratio (SNR).

The exact analytical evaluation of FEC code performance
curves under a specific decoding scheme is extremely diffi-
cult to perform and computationally intractable, even for
moderately long codes, say with more than 30 to 40 informa-
tion bits per codeword.

Approximate performance of FEC codes under certain
decoding schemes, in the form of lower and upper bounds,
may be obtained analytically provided knowledge of the
weight enumerator function (WEF) of the code is available:
partial knowledge of the WEF in the form of the first non-
trivial term may also suffice. In general, these bounds serve as
very good approximations to the actual code performance at
high SNR values. The quality of the approximations, how-
ever, is not very good at relatively moderate-to-low values of
SNR. To make matters worse, unless the code belongs to one
of the few classes of codes whose WEF is already known,
such as the RS and BCH codes that still abound in practical
FEC schemes, the computation of the code WEF or even the
first non-trivial term is itself intractable, in a practical sense,
for codes of practical size.

Thus, in general, for a large set of codes with parameters in
the realm of current practical applicability (hundreds and
thousands of bits long), it is impossible for FEC code
researchers and developers to analytically obtain perfor-
mance curves, either exact or in the form of bounds. Conse-
quently, for some time now, the preferred methodology
employed by communications engineers and researchers to
study code performance has and continues to be based on
performing Monte Carlo computer simulations or physical
system experiments. For the simpler and less powerful codes,
simulation software packages, such as Mathwork’s MAT-
LAB or Elanix’s SystemView, provide communications ori-
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2

ented simulation tools (e.g., MATLAB’s Communication
ToolBox and SimulLink) that perform straight Monte Carlo
simulation of BERs.

Monte Carlo simulations and physical system experi-
ments, which are collectively referred to herein as “standard
Monte Carlo techniques”, have been quite effective in obtain-
ing performance curves down to BER values as low as
approximately 1077, These BERs are consistent with perfor-
mance requirements for such communication systems as
ADSL and wireless phone systems. Attempting to obtain
performance curves for lower values of BER, however, con-
tinues to be a challenge even with current computing capa-
bilities because of the inordinate amounts of time required—
on the order of months or years—to obtain meaningful results
at such low BER values.

Recent technological advancements have drastically
altered the scenario in the communications industry. The
industry has witnessed an explosion in communications
speeds and capacity of storage media, in addition to improve-
ments in the overall quality of communications. This has led
service providers to impose more stringent requirements on
the error rate of communication systems, e.g., current optical
fiber communication (OFC) systems operate at design BERs
in the range of 1072 to 107", Unfortunately, standard Monte
Carlo techniques prove to be inadequate for evaluating FEC
codes and decoders at such low BER values.

In an attempt to extend the range of standard Monte Carlo
techniques and provide some assistance in the evaluation of
higher performing systems, researchers have called upon the
services of supercomputers or system experiments. Both of
these approaches are characterized by unduly long perfor-
mance time requirements and, even then, the best reliable
BERs that have been achieved are on the order of 107'° or
107"* and are acquired over time spans measured in months.
This is very expensive to industry and researchers in terms of
person hours and computer time.

The evaluation of BERs for an actual physical system, e.g.,
an exploratory development prototype, invariably involves
the use of a bit-error-rate tester (BERT). BERTSs designed to
operate at the extremely high speeds of 40-48 giga-bits per
second (Gbps) have been recently introduced in the market.
They are capable of operating at ‘full line rate’, i.e., these
BERTSs can count each and every transmitted (and received)
bit at speeds of up to 40-48 Gbps. With such devices, one can
easily transmit and receive about 10*° bits in a period of about
2.5x10% seconds (i.e., <7 hours), thus enabling the evaluation
of BERs reliably at least down to 107'3 (100/total number of
bits) within a relatively short period of time. However, such
BERTS are extremely expensive, costing on the order o $500,
000.

In coded communication systems with long codes, the
range of word-error rates (WERs) that can be reliably evalu-
ated is less than the uncoded system by a factor equal to the
length of the code. For example, consider a code of length
n=1.1x10?, with k=10? information bits and a rate of r=0.909,
employed on a communication system operating at an infor-
mation transfer rate of 40 Gbps (i.e., a line rate of 40/r=44
Gbps). Transmission and reception of 10" information bits
would require about 2.5x10* seconds. However, 10'* infor-
mation bits correspond to only 10" codewords. Thus, a reli-
able estimate of WER only down to 107'° is possible. Further,
if one assumes that every word that is not correctly decoded
results in about 10 information bits in error (the average
number of information bits in error per codeword in error is
dependent on the minimum distance of the code and other
code properties), one realizes that the transmission of 10*°
information bits is capable of providing us with reliable BERs
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only down to 107'2, instead of the 10~ that was possible in
the uncoded system. The situation is further worsened as the
code length increases. In addition to the above problem, the
use of high-speed BERTs in conjunction with system experi-
ments for evaluating the performance of coded communica-
tion systems is severely limited by a host of other constraints.

First, evaluation of a code at such high speeds requires that
encoder/decoder hardware implementations capable at oper-
ating at the above-mentioned speeds be available. The fastest
encoder/decoders available today operate around 1 Gbps.
Consequently, practical coded communications systems that
operate at speeds in the range of 10-40 Gbps require the
multiplexing/demultiplexing of FEC encoder/decoders at the
transmitter and receiver, thus increasing the complexity of the
system. Further, fabricating encoder/decoders for any code
that needs to be evaluated is generally not economically fea-
sible because of the cost of manufacturing high-speed VLSI
devices and the almost universal approach of software imple-
mentation for initial design and evaluation. To complicate
matters even more, the new class of decoders use soft-infor-
mation to perform soft-decision decoding. This information
is obtained by multi-threshold-decisioning on the received
signal, and is difficult to extract—commercially impracti-
cal—at 10-40 Gbps operating speeds. This virtually elimi-
nates the possibility of evaluating soft-decision decoding per-
formance of FEC codes using high-speed BERTS.

In addition, the high-speed BERTs are themselves quite
expensive, i.e., the cost of the Ixia 2.4 Gbps BERT is greater
than $10,000.00. BERTs capable of operating at higher
speeds are even more expensive (e.g., about $500,000 for the
40-48 Gbps model). The costs of the BERT, of fabricating the
encoder/decoders, of the auxiliary equipment, and of setting
up the test-bench to evaluate the code, becomes prohibitive,
making it practically impossible for researchers and small
companies to evaluate their codes to the desired low values of
BER using a physical system setup employing BERTs.

A variety of simulation techniques have been developed to
evaluate FEC codes to progressively smaller BER values.
One of the most promising areas in this context has been the
study of importance sampling (IS) techniques. Importance
sampling is based on increasing the frequency of occurrence
of very low (important) error events defined by the channel
noise probability density function (pdf) by generating these
important events more frequently from a related biased pdf.
However, for importance sampling to be effective for evalu-
ating FEC codes and decoders, one must choose a biased pdf
using some knowledge of which noise realizations are most
likely to generate errors at each desired low BER.

The task of determining an appropriate biased pdf is FEC
code specific. Most of the proposed techniques for evaluating
FEC codes via importance sampling rely on using some code-
property to obtain a rough estimate of the region in noise
space that is a major contribution to the BER. For example,
some techniques exploit the knowledge of the minimum-
weight codewords to determine a suitable biased pdf. How-
ever, as discussed above, this knowledge is practically unob-
tainable for codes in general.

One technique, described in T. Yamane and Y. Katayama,
“Bit Error Rate Analysis on Iterative Two-Stage Decoding of
Two-Dimensional Codes by Importance Sampling”, Proc.
2003 IEEE Int’l. Conf. Commun., 11-15 May 2003, Anchor-
age, Ak., USA, uses knowledge of the error-correcting capa-
bility of codes (a code parameter that may not be known in
general) in order to obtain a suitable biased pdf for IS. This
technique is restricted to hard-decision decoding, and is par-
ticularly suited only for obtaining performance curves for
serially concatenated coding schemes (product codes), where
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it is possible to easily characterize the error correcting capa-
bility of the constituent codes.

Another technique, described in B. Xia and W. E. Ryan,
“On importance sampling for linear block codes”, Proc. 2003
IEEE Int’l. Conf. Commun., 11-15 May 2003, Anchorage,
Ak., USA, use the regular structure of the bipartite graphs of
certain codes to determine the biased pdf. For every codeword
that is received, the BER evaluation using this IS technique is
performed for only a single bit-position in the codeword.
Standard Monte Carlo techniques, on the other hand, evaluate
the BER for all n bit-positions for every received codeword of
length n.

Hence, for the transmission and decoding of the same
number of codewords (which can be assumed to take the same
time for both IS as well as standard Monte Carlo techniques),
the standard Monte Carlo technique evaluates n times as
many bits as this IS technique. This is referred to as the
‘divide-by-n’ problem. This divide-by-n problem is likely to
affect the efficiency of this IS technique relative to the stan-
dard Monte Carlo techniques for codes where n becomes
large. In addition, this IS technique is predicated on the regu-
lar structure in the bipartite graph of codes, which justifies the
analysis of a single bit-position in the code to estimate the
BER of'the entire code. A regular bipartite graph structure is
obtained from regular low-density parity-check (LDPC)
codes, but is usually not consistent with irregular LDPC
codes or codes in general.

Accordingly, the IS techniques described above are ineffi-
cient and/or impractical for very-low-BER-requirement
evaluation of arbitrarily chosen codes. Thus, there is clearly a
technological need for a more time-efficient simulation tool
for evaluating the BERs/WERs of coded communication and
storage systems, as well as a tool for evaluating the probabili-
ties of other rare events.

SUMMARY OF THE INVENTION

An object of the invention is to solve at least the above
problems and/or disadvantages and to provide at least the
advantages described hereinafter.

Therefore, an object of the present invention is to provide a
system and method for evaluating very rare events.

Another object of the present invention is to provide a
system and method for estimating the probabilities of very
rare events.

Another object of the present invention is to provide a
system and method for estimating the probabilities of very
rare events in coded communications systems.

Another object of the present invention is to provide a
system and method for evaluating very low BERs/WERs of
FEC codes.

Another object of the present invention is to provide a
multicanonical Monte Carlo simulation system and method
for evaluating very low BERs/WERs of FEC codes.

Another object of the present invention is to provide a dual
adaptive importance sampling system and method for evalu-
ating very low BERs/WERs of FEC codes.

Another object of the present invention is to provide a
system and method for combining the results of constrained
and unconstrained importance-sampling simulations using a
scaling technique.

To achieve at least the above objects, in whole or in part,
there is provided a method of estimating the probability of
occurrence of an event (E), including performing an adaptive
unconstrained estimation of an optimal biased distribution for
a multidimensional random variable (z) defined on a sample
space (1), performing an importance-sampling (IS) simula-
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tion using the optimal biased distribution for z to yield a first
result, performing an adaptive constrained estimation of an
optimal biased distribution for z over regions of I' where E
occurs, performing an IS simulation using the optimal biased
distribution for z, over regions of I where E occurs, to yield
a second result, and estimating the probability of the occur-
rence of E based on the first and second results.

To achieve at least the above objects, in whole or in part,
there is also provided a method of estimating the probability
of occurrence of an event (E), given a known probability
distribution (p(z)) of a multi-dimensional random variable (z)
defined on a sample space (I'), including determining a scalar
mapping (V) from the multi-dimensional sample space (I') to
a single-dimensional space, defining bins that partition a first
range of values of V (I';”), such that values of V not in the
range of values I';* have a negligible probability of occur-
rence, performing adaptive unconstrained Metropolis simu-
lations to iteratively estimate an optimal biased distribution
for z, performing an IS simulation using the optimal biased
distribution for z and an unconstrained Metropolis random
walkto yield a first result, defining bins that partition a second
range of values of V (I';”), such that values of V not in the
range of values I';” have a negligible contribution to the
probability of occurrence of E, performing adaptive con-
strained Metropolis simulations to iteratively estimate an
optimal biased distribution for z over regions of I where E
occurs, performing an IS simulation using the optimal biased
distribution for z over regions of I where E occurs and a
constrained Metropolis random walk to yield a second result,
and estimating the probability of occurrence of E based on the
first and second results.

To achieve at least the above objects, in whole or in part,
there is also provided a program storage device readable by a
machine, tangibly embodying a program of instructions
executable by the machine to perform method steps for esti-
mating the probability of occurrence of an event (E), the
method steps comprising performing an adaptive uncon-
strained estimation of an optimal biased distribution for a
multi-dimensional random variable (z) defined on a sample
space (I), performing an importance-sampling (IS) simula-
tion using the optimal biased distribution for z to yield a first
result, performing an adaptive constrained estimation of an
optimal biased distribution for z over regions of I' where E
occurs, performing an IS simulation using the optimal biased
distribution for z, over regions of I where E occurs, to yield
a second result, and estimating the probability of the occur-
rence of E based on the first and second results.

To achieve at least the above objects, in whole or in part,
there is also provided a program storage device readable by a
machine, tangibly embodying a program of instructions
executable by the machine to perform method steps for esti-
mating the probability of occurrence of an event (E), given a
known probability distribution (p(z)) of a multi-dimensional
random variable (z) defined on a sample space (I), the
method steps comprising determining a scalar mapping (V)
from the multi-dimensional sample space (I') to a single-
dimensional space, defining bins that partition a first range of
values of V (I';”), such that values of V not in the range of
values 1", have a negligible probability of occurrence, per-
forming adaptive unconstrained Metropolis simulations to
iteratively estimate an optimal biased distribution for z, per-
forming an IS simulation using the optimal biased distribu-
tion for z and an unconstrained Metropolis random walk to
yield a first result, defining bins that partition a second range
of'values of V (I' ), such that values of V not in the range of
values I';” have a negligible contribution to the probability of
occurrence of E, performing adaptive constrained Metropolis

20

40

45

6

simulations to iteratively estimate an optimal biased distribu-
tion for z over regions of I" where E occurs, performing an IS
simulation using the optimal biased distribution for z over
regions of I where E occurs and a constrained Metropolis
random walk to yield a second result, and estimating the
probability of occurrence of E based on the first and second
results.

To achieve at least the above objects, in whole or in part,
there is also provided a system, comprising a processor pro-
grammed with computer readable program code for perform-
ing an adaptive unconstrained estimation of an optimal biased
distribution for a multi-dimensional random variable (z)
defined on a sample space (I'), performing an importance-
sampling (IS) simulation using the optimal biased distribu-
tion for z to yield a first result, performing an adaptive con-
strained estimation of an optimal biased distribution for z
over regions of I where E occurs, performing an IS simula-
tion using the optimal biased distribution for z, over regions
of I' where E occurs, to yield a second result, and estimating
the probability of the occurrence of E based on the first and
second results; and a user interface in communication with
the processor.

To achieve at least the above objects, in whole or in part,
there is also provided a method of combining a first result
from an unconstrained importance-sampling (IS) simulation
with a second result from a constrained IS simulation, com-
prising receiving the first result, receiving the second result,
and scaling the second result to fit the first result to yield a
scaling factor.

Additional advantages, objects, and features of the inven-
tion will be set forth in part in the description which follows
and in part will become apparent to those having ordinary
skill in the art upon examination of the following or may be
learned from practice of the invention. The objects and advan-
tages of the invention may be realized and attained as particu-
larly pointed out in the appended claims.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention will be described in detail with reference to
the following drawings in which like reference numerals refer
to like elements wherein:

FIG. 1 is a flowchart showing the main steps of a dual
adaptive importance sampling (DAIS) method of estimating
the probability of the occurrence of an event, in accordance
with one embodiment of the present invention;

FIG. 2 is a flowchart showing a more detailed DAIS
method of estimating the probability of the occurrence of an
event, in accordance with a preferred embodiment of the
present invention;

FIG. 3 is a flowchart of steps in one preferred method for
performing adaptive unconstrained and constrained
Metropolis simulations, in accordance with the present inven-
tion;

FIG. 4a is a plot showing an example of combining the
results of unconstrained and constrained (before scaling)
simulation results to obtain the scaling factor P(E) and the
estimate p(VIE) P(E) of p(V, E) (constrained and after scal-
ing), in accordance with the present invention;

FIG. 45 is a histogram G, k=1, . . ., M, of accumulated
values of V belonging to I' ,ME generated during the uncon-
strained simulation for the example of FIG. 44, in accordance
with the present invention;

FIG. 5a is a plot showing a pdf of a scalar control quantity
V, in accordance with the present invention;

FIG.5b1saplot of BER and WER estimates obtained using
the methods of the present invention; and
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FIG. 6 is a block diagram of a system for estimating the
probability of occurrence of events, in accordance with one
embodiment of the invention.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

The system and method of the present invention can auto-
matically determine the biased pdf by using an iterative pro-
cedure that requires relatively little a priori knowledge of how
to bias. Hence, the present invention is particularly suited for
evaluating the BERs and/or WERs of coded communication
and storage systems, and is generally applicable to arbitrarily
chosen codes. When applied to coded communication and
storage systems, the system and method of the present inven-
tion provides a versatile technique for the fast and accurate
estimation of BERs and WERs of FEC codes down to values
of 1072° or lower. However, it should be appreciated that the
system and method of the present invention can also be
applied to the evaluation of other types of rare events.

The system and method of the present invention utilizes a
technique hereinafter referred to as a “dual adaptive impor-
tance-sampling” (DAIS). The DAIS technique is based on the
multicanonical Monte Carlo (MMC) technique, and is used to
iteratively obtain approximate estimates of the optimal biased
distribution on the underlying probability sample space
(henceforth referred to as “sample space”) for a coded com-
munications system in order to accurately compute, via dual
complementary IS Metropolis random-walk simulations, the
probability of occurrence of coded communication system
events, such as received or decoder error, down to extremely
low values.

FIG. 1 is a flowchart showing the main steps of a DAIS
method of estimating the probability of the occurrence of an
event, in accordance with one embodiment of the present
invention. The method starts at step 100, where an adaptive
unconstrained estimation of the optimal biased distribution of
a multi-dimensional random variable (z) defined on the
underlying sample space for the problem (I') is performed.
The estimation is “unconstrained”, in that it is not constrained
to specific regions of the sample space. Then, at step 110, an
IS simulation is performed using the optimal biased distribu-
tion for z to yield a first result.

At step 120, an adaptive constrained estimation of the
optimal biased distribution for z is performed. This estima-
tion is “constrained”, in that it is constrained to regions of
sample space where the rare event (E) is guaranteed to occur.
Then, at step 130, an IS simulation is performed using the
optimal biased distribution for z, given the occurrence of E, to
yield a second result. At step 140, the first and second results
are used to estimate the probability of the occurrence of E.

Although in the method of FIG. 1, the unconstrained esti-
mation 100 and simulation 110 are shown as being performed
before the constrained estimation 120 and simulation 130, it
should be appreciated that the constrained estimation 120 and
simulation 130 could be performed before unconstrained esti-
mation 100 and simulation 110, while still falling within the
scope of the present invention.

FIG. 2 is a flowchart showing a more detailed DAIS
method of estimating the probability of the occurrence of an
event, in accordance with a preferred embodiment of the
present invention. The method starts at step 200, where the
probability distribution (p(z)) of a multi-dimensional random
variable (z) defined on a sample space (I'), and the event E
whose probability is to be estimated is specified.

As discussed above, z represents the multi-dimensional
random variable defined on the underlying sample space, for
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the problem, with known probability distribution (pdf) p(z).
The occurrence of E is function of the value of z, and perhaps,
other factors. However, specific regions in sample space
where E occurs are unknown a priori.

At step 210, a scalar mapping V=£(z) from the multi-di-
mensional sample space to a single-dimensional space (such
as the real line or its subset) is chosen that is problem-specific
and may often represent some form of distance measure on
the sample space (such as the 1,-norm) or modifications of
such measures. A desirable mapping represents an ordering of
easy-to-define regions in the sample space based on the rela-
tive probability of occurrence of event E.

At step 215, I")” is set as the problem-specific significant
range of V for the unconstrained simulation, such that values
of'V not in the range of values I",” have a negligible probabil-
ity of occurrence. At step 215, the region ', is also parti-
tioned into a large number (M) of equal-width bins.

At step 220, adaptive unconstrained Metropolis simula-
tions are performed to iteratively estimate the optimal biased
distribution for z, i.e., p/(z)—p*(z). In this step, the Metropo-
lis random-walk at each iteration is not constrained to specific
regions of sample space (and equivalently regions of I';”).
Then, at step 230, p*(z) is used to perform an IS simulation
using the unconstrained Metropolis random-walk to obtain
estimates of the distributions p(V) and p(V, E) from histo-
grams H, and G, k=1, . .., M, generated from accumulated
values of V belonging to I and I')* NE, respectively.

At step 235, I, is set as the problem-specific significant
range of V for the constrained simulation, such that values of
V notin the range of values I' ,“ have a negligible contribution
to the probability of occurrence of E. Since P(E) is unknown
a priori, I' ¥ has to be set in an ad-hoc fashion, and may have
to be modified by trial and error. At step 235, theregionI' 7 is
also partitioned into a large number (M) of equal-width bins.
Then, at step 240, adaptive constrained simulations are per-
formed to iteratively estimate the optimal biased distribution
for zgivenE, i.e., p/(zIE)—p*(zIE). In this step, the Metropo-
lis random-walk at each iteration is constrained to regions of
sample space (and equivalently regions of I';°) where event E
is guaranteed to occur. Then, at step 250, p*(zIE) is used to
perform an IS simulation using the constrained Metropolis
random-walk to obtain an estimate of the distribution p(VIE)
from the histogram H,, k=1, . . ., M, generated from accu-
mulated constrained values of V belonging to I",°.

The results of the constrained and unconstrained IS
Metropolis simulations are then combined at step 260 by
scaling the estimate of p(VIE), obtained from the constrained
simulation (step 250), to fit the estimate of p(V, E), obtained
from the unconstrained simulation (step 230), over the range
of values of V where both estimates are sufficiently reliable.
This range is problem-specific, but is typically defined by
those bins of I'; that have a large fraction of accumulated
values of V belonging to the event E during the unconstrained
simulation.

The scaling factor then provides the initial estimate of P(E)
via p(V, E)=p(VIE)P(E) over the range of values of V where
both estimates are sufficiently reliable. Finally, at step 270,
the product p(VIE)P(E) is used as a more reliable estimate of
p(V, E) for all V, and one integrates p(VIE)P(E) over I',“ to
obtain the better estimate of P(E).

As shown in FIGS. 1 and 2, and as described above, the
DAIS method of the present invention performs the adaptive
Metropolis simulations twice, under unconstrained and con-
strained assumptions on the generated simulation values for
z, then combines both results to estimate the probability of the
desired event.
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FIG. 3 is a flowchart of steps in one preferred method for
performing steps 220 and 240 of FIG. 2 (the adaptive uncon-
strained and constrained Metropolis simulations, respec-
tively). The method starts at step 300, where an initial distri-
bution for V over all the bins of I' ) or I' )%, for unconstrained
or constrained simulations, respectively, is set. A natural
choice is the uniform distribution, i.e., P/=M~", k=1, ..., M,
where the subscript represents the bin number and the super-
script represents the iteration number.

Then, at step 310, a Metropolis algorithm is used to gen-

erate a random-walk in the sample space F according to the
distribution p/(z)xp(z)/P; for all z such that f(z) falls in the
k™ bin of T',* or I',. The method then proceeds to step 320,
where a histogram is generated of V=f(z), i.e., H/, k=1, .
M, over all the bins of T')”* or I';© based on the Values of Z
generated by the Metropolis random-walk. At step 330, anew
estimate for the distribution of V as P/*'=¢(P/, P,_/,P,_/ ',
H. H,_5%1=0,1,...,j)is obtalned, where ¢ denotes a
suitably deﬁned functlon

At step 340, it is determined if the histogram of V at the j* i
iteration is approximately uniform, i.e., H/~H,’/, Yk, me
{1,...,M}, or equivalently, when ij“sstj, Vke{l, .., M}
If the histogram is uniform, then the method proceeds to step
350. Otherwise, the method jumps to step 370.

At step 350, P, =P/*', Vke{l, ..., M} and p*(z)=p(z)/
(cP,™) is set as the optlmal biased d1str1but10n of z for all z
such that f(z) falls in the k? bin of T',* or I',%, where c is
chosen such that fp*(z)dz=1. Specific examples of the update
rule in step 350 are: (a)

. . s sl
pi r“ktm( H ]
W= o —_— N
Py \H{,
H{H}
whereg gkl andgt = Kkl , and (b) P’Jr ocP’HJ
1= -1 HL+ ]
Z k-1

The method then ends at step 360.

At step 370, the iteration counter j is incremented, and then
steps 300-340 are repeated.

FIG. 4a is a plot showing an example of combining the
results of unconstrained and constrained (before scaling)
simulation results to obtain the scaling factor P(E) and the
estimate P(VIE) P(E) of p(V, E) (constrained and after scal-
ing). This data corresponds to the estimation of word error
rate (WER) for a LDPC error correcting code and sum-prod-
uct algorithm decoding. FIG. 44 displays the histogram G,,
k=1,...,M, ofaccumulated values of V belonging to I' ,* NE
generated during the unconstrained simulation for this
example.

Estimating BER of a Specific LDPC Error Correcting Code

As an illustrative example of one application of the present
invention, the performance of a regular (96, 50) LDPC code
with a code rate of r=50/96 in an additive white Gaussian
noise (AWGN) channel with binary phase-shift-keying
(BPSK) was studied using the DAIS method of the present
invention. The parity-check matrix (H) of this code can be
found in D. J. C. MacKay, “Encyclopedia of Sparse Graph
Codes”, which is incorporated by reference herein in its
entirety (http://www.inference.phy.cam.ac.uk/mackay/
codes/EN/C/96.3.963).

This code was chosen because it was: (1) the same code
studied in B. Xia and W. E. Ryan, “On importance sampling
for linear block codes,” Proc. IEEE International Conference
on Communications 2003 (ICC "03), pp. 2904-2908, Anchor-
age, Ak., 2003, which is incorporated by reference herein in
its entirety; and (2) it is possible to exactly compute the first
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two non-trivial coefficients of the code’s weight enumerator
function (3 and 24 codewords at Hamming weights 6 and 8,
respectively), which allows one to compare the simulation
results with the code’s union-bound performance. Note that
the MacKay and Xia, et al., references noted above refer to
this code as a (96, 48) code, but 2 of the 48 rows of H are
linearly dependent.

Sum-product decoding (SPD) was implemented employ-
ing the log-likelihood modification of described in H. Futaki
and T. Ohtsuki, “Performance of low-density parity-check
(LDPC) coded OFDM systems,” Proc. ICC 02, vol. 3, pp.
1696-1700, which is incorporated by reference herein in its
entirety, and symmetric signal levels of +1 and -1 for logical
1s and Os, respectively. The pdf p, of the noise in the 17 bit at
the receiver is zero mean Gaussian with variance o°=1/(2r
E,/N,). It suffices to transmit the all-zeros codeword, since
the code is linear and the noise is symmetric.

Let I" be the n-dimensional probability space of the noise in
the n bits of a codeword. The noise vector z=(z,, . . ., z,,) is
multivariate Gaussian with joint pdf

n

p@) =[] otz

=1

The MMC algorithm is controlled by a scalar control quantity
V defined here as

L&
V(z) = {'—1

=1

12
[H(QIZI)Zl]Z} s

where q,=(~1)", with b, being the transmitted bit in the 1%
position, and H(x)=1 if x>0 and H(x)=0 otherwise. V(z) is
constructed so that a noise component z, contributes to V only
if it may produce a bit-error at the input to the decoder. A
received word with a noise realization z is characterized as
generating an error, if the LDPC decoder cannot decode it to
the transmitted codeword within 50 iterations.

Given a range [V ..., Ve for V, T is partitioned into M
subsets I',={zel'IlV,_=V(2)<V,}, where V,=V . +kAV,
1=k=M, and AV=V,~V,_1=(V,.cx— V)M is the width of
each bin in the partition of [V,m.n, max] Let P, be the prob-
ability of selecting a realization z from p so that zel',.. Then,

(1)

Py f X (@)

N
1 z p(E)
dz~ — i
*()p *(2)dz N X (2 )p ey

i-1

where p’(z) is a positive blasmg pdf, x(2)=1 if zel', and
%(2)=0 otherwise, and the z"* are N random sample points in

T, selected accordmg to the pdf p"(z). The variance of the
estlmate of (1) is zero if the optimal biasing pdf

p(z)

Popr(2) = x(2) 5=

is used. However, pop: (z) depends on P,, which is initially
unknown. In standard IS, one uses physical intuition to guess
a biasing pdf that is close to pop:.

The MMC algorithm instead iterates over a sequence of
biasing pdfs p"” that approach p,,,,,". p"* is defined for the j*



US 8,144,757 B2

11
iteration by p”? (z)=p(2)/(c'P/), where k is such that zel', is
satisfied. The quantities P;/ satisfy

M
P{>0and ) P{=1,and

k

¢/ is an unknown constant that ensures [ p /(z)dz=1. The
vector P/, k=1, . . . M, is the key quantity in the MMC
algorithm and completely determines the bias. At the first
MMC iteration, P, is usually set to 1/M, Vk=1, ..., M.

Within each MMC iteration j, the Metropolis algorithm is
employed to produce a random walk of samples z"* whose
pdf equals p"?(z). The Metropolis algorithm is described in
N. Metropolis, et al., “Equation of state calculations by fast
computing machines,” J. Chem. Phys., vol. 21, pp. 1087-
1092, 1953, and is hereby incorporated by reference in its
entirety.

A Markov chain of transitions consisting of small steps in
the noise space is considered. Each transition goes from
7=z, €l to0 7,""¢ "+&Az)el, , where Az is random and
symmetric, 1.e., it does not favor any direction in €, and the
transition is accepted with probability = ,, . If a transition from
7" toz, isaccepted, z "=z, is set, else z "*'=z""=z," is
set. The ratio m,,/m,, equals p““(z,")/p"?(z,"), which is the
detailed balance condition that ensures that the limiting (sta-
tionary) pdf for infinitely many steps of this random walk is
p.

The perturbation of the noise component in each bit z,, ;of
z,” is considered separately, and it is accepted or rejected
independently with the probability

4H[P1(ZZ,1) ]
mi. 1.
Pilzay)

Each perturbation Az, is picked from a zero mean symmetric
pdf. A trial state z," is obtained in which only some of the
components are different from their previous values in z,,”.
Next, k,, the bin corresponding to z, ", is computed, and the
step from z," to z,” is accepted with the probability

e
min| —&, 1].
Py

In each iteration, the perturbation coefficient € is constant
for all samples. After each iteration, € is adjusted so that the
acceptance ratio a[] (number of accepted steps)/(total num-
ber of steps, N) is close to 0.3 (empirically chosen based on
experience from previous experiments). The minimum
required N for this random walk depends on the average step

size a€’{Az) and hence is system-depende_nt. The noise real-
izations are recorded in the histogram H"”, where

v
Hy' = Z xe(@™)

i=1

is the number of the z"™~ in iteration j that fall into I",. The P/
are updated after each MMC iteration using the recursion
relations given in B. A. Berg, “Algorithmic aspects of multi-
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canonical Monte Carlo simulations,” Nucl. Phys. Proc.
Suppl., vol. 63, pp. 982-984, 1998, which is hereby incorpo-
rated by reference in its entirety, based on the histogram H™?.

As j increases, the expected number of samples (H, ")
becomes independent of the bin number k, which implies that
P/—P,.

Let P,,, be the probability that a received word with noise
realization z selected according to pdf p leads to an error, and
P.,... the probability that z leads to an error and falls into bin
k. Then

Perric = Pere P = PijerrPerrs (2a)

M (2b)
Por= 3" P,
k=1

where P, and P,,.,,. are the conditional probabilities of an
error given that z falls into bin k, and vice versa. P,,,. can be
computed by first running an MMC simulation as described
above, where we also count the errors in bin k to produce a

histogram G,". One can then approximate

Jmax ;
) Gy
pimax _

errlk -

=1 *,j
7 Hk
i=1

Pk =

afterj,, .. MMC iterations. Summing over all MMC iterations
is valid since the biasing pdf at any MMC iteration only
affects the total number of hits in a bin, but not the behavior of
error hits relative to the total hits within a bin. Finally, one can
use the left equation of (2a), and equation (2b) to get P,

In FIG. 5a, the approximation (P,,, /" P/"*)/AV to
P,,,./AV is shown with dots for E,/N,=11 dB. The dashed
line shows P,/AV, and the circles show the sum of the error
histograms

Jmax

> G
=1

The number of sampled errors rapidly decreases to 0 as V
decreases towards 0.4, which is where P,,, ; tends to be larg-
est. Consequently, the approximation P,,, ,~P,,. /"= con-
verges very slowly as the iteration number j increases. The
reason is that in this unconstrained MMC simulation, not
enough of the higher-probability smaller-noise realizations
that generate errors have been sampled.

One efficient method to overcome this undersampling
problem is to run a second, constrained MMC simulation
(hence the term “dual” in DAIS), in which one only accepts
Metropolis steps that lead to errors. If a trial realization z*,”
does not yield an error in this simulation, we set 1T, to zero.
The constrained simulation, hence, takes its samples from

p(z)
P’

PR = Xer(2)

where ¥,,,(z)=1 if z produces an error and y_,,(z)=0 other-
wise. Note that p(z) is proportional to p(z) wherever y,,(z)=
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1. If the Metropolis random walk is ergodic in the error subset
of T, the constrained MMC simulation approximates P,
Since the P, ; and P, estimates obtained using the two
simulations are both smooth for large k, using (2a) we can
obtain P, =P, ,/P;,.,, from the data where k is large.

InFIG. 5a, the dash-dot line shows P, ,,/AV obtained from
the constrained simulation, while the solid line shows the
resulting P, ,/AV obtained by scaling Py,,,,/AV to fit P,/AV
from the unconstrained simulation for 0.55<V<0.6. Since
MMC yields a similar number of samples in each bin, the
relative statistical sampling error of P,,,. in the constrained
simulation is smaller at small V than in the unconstrained
simulation. A significant advantage of running separate
unconstrained and constrained simulations is that the algo-
rithm optimizes the perturbation coefficients € of the two
simulations independently. The values of € tend to differ
strongly between the two simulations.

In these simulations, M=300. In the first iteration
N~!'=5000 samples in the unconstrained case and
N~'=10000 in the constrained case, and the number of
samples is increased after each iteration so that NV*'=1.3N. In
each case, P,/=1/M, k=1, . . ., M, and it is assumed that the
simulation has sufficiently converged when max [(P/-P/*!)/
P/7*'1<0.1 This convergence requires ~10° to 10® samples in
total, with the samples increasing on average with increasing
E,/N,. Also, in both cases, each MMC iteration is initialized
with a z that gives a decoder error.

In FIG. 55, the x and + symbols denote the decoder output
BER and WER estimates, respectively, obtained via Monte
Carlo (MC). The dashed curve with [] and dash-dot curve
with o denote the decoder output BER and WER estimates,
respectively, obtained using DAIS. Finally, the solid curve
and dotted curve denote the BER and WER union bounds,
respectively.

The union bound can be closely approximated at high
E,/N, by the contribution of low Hamming weight (6 and 8 in
this case) codewords. The SPD for LDPC codes approximates
the ML decoder. Hence, one would expect the SPD to perform
worse than the union bound on ML decoding at high E,/N,,.
The results from DAIS are consistent with this expectation
and indicate that DAIS can simulate WER and BER perfor-
mance of codes at very low values. Excellent agreement is
also observed between the results obtained by DAIS and MC,
wherever MC results are available (DAIS falls within the 99%
error bars for MC), which further validates DAIS.

The assertion that the true code performance should be
close to the union bound at high E, /N, is further bolstered by
the observation that for MC simulations, as E,/N, increases,
the contribution of the probability of decoding-to-wrong
codewords progressively dominates the WER. For example,
atE,/N,=4 dB, 216 of 1888 word errors recorded were due to
decoding to wrong codewords (the rest were decoder fail-
ures), whereas at E,/N,=7 dB, the corresponding numbers
were 40 of 52. Note that the BER results in the B. Xia and W.
E. Ryan reference are farther away from the union bound than
the present results (by about 0.4 dB at BER=10""), which may
be attributed to their use of =5 iterations for the SPD, and
possibly a different decoder implementation.

It is noted that the present BER data points do not show a
waterfall region since they correspond to large E,/N,, relative
to the Shannon limit (=0 dB for the present code), and since
the code is not very long. BER estimates down to 107>° for a
smaller (20, 7) code have also been obtained.

A measure of DAIS’s improvements over MC is given by
the ratio of the number of samples (codewords) required to
achieve a given WER at a given E,/N,, e.g., at E,/N,=10 dB,
WER~10""* is obtained by DAIS using 8x10” codewords
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(unconstrained)+3x10” codewords (constrained)=11x10"
codewords (total), whereas MC would require Z10*° code-
words (assuming 210 word error events). Thus the gain is

1015
- ~9x10°

11x10

It is believed that DAIS’s gain increases with decreasing

WER.

As code length increases, the dimensionality of I" and its
partitions that map to bins of V increases. Hence, maintaining
a given level of statistical accuracy in sampling each partition
of T" requires more samples for the longer code.

System for Estimating Probability of Occurrence of Events
FIG. 6 is a block diagram of a system for estimating the

probability of occurrence of events, in accordance with one

embodiment of the invention. The system includes a DAIS
processor 500 and a user interface 600. The DAIS processor

500 is preferably programmed with code for implementing

the methods discussed above, and illustrated in FIGS. 1-5.

The code can be written in any processor language known in

the art, however, it is preferably written in ANSI C.

The code that is used to implement the methods of the
present invention can be stored on a computer readable
medium 700, such as a hard drive, read-only memory (ROM),
random access memory (RAM), or any other type of elec-
tronic memory or storage device using any type of media,
such as magnetic, optical or other media. Although the com-
puter readable medium 700 in FIG. 6 is shown as separate
from the DAIS processor 500, it can be incorporated into the
DAIS processor 500.

The DAIS processor 500 can be a general purpose com-
puter. However, the DAIS processor 500 can also be a special
purpose computer, programmed microprocessor or micro-
controller and peripheral integrated circuit elements, ASICs
or other integrated circuits, hardwired electronic or logic
circuits such as discrete element circuits, programmable logic
devices such as FPGA, PLD, PLA or PAL or the like. In
general, any device on which a finite state machine capable of
implementing the flowcharts of FIGS. 1-3 can be used to
implement the DAIS processor 500.

The user interface 600 is preferably a graphical user inter-
face (GUI) with associated parameter error-checking in order
to prevent improper operation of the code due to inappropri-
ate parameter initialization, and make the code user-friendly.
The user interface 600 interface preferably accepts code
inputs and initializations, provides clear and useful messages
to the user in the event that the input parameters are illegal,
handles the data processing once the simulations have been
completed, and presents the results ofthe code in a predefined
and easily understandable format. The user interface 600 is
preferably informative, easy to understand, and capable of
providing the user with frequent messages regarding the sta-
tus of the simulation and guiding the user with step-by-step
instructions, wherever possible.

This system and methods of the present invention can be
applied to several general classes of problems:

(1) Estimation of very low probability events of the form
E={zlg(z)eG}, where g(z) is known analytically or algo-
rithmically, or is representative of an actual system under
test, and G is an observable/measurable event;

(2) Bvaluation of expectations E{g(z)}, with z[Jp(z) where
the largest contributors to E{g(z)} come from regions zeB
such that P(E) is very small; and
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(3) Evaluation of very small integrals [,g(z) dz where z is
non-random and f,dz is also very small.
Problem class (1) includes the application addressed above
(estimation of BERs/WERs of FEC codes), as well as other
communication system simulation problems where
extremely small probability events need to be evaluated or
simulation time is too long using previous Monte-Carlo-
based simulation techniques. It also includes the case where
one is testing an actual system (e.g., electromechanical or
electro-optical) by both controlling its input z and processing
the output data via the methods of the present invention.
Class (1) also includes the case where the algorithmic
description of the system or operation g(z) consists of several
interconnected subsystems, and requires a large amount of
computation time to produce an output for a given input.
Problem class (3) is addressed by the present invention via
using p(z)~ uniform on the sample space for z.
The foregoing embodiments and advantages are merely
exemplary, and are not to be construed as limiting the present
invention. The present teaching can be readily applied to
other types of apparatuses. The description of the present
invention is intended to be illustrative, and not to limit the
scope of the claims. Many alternatives, modifications, and
variations will be apparent to those skilled in the art. Various
changes may be made without departing from the spirit and
scope of the invention, as defined in the following claims.
What is claimed is:
1. A system for estimating the probability of occurrence of
an event (E), comprising:
a non-transitory machine readable medium embodying a
program of instructions executable by the machine to
perform method steps, the method steps comprising,
performing an adaptive unconstrained estimation of an
optimal biased distribution of a multi-dimensional
random variable (z) defined on a sample space (1),

performing an importance-sampling (IS) simulation
using the optimal biased distribution for z to yield a
first result,

performing an adaptive constrained estimation of an
optimal biased distribution for z over regions of I’
where E occurs,

performing an IS simulation using the optimal biased
distribution for z, over regions of I' where E occurs, to
yield a second result, and

estimating the probability of the occurrence of E based
on the first and second results.

2. The system of claim 1, wherein the constrained and
unconstrained estimations are performed iteratively.

3. The system of claim 1, wherein the event comprises a
word error rate for a forward error correcting (FEC) code.

4. The system of claim 3, wherein the FEC code comprises
a LDPC code.

5. The system of claim 1, wherein the event comprises a bit
error rate for a forward error correcting (FEC) code.

6. The system of claim 5, wherein the FEC code comprises
a LDPC code.

7. The system of claim 1, wherein the steps of performing
an adaptive unconstrained estimation of an optimal biased
distribution for z and performing an IS simulation using the
optimal biased distribution for z to yield a first result com-
prise:

performing adaptive unconstrained Metropolis simula-
tions to iteratively estimate the optimal biased distribu-
tion for z; and

performing an IS simulation using the optimal biased dis-
tribution for z and an unconstrained Metropolis random
walk to yield the first result.
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8. The system of claim 7, wherein the steps of performing
an adaptive constrained estimation of an optimal biased dis-
tribution for z over regions of I where E occurs and perform-
ing an IS simulation using the optimal biased distribution for
z over regions of I where E occurs to yield a second result
comprise:
performing adaptive constrained Metropolis simulations to
iteratively estimate the optimal biased distribution for z
over regions of I where E occurs; and
performing an IS simulation using the optimal biased dis-
tribution for z over regions of I where E occurs and a
constrained Metropolis random walk to yield the second
result.
9. The system of claim 1, wherein the probability of the
occurrence of E based on the first and second results is esti-
mated by:
scaling the second result to fit the first result to yield a
scaling factor; and
estimating the probability of the occurrence of E based on
the scaling factor.
10. A system for estimating the probability of occurrence
of'an event (E), given a known probability distribution (p(z))
of a multi-dimensional random variable (z) defined on a
sample space (I'),comprising:
a non-transitory machine readable medium embodying a
program of instructions executable by the non-transitory
machine to perform method steps, the method steps
comprising,
determining a scalar mapping (V) from the multi-dimen-
sional sample space to a single-dimensional space,

defining bins that partition a first range of values of V
(I';*), such that values of 'V not in the range of values
I'* have a negligible probability of occurrence,

performing adaptive unconstrained Metropolis simula-
tions to iteratively estimate an optimal biased distri-
bution for z,

performing an importance-sampling (IS) simulation
using the optimal biased distribution for z and an
unconstrained Metropolis random walk to yield a first
result,

defining bins that partition a second range of values of V
(I'}), such that values of V not in the range of values
I' ) have anegligible contribution to the probability of
occurrence of E,

performing adaptive constrained Metropolis simula-
tions to iteratively estimate an optimal biased distri-
bution for z over regions of I" where E occurs,

performing an IS simulation using the optimal biased
distribution for z over regions of I" where E occurs and
a constrained Metropolis random walk to yield a sec-
ond result, and

estimating the probability of occurrence of E based on
the first and second results.

11. The system of claim 10, wherein the first result com-
prises estimates of probability distributions p(V) and p(V, E),
and the second result comprises an estimate of the probability
distribution p(VIE).

12. The system of claim 11, wherein the probability of
occurrence of E (P(E)) is estimated by scaling the estimate of
p(VIE) to fit the estimate of p(V, E) over a range of values of
V where the estimates of p(VIE) and p(V, E) have a predeter-
mined reliability, to yield a scaling factor (SF), wherein SF
comprises a first estimate of P(E).

13. The system of claim 12, further comprising integrating
[p(VIE)*SF] over I')° to yield a second estimate of P(E),
wherein the second estimate is more accurate than the first
estimate.
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14. A process, comprising:

executing first code with a processor that performs an
adaptive unconstrained estimation of an optimal biased
distribution for a multi-dimensional random variable (z)
defined on a sample space (I');

executing second code with the processor that performs an
importance-sampling (IS) simulation using the optimal
biased distribution for z to yield a first result;

executing third code with the processor that performs an
adaptive constrained estimation of an optimal biased
distribution for z over regions of I" where E occurs;

executing fourth code with the processor that performs an
IS simulation using the optimal biased distribution for z,
over regions of I" where E occurs, to yield a second
result; and

executing fifth code with the processor that estimates the
probability of the occurrence of E based on the first and
second results.

15. A process, comprising:

sending a first result from a first importance-sampling (IS)
simulation on a sample space to a processor, wherein the
first IS simulation is unconstrained;
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sending a second result from a second IS simulation on the
sample space to the processor, wherein the second IS
simulation is constrained to regions of the sample space
where a predetermined event is guaranteed to occur; and

executing code with the processor that scales the second
result obtained from the second IS simulation to fit the
first result obtained from the first IS simulation to yield
a scaling factor.

16. The process of claim 15, wherein the first and second
results comprise estimates of first and second probability
distributions.

17. The process of claim 15, further comprising executing
second code with the processor that determines information
about an event based on the scaling factor.

18. The process of claim 17, wherein the information about
the event comprises an estimate of a probability of occurrence
of the event.



