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ABSTRACT OF THE DISSERTATION

Non-linear Evolution of an

Obliquely Propagating Langmuir Wave

by

Curtis Robert Menyuk
Doctor of Philosophy in Physics
University of California, Los Angeles, 1981

Professor Burton D. Fried, Chairman

The transition between regular and stochastic motion which occurs
when resonances overlap plays an important role in present-day plasma
physics research, and has recently been the subject of intensive study.
However, investigations to date have been primarily concerned with
single-particle motion in given wave fields, and there has been little
attempt to determine how particle motion feeds back on the wave to
affect its evolution. We explore this problem here in the simple con-
text of an obliquely propagating Langmuir wave. Electrons are resonant
with the wave whencver v,, = (w-nQ)/k,, where n is any integer.

This wave has three distinct evolution regimes whose locations
in paraneter space are given roughly by the following relations: If
wy (the electron hounce frequency) < v (the linear damping rate), then

linear thecry is valid, and the wave damps away. If Y o< w < Q (the

XV



cyclotron frequency), then electrons can be trapped in individual reso-
nances. In this trapping regime, the wave evolution can be treated

in a fashion analogous to O'Neil's treatment of a parallel-propagating
wave. We find that the amplitude oscillations disappear at propagation
angles greater than 14° due to a ""super-phase-mixing" of the many
bounce frequencies. Finally, if v < Q < Wy > then resonances overlap
and electron motion is stochastic. In this regime, particle motion is
nearly diffusive in the region of velocity space where resonances over-
lap, and the wave evolution can be treated using quasilinear theory
with resonance broadening. However, because most of the stochastic
electrons are initially on the edge of the stochastic region in velo-
city space, where large regular regions exist, their motion is not
entirely diffusive, and this theory's results, while qualitatively use-
ful, are not quantitatively accurate, as comparison with numerical si-
mulation shows.

In the transition regime between regular and stochastic motion,
the electron orbits are complicated and an analytic solution does not
appear possible. It is possible, however, to determine the asymptotic
total damping of the wave using two different approaches. In the
first, we assume that the distribution function is asymptotically flat-
tened over the resonant regions. In the second, we use "mini-simula-
tions," following the orbits of the resonant electrons numerically and
treating the rest of the electrons as a background linear dielectric
medium. Using this approach, the wave evolution is determined self-
consistently by updating the field at each time step. The two methods

lead to asymptotic amplitudes which agree to within a factor of two,

Xvi




and the wave's total damping is found to increase significantly when
a transition is made between the regular and stochastic regimes, i.e.
when resonances overlap.

In order to make contact with possible experiments, an idealized
boundary-value problem in which w and k, are fixed and k, is then de-
termined by the plasma is considered. The principal qualitative re-
sults which should be observable in experiments and full-particle
simulations are found also in the boundary-value problem.

We restate the principal qualitative results: 1) the amplitude
oscillations in the trapping regime disappear due to super-phase-mix-
ing of the many bounce frequencies when the angle of propagation is
increased past 140; 2) the wave exhibits increased total damping when

a transition is made between the regular and stochastic regimes.
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1. INTRODUCTION

1.1 Intrinsic Stochasticity and the Resonance Overlap Criterion

The study of intrinsic stochasticity, the apparently random be-
havior of deterministic systems, has found application in the fields
. 1 . 2
of hydrodynamic turbulence,” semiconductor physics,” many-wave coup-

-12 13-16
ling in plasmas,9 particle confinement in mirror machines, 3

. - 17-18
particle transport in Tokamaks, and others.
These theoretical applications can be divided into two classes,
. o s . . 1-5
those concerned with dissipative (non-Hamiltonian) systems, and
. 3 . 6-~18
those concerned with conservative (Hamiltonian) systems. In the
conservative systems, which include most of the plasma physics appli-
cations to date, one generally considers the dynamics of particles
moving in fixed-amplitude waves and is interested in determining the
character of particle motion as a function of the wave amplitudes.
. . € . . .
If the motion is regular, then particles can diffuse, leading to heat-
ing or loss of confinement, depending on the application.
The point at which the transition between regular and stochastic
behavior occurs may be determined analytically using the resonance
s 20 . .
overlap criterion developed by Chirikov. Consider the simple exam-—
ple of a one-dimensional potential which is a superposition of plane

waves. The Hamiltonian of a particle with unit mass and charge is

given by




2

H(z, p.) = P + gfan cos[kh(z—vht)],

l h=xt

(1.1)

where z is the particle coordinate, p_ is the particle momentum, and
z
. . th : .
ea gives the amplitude of the n wave. When P A the particle
. . th . .
will be resonant with the n wave, and, if ¢ is small, the effect of
the other waves on the particle will be small. The Hamiltonian may

then be approximated by

2
H(z},oz)r:%f—‘fEQnCOS[k,,(Z-Vht)] . (1.2)
Eliminating time by moving to the wave frame will yield the usual pen-
dulum Hamiltonian which has regular solutions with a resonance (trap-
ping) width Apz=4(ean)1/2 (see Ref. 20, Sec. 1). As ¢ is increased,
the approximation of neglecting all but one wave breaks down when the
resonance widths associated with neighboring resonances (n and n*l)
overlap; in effect, the particle is now trapped in many waves, res—
ponds to all of them at once, and hence moves stochastically. It has
been shown in many numerical studies that this overlap condition tends
to overestimate the value of ¢ at which some particles are free to
move from one resonance to another and to underestimate the value at
which essentially all particles are free to move. Nonetheless, it is
relatively easy to calculate and therefore quite useful.

Theories to date which examine the transition between regular

and stochastic motion have generally focused on the particle motion




in a fixed amplitude wave. There has been little attempt to determine
how the particle motion feeds back on the waves to affect their evolu-
tion, or to demonstrate that this evolution differs significantly in
the regular and stochastic regimes. Because it is waves, not parti-
cles, which are the primary observables in most experiments and full
particle simulations, a determination of the wave evolution and a dis-
cussion of the differences between the regular and stochastic regimes
is important. It is one of the major purposes of this thesis to
address this issue.

In this thesis, the particular example of a Langmuir wave pro-
pagating obliquely to a magnetic field is considered. This wave has
the virtue of being a promising candidate for experimantal study.

Single particles are resonant with it whenever

w - hix
k

"

’\j’z = > (1.3)
where v, is the particle velocity parallel to the magnetic field, w
is the wave frequency, Q is the cyclotron frequency, k, is the paral-
lel wavenumber, and n is any integer. Hence, this single wave has
many resonances which can overlap, leading to stochastic particle

.9 . . - .
behavior™ and, as we will show, increased asymptotic change in the
wave amplitude (increased total damping).

It should be borne in mind that plasmas are influenced bv a

. . 21 )

myriad of non-linear phenomena, several of which can be seen mixed
together at one time in many experiments and full-particle simula-

. 22
tions. Because we consider a single wave, wave—wave coupling is




not important in our problem. To reduce shock formation and other
wave generation as much as possible, we consider a wave satisfying
$=(e®/T)<0.1, which is the range where experiments on parallel-pro-

. 23 . . )
pagating waves have been done. To avoid confusion with enhanced

. 24 . .

Landau damping, we not only consider small wave amplitudes, but
also set Vp24vt, where vp is the phase velocity and v, is the thermal
velocity. Finally, to demonstrate that resonance overlap leads to
effects different from trapping, so that the two phenomena may be
distinguished, we show that when resonance overlap occurs, particles
can gain considerably more energy than when they are trapped, because
they are free to move from resonance to resonance. As a result, they
take more energy from the wave, leading to an increase in the total

asymptotic damping.

1.2 Obliquely Propagating Waves

Obliquely propagating waves are worth studying for reasons that
go well beyond verification of the resonance overlap condition. Non-
linear wave-particle interactions lie at the root of many important

e 21 C
plasma physics phenomena, of which resonance overlap is just one.

25—
Great progress has been made theoretically, =31 experimentally,23’32

2 3-
4,33-35 in understanding these phenomena in paral-

and in simu’ations
lel-propagating waves, but there has been far less progress in under-
standing these phenomena in obliquely propagating waves, where the

presence of many resonances leads to behavior quite different from

that of narzllel-propagating waves.




In this thesis, the evolution of a Langmuir wave propagating
obliquely to a magnetic field in an infinite, homogeneous, Maxwel-
lian plasma is studied. We consider only a single wave, ignoring
the possible existence of other waves due to harmonic generation,
sideband instabilities, or other non-linear processes. Particle
motion in electrostatic waves has been discussed by Smith and Kauf-
man,9 and earlier, for non-stochastic particles, by Palmadesso.3
Electron waves are studied here, rather than ion waves, because the
non-linear evolution of electron waves is only affected by the elec-
tron dynamics, considerably complicating the theoretical analysis.

We can distinguish three different regimes for the evolution
of an obliquely propagating Langmuir wave, depending on the wave
amplitude. If the linear damping rate y is greater than the elec-

tron bounce frequency w then linear damping dominates the evolu-~

b,

tion; if vy<w, <@, then electrons are trapped in well-separated reso-

b
nances and trapped particle oscillations dominate the wave evolution;

finally, if y<Q<w then electrons move stochastically, and their

b,
diffusion dominates the wave evolution.
Study of the non-linear evolution of any wave must be based on
a good understanding of the linear regime where wb<y. It is straight-
forward to claculate the linear dispersion relation of obliquely pro-
. . 37
pagating Langmuir waves; however, the usual treatment does not cla-
rify the physical origin of the multiple resonances and of the damp-

ing. In Chapter Z of this thesis, the dispersion relation is derived.
Next, the dimensionless variables which will be used to describe the

wave and the plasma are introduced, and the parameter regime where our




work was done is described. The physical origin of the many resonan-
ces and the associated damping is then discussed, and it is shown that
the damping is caused by essentially the same machanism as the usual
Landau damping in parallel-propagating Langmuir waves. The linear
dispersion relation is then solved exactly using root-finding tech-
niques and the result compared to the usual asymptotic approximations.
The contributions of the separate resonances to the damping are also
evaluated and discussed.

Consideration of non-linear effects begins with Chapter 3,
where the equations governing the evolution of waves in the trapping
regime, y<mb<Q, are derived, and the result is shown to reduce to
that of O'N61126 in the case of parallel propagation. In the course
of this derivation, it is demonstrated that the bounce frequency of

X th . .
electrons trapped in the n resonance is given by

ed ko vin]'*
W = hy [Tn' T ( n )] ) (o

where e is the electron charge, m is the electron mass, ¢ is the

wave potential amplitude, k, is the perpendicular wavenumber, v, is
is the electron perpendicular velocity, and Jn(x) is the Bessel func-
tion of order n. The equation governing the wave amplitude is then
solved numerically, and it is shown that when the angle of propaga-
tion with respect to the magnetic field is increased from 0° to 140,
the amplitude oscillations discovered by 0'Neil disappear due to
"suser-phase-mixing" of electrons with different bounce frequencies.

In discussing the transition between the trapping and stochas-



tic regimes, an analytic description of the particle motion does not
appear possible since phase space is composed of regular and stochas-
tic regions pathologically interwoven. Nonetheless, progress can be
made in discussing the asymptotic (t=«) change in the wave amplitude
using momentum conservation arguments similar to arguments previously
used by Dawson and Sharmy.24 One calculates the fraction R of the wave
energy required to flatten the electron distribution function over
the width of a resonance, or, if several resonances overlap, over
their combined width. 1If R<1l, then the wave energy will decrease by
a fractional amount approximately equal to R before saturating; if
R>>1, then the wave will damp away. This model is used in Chapter 4
to demonstrate that the '"total damping", the fractional decrease in
wave energy, increases when resonance overlap occurs, and to derive
scaling laws which could be verified in experiments and simulations.
The time evolution of the wave energy in the stochastic regime y<wB<Q
is then investigated; the assumption that particle motion is diffusive
is examined, and, given this assumption, the appropriate diffusion
coefficient is derived and used to estimate R(t).

In order to check our theoretical results and accurately de-
termine the time-~development in the stochastic regime, we have used

33,38-39

a "mini-simulation" technique in which a small region of
velocity space is simulated, while most of the plasma is treated as
a background linear dielectric. The results, which are presented in
Chapter 5, essentially confirm the theoretical predictions of Chap-

ters 3 and 4. Moreover, they show that the evolution in the stochas-

tic regime is quite slow compared to evolution in the trapping




regime. In the stochastic regime, the wave is only halfway towards
saturation after ten bounce periods and takes hundreds of bounce
periods more to get all the way there; while, in the trapping regime,
the wave has essentially saturated after five bounce periods.

In theories and simulations, one generally solves initial-
value problems, and the results are not directly appropriate for
comparisons with experiments, where waves are typically launched
from a grid. To facilitate comparison with experiments, we consider
an idealized boundary-value problem in Chapter 6. A planar phased
array which fixes both w and k, is assumed to be embedded in the
plasma, with its normal parallel to the magnetic field. The dis-
persion relation determines the real and imaginary parts of»k”.

The familiar relation yz=yvg, where Y, is the spatial linear damping
rate and v_ is the group velocity is reviewed. It is shown that in
g
the trapping regime the bounce wavenumber kbz in the nth resonance
is equal to wb/vn, where vn=(w—nQ)/kn. As a result, the relation-
shipt between the temporal and spatial evolution is usually compli-
cated; however, in the special case of parallel propagation, the spa-
tial evolution is self-similar to the temporal. In this case, the
total spatial damping Rz is shown to equal (vp/vg)R. If the reso-
nances are closely packed, as is the case in the stochastic regime,
then this result is shown to be approximately valid for obliquely
propagating waves as well.

Chapter 7 contains the conclusions. Our principal results

are that super-phase-mixing leads to disappearance of the amplitude

oscillations in the trapping regime, and that the onset of stochas-




ticity leads to increased total damping of the wave.

0




2. LINEAR REGIME

2.1 Derivation of the Dispersion Relation

Landau40

was the first to calculate the complete dispersion rela-
tion for unmagnetized electron waves, including the imaginary part;
before then, only the real part had been derived. Landau's prediction
that the wave damps was confirmed experimenta11y41 and in simulations42
in the early '60's. The work of extending Landau's theory to a mag-
netized plasma was done by a number of authors and essentially com-
pleted by 1962.°7

The standard derivation of the dispersion relation begins with

the Vlasov equation

of 2F A yxBo -
5;*1"5;,;’7;(5**71-)”0> (2.1)

where f = f(x,v,t) is the electron distribution function, x is the

electron coordinate, v is the electron velocity, BO = B.e_ is the mag-

0.z

netic field, chosen to be in the z-direction, and
E = 'i@(k.,gz*'kigg)exp[i(kulﬁug ~wt)] (2.2)

is the electrostatic field, with the perpendicular component chosen
to be in the y-direction. In linear theory, the electrostatic field

is considered small, and the Vlasov ecquation is linearized to yield

10



_F
VBo 3£ —-—6—E'a° 2.3
w§§'+¥"}§‘%(~:” sy m~ oy’ =

where fo(v) is the unperturbed part of the distribution function and
f(zrt) = fw)exp [i(lzs kay-wt)] (2.4)

is the perturbed part of the distribution function. Solving for fl

from Eq. (2.3) and substituting into Poisson's equation
V-E = -4Ten, (divi (2.5)

where n, is the plasma density, yields

5 I * (f:l&)
Y nn 0% R n L1
kzé = (UP @hz 5431/(“1’,:‘ v, “/(u'é';") hﬂ+/‘:(vz‘(:) 2 (2.6)

[l
z -
- 2, 1/2 . .
where wp :(4wnoe /m) 1s the plasma frequency. In the v integra-
tion in Eq. (2.6) and subsequent equations, we assume Im(w) > 0. If
Im(w) < 0, the integration is determined by the analytic continuation

from the upper half plane. The dielectric function may now be written

E (ki kuyw) = |- 20 S gy (220,

K ooy Moy,
2k, v,
J" ( > )

h‘o' *i(u v?.“w

. (2.7)

To find the dispersion relation w(k,,k,), one sets the dielectric
function equal to zero and solves for w given k, and ky. If wis

almost real, then it is legitimate to break the dielectric into two

11




pieces g = €Lt e where

E nf 3, o1, J;L <-é§££
S e (B e k) D A

he -0

(2.8)
£; E“"Wfﬂzw 50(2"’,._("&332'* )J'

/(2 < /("V"L BVJ. aVz_
he-

)

One can then solve for W the real part of w, by setting e equal to

zero, and then solve for W, the imaginary part of w, using the rela-

tion

?Er/ (i :

w.) =-
pw | W) =g (2.9)
wr

Noting that vy = —wi, one obtains the standard result

. d€ e, [n 2f  3F, 2/ k. v

¥ Tr(aw) Z 5’( ( 31,* av»x) ‘Th ( _j)_) : (2.10)

hz -«

In the case of a Maxwellian plasma, the distribution function is
P m_)"* LATRAE A
L= (T EXP[“ (F)(=-=/] > (2.11)

where T is the temperature, and Eq. (2.7) becomes

S A D
%(%)'IZZ[wL:ﬂ (3%:),/1] ) 1)

where An(x) = In(x)exp(—x), In(x) being the modified Bessel function

il

of order n, kD z (4Trn ez/T)l/2 is the inverse Debye length, and

2]

Z (x) = 5 EXP(‘ u?)

_L
m

&

12




is the plasma dispersion function of Fried and Conte. %3

2.2 Normalized Variables and the Parameter Regime Considered

An obliquely propagating electrostatic wave in a Maxwellian plasma
with a homogeneous magnetic field is completely characterized by
seven variables which may be chosen to be the wave potential ¢, the
plasma density Ny the plasma temperature T, the cyclotron frequency
0, the wave frequency w, the parallel wave-number k,,, and the perpen-
dicular wave-number k,. One can replace this set of variables with
another as long as the two sets are equivalent, and, in our work, we

often replace n, and T with the plasma frequency wp and the inverse

0
Debye length kD. 0f the seven variables needed, two only serve to
set the length and time scales, and can be removed by suitably normal-

izing the original variables. 1In this thesis, we use the normalized

variables

k /(tlvt
(2.13)
_ kv
K//:”"Ei> /{_LEALV?)
AL
- 1/2 . . .
where v = (T/m) is the root-mean-square electron velocity. This
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choice of variables implicitly assumed k, # 0; in fact, in our numeri-
cal work, the angle of propagation is never greater than 45°. Other
variables, dependent on those already defined, which will be useful

in the course of our work are

r=k./k,, K= kv, /0 . (2.14)

The dimensionless quantities we have defined in Eqs. (2.13-14) have

definite physical meaning and are the natural ones to use. The quan-

tity o = kD/k = (kAD)-l = wp/kvt is the inverse of the parameter gen-

erally used in full particle simulations to characterize wavelengths.

The quantity u = m/k”vt = VP/V is the normalized phase velocity, the

t

n

velocity of the n = 0 resonance, and the quantity K;l = (Q/k”vt) =
(vs/vt) is the normalized velocity separation between adjacent reso-
nances. This situation is shown schematically in Fig. (2.1). The
effect of increasing u, which is to move all the resonances farther
out on the tail of the distribution function, and the effect of in-
creasing k,,, which is to bunch all the resonances closer to the n = 0
resonance, are also shown. Finally, the quantity r = k,/k,, is the
tangent of the angle of propagation with respect to the magnetic
field.

Letting u. Zu +Vui be the normalized complex frequency, the lin-

ear dispersion relation, Eq. (2.12) becomes

R R WAL C L9} R D

h=-co

when expressed in terms of normalized variables., 1In the lincar re-
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1s similarly shown.
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gime, this relation determines u in terms of a, «x,, and K,, elimi-
nating it as an independent parameter. In the non-linear regime as
well, the linear dispersion relation determines u to good approximation,
because the frequency is only slightly shifted from the linear value in
the parameter regimes we will be considering. Whether the wave is lin-
ear or non-linear, the number of independent variables is reduced from
five to four, and, in the linear regime, it is further reduced to three
because ¢ i1s irrelevant to the wave evolution.

In order to reduce the possibility of non-linear wave generation
as much as we can, we always consider the parameter regimes ¢ < 0.1,
which is the range where experiments on parallel-propagating waves
have been done.23 In order to be in a regime where resonances can
overlap, we consider k;,, 2 1.0, which is the warm plasma limit. Fin-
ally, in order to be in a regime where non-linear effects are not
overwhelmed by linear damping, we consider o 2 3.5, which, in com-
bination with our condition on k,, implies that (mp/Q) z 3.5, so that
the wave is in the weakly magnetized limit.

In these limits, the asymptotic solution of the ummagnetized
dispersionArelation

2

I Al LA
£ = | > / (K =) =0, (2.16)

gives a good approximation to the real part of the frequency, although
it does not represent the imaginary part very well. Using the asymp-
totic expansion of Z'(X)4J in Eq. (2.16) yields in the weak damping

case, y << u, for the real part of Eq. (2.16)
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£ = I__o(ljf_j_l__ _30(1.,/5:.{._1.. = 0 . (2.17)
r K u* xY u*

To second order in a~1, Eq. (2.17) is just the usual Bohm-Gross dis-

persion relation. Solving Eq. (2.17) to second order in a_l, we find

= 2K
w o= (e 3% X (2.18)

Evaluating the quantity w(aer/am} = u(aer/au), which is needed in Eq.

(2.9) to solve for u;, we find

o€ 6

W—=- = 2+ —3 " (2.19)
o U
In order to obtain a reasonably accurate solution for u; = ~Y/k”vt,

it is necessary to use Eq. (2.10) which contains the effects for all

the resonances:
ST 22 oe ) < 2 ) I e
lu: | f"; oc* u (uau) thA“(K‘) exp[3(u-2) |, @20
where we have used Eq. (2.9) and the relation

£, - E— oc"uZ A (x]) exp[*é(“';:‘")q , (2.21)

which may be obtained from Eq. (2.8).

2.3 Physical Origin of the Multiple Resonances

The multiple resonance structure which was discussed in the
Introduction and is apparent in Eq. (Z.6) and the subsequent equations
can be understood physically using ideas very similar to those familiar

. . . 3 44
from the case of single electrostatic wave 1n an unmagnetized plasma.



The wave which we are considering is a normal mode of the infin-
ite, homogeneous plasma, and its time variation in the laboratory frame
is sinusoidal. An electron moving rectilinearly with respect to the
laboratory frame, as in an unmagnetized plasma, '"sees'" a potential whose
variation is also sinusoidal. However, an electron moving on a spiral
path, as 1s the case in a magnetized plasma experiences a potential of

the form
$(x,t) = dcos ("HZ + Iuy + ki/asihe -wt) (2.22)

where Y is the y-coordinate of the gyrocenter, p = v,/% is the gyro-
radius, and 0 is the gyroangle. Along the spiral path of the electron's
unperturbed motion, 6 = 60 + 0t and z = zo * vzt. Hence Eq. (22) be-

comes

$(t) = & C°5[/<,,Za + kllvzt + /g/p 5ih(6°+_o/c)~w‘tj . (2.23)

This potential and the associated electric field have a nonsinu-

soidal dependence on time, and a Fourier decomposition yields

(t) Z @ J _,_,o) sth (L,,Ut +hfit-wt *E ) ) (2.24)

where &n = k”ZO + kY + n@o 1s a constant phase. Thus, an electron sees
a field composed of many "partial waves' whose amplitudes depend on the
electron's velocity. As a result, the electron will be resonant with
the nth particle wave when v, = (w - nQ)/k,,, and can gain or lose energy

depending on its phase. The partial waves are not real waves and cannot




separately gain or lose energy; only the wave as a whole can do so.
Nonetheless, electrons can be trapped in the individual partial waves,
and, when the partial waves overlap, electrons move stochastically.

The physical picture of oblique wave damping is that electrons
interact strongly with any of the partial waves with which they are
resonant, taking energy from, or giving energy to, the wave as a whole.
If there are more electrons that take energy than give energy, the wave

damps, just as in the usual physical picture of Landau damping.45

2.4 Solution of the Dispersion Relation

In the nonlinear regimes, the quantities u and u(aer/au) play an
important role, similar to the role they play in determining u, in
Eq. (2.20). Hence, it is important to accurately relate these quan-

titles to a, K and r. Obvious candidates for doing so are the asymp-

(A4
totic relations, Eq. (2.18) and (2.19). To compare Eq. (2.18) to the
solution of the complete dispersion relation, Eq. (2.15), we used a

45 . .
root-finding technique described by McCune, which yields the complex

root u, as a function of a, «,,,

and r. The quantity uc(ae/auc) was
then evaluated at the root.

Fig. 2.2 shows that in the ranges of interest for the non-linear
theory, o > 3.5 when r = 0.0, o > 4.0 when r = 0.25, and o > 4.5 when
r = 0.5, the asymptotic approximation for u is quite good, deviating
by less than 2%. By contrast Fig. 2.3 shows that the asymptotic rela-

tion, Eq. (2.19) is not very good, deviating by more than 10% in some

cases of interest. In our numerical work, we therefore used the exact
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Fig. 2.2 Variation of the phase velocity u = w/k,,vt with a = kD/k.
Solid lines indicate solutions of the complete dispersion
relation Eg. (2.15). Dashed lines indicate solutions of

the asymptetic relation Eq. (2.18).
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Fig. 2.3 Variation of uc(ag/auc) with . Solid lines indicate solu-
tions determined from Eq. (2.15). The dash-dot line in-

dicates the asymptotic relation, Eq. (2.19).
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values of u(aer/au) obtained from Eq. (2.15).

Eq. (2.18) and Eq. (2.19) may be substituted into Eq. (2.20) to
determine uy and the results compared to those obtained from Eq. (2.15).
This comparison is shown in Fig. 2.4 which displays {uil in a semi-log
plot as a function of a. The large deviations, up to 30% in the range
of interest, are almost entirely due to small deviations in u, which
are magnified by the appearance of u in the exponentials of Eq. (2.20),
and the deviations of u(BET/Bu). If [uii is plotted as a function of
u rather than o, and the exact values of u(aer/au) are used, the devia-
tions are réduced to less than 4%.

It is of interest to examine the fractional contribution of the

nth resonance to the damping, i.e. the quantity
1 PR
b M) exp 5 (w2 )]
J ind 2 \2
> A(x2)exp [5(e-)]
f=-00 n

shown in Fig. 2.5, where Eq. (2.18) is used to calculate u as a func-

(2.25)

tion a. As o increases, and with it the phase velocity u, resonances
at higher values of n become increasingly important.

The damping per cycle, y/w, is shown in Fig. 2.6 as a function of
a. As o increases, the phase velocity u increases without affecting
the separation between the resonances which is fixed by k,. Thus, all
of the resonant velocities increase, sharply reducing the number of
resonant electrons and, with them, the damping. The fall-off with in-
creasing a becomes less rapid when r is increased because the frac-
tional contributions of the high-n resonances, which are proportional

2
2. . N
to An(Ki_), increase.
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The solution to the complete dispersion relation, Eq. (2.15), is
shown in Fig. 2.7 as a function of «,. Since increasing K, while
keeping @ and r fixed is equivalent to reducing the magnetic field,
the dispersion relation eventually approaches the unmagnetized limit
where u and u, are independent of x, for given r and a. The real part
of the frequency u deviates only slightly from the Q = 0 (k,, = =)
limiting value in the entire range «, 2 1.0, justifying the use of
the unmagnetized limit approximation. The imaginary part of the fre-
quency u, deviates significantly from the @ = 0 (k,, = =) limiting
value until «,, 2 2.0. Two competing effects are at work here. Since
Kk, increases with «, for fixed r, the higher-n resonanées, whose con-
tributions are proportional to An(Kl?), make a more important contrib-
ution to the overall damping rate as shown in Fig. 2.8. At the same
time, recalling that v, = (¢ - n@)/k,,, the resonances with n > 0 in-
crease in velocity, so that they '"bite'" less deeply into the distribu-
tion and affect fewer electrons. For K”\é 2.0, the latter effect dom-
inates over the former, and the damping increases with k,. However,
at larger values of x,, these two effects exactly cancel each other,

and the damping is independent of k,,, consistent with Eq. (2.16).
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3. TRAPPING REGIME

3.1 Historical Overview and Discussion

The non-linear evolution of a Langmuir wave in an unmagnetized
plasma was first treated by O'Neil26 and independently by Mazitov.25
The amplitude oscillations predicted by O'Neil were observed experi-
mentally by Malmberg and Whartonz3 and in particle simulations by
Matsuda and Crawford,35 who used a quiet start technique and periodic
smoothing to avoid the need for many particles. Tsa133 used a mini-
simulation for the spatial problem, following the resonant electrons
numerically and using linear theory for the background.

Since O'Neil's work, the theory has been extended in two ways.
First, since O'Neil solved for the electron orbits holding the electric
field constant, his theory is strictly valid only in the limit y << Wy -
Various author530 have shown that even when the electron orbits are
treated exactly, O'Neil's results are essentially correct in almost the
whole range y < Wy s but the time between the amplitude oscillation
maxima increases somewhat relative to O'Neil's prediction as y/wb,
increases. Second, 0'Neil approximates the distribution function as a
linear function of v near v = Vp. Morales and O'Neil,z8 by keeping the
quadratic terms in (v - Vp), obtained the non-linear frequency shift in
the frequency as well as the damping rate. This shift has been seen
both experimenta11y32 and in simulations.SB’ 35

. .2
In this chapter, we extend the theories of O'Neil 6 and Morales

and O'Neil28 to magnetized plasmas in the regime where v < Wy < Q. We
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find that because the different resonances have different bounce fre-
quencies, the amplitude oscillations of the wave undergo a '"super-phase-

mixing', disappearing at angles greater than about 14°.

3.2 Review of the Single Particle Motion

We consider a Langmuir wave with the potential given by

§(x,t) = & cos (k2 vhkoy-wt) (3.1)

where ¢ is the potential amplitude. The equations of motion in this

wave are
X = v
(3.2)
-~ yxéo Cé A
yeoe 22 B2 (kegrkey)sin (k2 ek y-w,t),

It is useful to transform from Cartesian coordinates to the six variables
z and P> 8 and p, the gyro-angle and lowest order adiabatic moment, and
X and Y, the guiding center coordinates. In terms of x, Yy, Vs and Vy’

the precise definitions of 8, u, X, and Y are

6 = tan™ (-vy/v,),
7S :_'-,"_..(Vld»'lfl): MVLL
T y 0

(3.3)

s

X

X-pcose,
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Y= y-psine,

where p = (2u/mﬂ)1/2 = v,/Q. In these variables, the equations of

motion become
zZ = p; /m,

Pz = ek, & sin(k,z + k, (Y+/osihe) ~w,,t] )

e

6= 0 + f;f d sthe Sin [k“24~kL(Y+psina)—a%t])

(3.4)

=.
t

= -ek,p § cose sih[k,,z +k, (Y+/slha)-wot])

X: LAP‘I/I'(”M-D.)

The change in X, waich is due to the E x B drift, is determined exactly
from p,, so X is a redundant variable. Eliminating Y and wyt by re-

defining z and p_, z » z - (k,/k, )Y + (l/k”)wot, I (m/k”)wo,

the equations of motion become

i = Pl /"U

P.z = ek, sen (k,z o+ k;psihe))
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. k
2  + :i~i£1
2

{1

é sine sih (kyz + /‘J_/’S"“e) )

% .

-ekp cose sihlkz+ k. psine) .

Eq. (3.5) can be derived directly from the Hamiltonian of Smith and

Kaufman9

2
= % +/Aﬂ-€§c05(/("2 +/<J_/ﬂ5(‘h6)) (3.6)
in which P, and p are conjugate to z and 6, respectively.

Solving Eq. (3.5) yields the particle motion on a four-dimensional
torus. A two-dimension, graphical representation of the solution can
be obtained by plotting the phase point (z, pz) whenever 6 becomes equal
to some constant 60, on a constant energy surface, H(z, P> 8, u) =
constant. Alternatively, we can use the discrete Hamiltonian method to
replace Eq. (3.5) with two discrete equations which describe the mapping
on the surface-of-section 6 = 80, H = constant.46 Using either method,
one finds resonances in which there are trapped electrons, as shown in
Fig. 3.1. Recalling that we have moved into the wave frame, these
resonances occur when pZ/m = -nQ/k,,.

In treating the wave evolution in this chapter, we hold the wave
amplitude fixed when we calculate particle orbits; this approximation
was also used by O'Neilz6 when he studied the evolution of a parallel-
propagating wave. We further assume that the resonances are well-separa-

ted. These approximations are strictly valid only when y << Wy << Q,
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but, from our experience with parallel-propagating wave526 and single-
particle orbits in obliquely propagating waves,9 we conclude that they
should be qualitatively valid over the whole range y < wy < . Refer-
ring to Eq. (3.5), and noting that p = va?/zﬂ ~ T/Q, we see that 8 =

Q[1 + 0(¢)]. Recalling that ¢ << 1, we conclude that it is legitimate
to neglect all but the lowest order variation in 6, so that we may

approximate 6 = Q. By contrast, we will retain the full, non-linear

variation of z.

3.3 Theoretical Formulation

Writing the potential variation, Eq. (3.1) in the form

,t) = Liexpli(hzsky-wt)]

(3.7)
+ exp[—i(k,,zdug ~wbt)]g 5

we see that both the amplitude variation of ¢(r, t) and the nonlinear

frequency shift can be accounted for by replacing w t with
t
b
ch(t’) dt 5

]

where wc(t') can be considering to be the complex frequency of the
wave. The problem of determining the non-linear evolution of the
wave 1s just the problem of determining mc(t'). We shall make this
determination subject to the assumption that the time scale for the
non-linear evolution of the wave is slow compared to the wave period
in the laboratory frame 2ﬂ/w0, where W is the solution of er(¥, mo)

=0, 1.e., that 8w _ = w_ - w_ is small compared to w
c c o o)
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In this section, we will take advantage of the smallness of dwc to
establish our basic equation using the subtraction procedure of Morales
., 28 . . .
and O'Neil. Letting EO be the wave amplitude and defining a phase

difference
t

Séw(t‘) dt, (3.8)

©

iH

n(t)

the electric field may be written quite generally in the form

E (E:t) = gk({) eXP[I(é‘K'&%t>] » (3.9)
© Ep@ enpli(kr-u,t)]

where

E, |
E, ()= 5+ exp [-ince)] . (3.10)

2

Poisson's equation may be written in the form

J k E/( (t) = 4Tp, = 4n (’Ofl +/ol<”) , (3.11)

~

is the linear charge response and Prne is the non-linear

where pk2

charge response. These charge densities can be written as
Li = *ehof,ﬁvﬁ( ,

(3.12)

R~
-
-

u

’ChOSO(,BV ;l(f ;
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}:& :SJ{”gﬂ exp[-i(kllz+kL3‘wot)J7€)

i >\.L
° ° (3.13)
A A
_(Mdz (tdy ko ko y-wo t)IE
s [ (5t e kil hegmutlly
(4]
[
A, = 2n/k,, A, = 2n/k,, f(x, v, t) is the full distribution function and
fﬁ(x, v, t,) is the linear response.
By definition, we have
g(k.w) = I~W53
(k. w) i, dvf“ , (3.14)

where sz is the linear response to a wave of a given frequency. For

real frequencies, f = can be divided into two parts; f r which is 90°

ke

k

out of phase with Ek and is responsible for supporting the wave, and
fki’ which is in ph;se with Ek’ and is responsible for the usual linear
damping. We then have

= . FTreh, (o
£ (kw) = | i, S‘“”Cgr : (3.15)

The explicit long-time (t = «) form of £, and €. for an obliquely prop-

kr
agating wave is given by Eq. (2.8), and Ehese quantities can be ex-
tended to complex frequencies by analytical continuation. Noting that
near w = w_, er(ﬁ, w) = (aer/am)éwc, and combining Eq. (3.15) with Eq.
(3.12), we conclude

o[98 3

1/<(5“;")5“’c£5 = —47Teh050(1r(7fk~{ ).

~ kv (3.16)

a
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Eq. (3.16) forms the basis for the remaining analysis in this chapter.
A more rigorous derivation of this equation using a method described
by Landau and Lifshitz47 is included in Appendix A.

Like Morales and O'Neil, we assume that the electrostatic field is

constant when determining f, and fkr' In this case, fz(x, v, t) has

k
the form
f!(g) ],\}/‘)t) = ﬁ(sll{’) t) + {‘ (3’)1,/ t) ) (3.17)
where

Folx v, t) = Alv,t) cos (b x-w,t),
fo(x v, t) = B(¥,t) sin (k-x-w,t). (3.18)

The functions A and B are explicitly calculated later in this chapter.

Given Eq. (3.18), it follows that

;\u AL
d .
£ - é 715 % exp[—c(/(,,2+/<ig—wof)]fkQ’;}{,f) - (3.19)

3.4 Determination of the Complex Frequency Shift

In order to calculate the complex frequency shift from Eq. (3.16),
we must first determine fk and fkr from the equations of motion, Eq.

(3.5). To do so, we first recall that f = f vo(x,v,t)], where fO is

ol

the initial distribution function and VO(x,v,t) is the initial velocity

of an electron with coordinates (x, v) at time t. Assuming that the




excursions Av = vy -V are small, we may then expand f - fr in a

Taylor series. In order to obtain the real part of the frequency

shift, we must retain terms through second order, and we find

F-§ = a&-(AV—AV) + = 2 4, . AV AV
-7, 2V w ~F 2 dv oV ~ o~k (3.20)

No second order term in Avr appears because it would be non-linear. We

may calculate Avr from the linear response AVQ, by recalling that sz

may be quite generally resolved into two places, AVR = Avr + Avi,

where Avr has the form a(v,t)cos[i(k-x - wot)] and Avi has the form

b(v,t)sinfi(k-x - wot)]. Substituting Eq. (3.20) into Eq. (3.16), and

using Eqs. (3.13) and (3.19), we find

o iy M
:/((;{-)—'—) Sw, [é = —4ﬁeh05—§%§%§f; S,ﬁv exp [-i(k,z

[+

(3.21)

3, e,
hsuell [ w2 ey

Noting that E, = k¢/2i, where the factor exp[-in(t)] is ignored, con-

k

sistent to lowest order in 6mc, and changing to the coordinate system

used to describe single-particle motion in Eq. (3.5), we can write Eq.

(3.21) as
de, ) W, AR
CES)TE = men [ L v ep it
o o
N (3.22)
) Z
+}<L/osth6)] {a£ (Ay‘Ayr) * ‘i‘ ;v):ov :A}{’A]\{'} °

From studies of the single-particle behavior, we know that the

.

motion 1is non-linear only in a region on the order of wb/k”, surround-
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ing the resonant velocities v, = -n2/k,,. By hypothesis, (wb/k”)< <
v, = /k,,, the separation between resonances, and it will be useful

to take advantage of this fact to write Eq. (3.22) in the form

e\ Sw SHIEEAS
2 (2°r) 0% = - az | de
I( (aw P @ ‘,’Wendhzw ?." j i XZTT v'_\_fiv;_ (ivz
z - o P4

f:-w

2. Ty lhip) exp [-i(kz +20) {

27,
5o AV - sy, ) (3.23)

2%,

ayag

&=

LAV, Ay,,} ,

where Avn is the deviation in the neighborhood of the nth resonance.

In writing Eq. (3.23), we have also made use of the relation

od

exp [-i (k2 vk psine)] = § Ty (kyp) expl-i(kz+g6)] . (3.24)
£=-w

s

Expanding afo/av to second order about v, = v, = nQ/k

27 21 21,
Pl (av?) (avw (r-va) (3.25)
~ v tad ~
we find
3E dw hnid Ay 2
2 r < A o o(
k Cw) 2 @ *"5%.2 }Kffzfﬁ"mdwdw
R o ! A
> 5 (k - AL 2
2. }( .L/O) exp [-L (/(,,Z +f6)] {(Bv . (Ay;‘, Alfrh) (3.26)
2:'00 ~ 1y
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We now determine Av_ from the electron's equations of motion, Eq.

(3.5). Using the definitions p, = mv, and p = mvl?/ZQ, it is conven-

ient to re-write the equations for ﬁz and 11 in the form

y /‘n { -
v, = -e~';§iuh (kuz +kipsine),

| (3.27)
v, = —ewkf;é cose Sin(kzrkopsing) .

The procedure we use in solving Eq. (3.27) is to first integrate along
the unperturbed orbits for one cyclofron period, taking advantage of
the relation wy << @ to ignore the change in v, Over one cyclotron
period. Averaging these integrated equations over the cyclotron
orbit, we obtain coarse-grained equations of motion which may be ex-

plicitly solved. Eq. (3.27), when integrated over the unperturbed

orbits, has the form

270
o ek,d 7 .
(sz = - h;r 5 Slh[lﬂ,za‘*/‘/,vzt +/<“L/7 St-h(eoirﬂ_f)] dt,
. (3.28)
kut {
e ki ;
éVJ_ - - - JCOS (9°+Q‘L‘) 5Lh[/<,,Zo+A,,U'l‘{: *1{,_/ 5ih(6°+ﬂf)]0(f.

Dropping the 0" subscripts and substituting the relation
pping P g

Sth [k,z t kvt v kip sen (6+0t)]

zg T (kop) stn [kiz + kv, t +he +hnnt) | (3.29)

hz -~

. th .
we find near the n'' resonance (k”vZ + nQ = 0), that these integrals
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become

M § vy el‘n@ .
Vz = 53 = T T J;(k;.p) Sth (’(,,Z"he))
(3.30)
* SVJ. N
LB enn® g ) ik gz ene),

where 8t = 27/Q. 1In order to solve these coarse-grained equations of
motion, we must first eliminate the 8-dependence, which we do by letting

z > z-(n/k,,)6. Then, Eq. (3.30) becomes

1.’zz‘*«—«—ek"@ J (k, sth (k, z)
m n(kep) " (3.31.a)
v, - LIPS (3.31.b)
kuvl

To be consistent, we must substitute the same change of variables into

Eq. (3.26). Doing so and integrating over 6, we find

k=

oo )~u

36, Sw dz
aw) - ¢ = "MTQHWZ S——)‘TS;ndeVLde

hz~0 o

. f,
exp (-ik,z) J, (kip) {/i;) - (av, - 4Av,,) (3.32)

s

v,

T
*f(avav ’ (lyAyh t 4V, Alﬁ“llfAlfm)} ’
~ Alv

L]

If we ignore the variation of.%§kJP) in Eq. (3.31), which is legitimate

in the limit
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d T, (ki p)
d v, (avy) << J, (k. p) (3.33)

where Av, 1is the perpendicular resonance width, then Eq. (3.31.a) is
just the standard pendulum equation, whose solution may be determined
in the usual fashion. (See, e.g., the beginning of reference 20.)

To solve Eq. (3.31.a), we integrate once to obtain

%1&1-—f%§ To (kip) cos(k,z) = W . (3.34)

Letting £ = k,z/2, this equation becomes

. wy .2 2
E - o — (1- Ksint ) 5 (3.35)
K )
2 _ 2 2 _ 2 2 2
where o E ek,, @iJn(klp)!/m, and K© = Won /(k,, "W/ 2m + ©n /2.) When
K < 1, the solution to Eq. (3.35) may be written48
Wy, t
Wy, = W7 Hh(k;p)-ié—— , (3.36)

where Hn(Klp) = Jn(klp)/iJn(klp)l, u = F(K,&), and uy = F(K, go) is the
initial value of u. As =z result, we find sin(g) = sn(u), £ = £ (0 /K

dn(u), and letting v_ and v, be unit vectors in the v_ and v, direc-
Ny - Z

tions,

A
Ayh = (lfo »'{}’) = i — ..—é_“. {d«h [u:Hh(l(‘/)(dbht

ke K

(3.37)
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where v = [VZ + (me/k, v, )v,]. If K « 1, it is useful to define a new

quantity £” such that Ksin(£) = sin(&£”). The solution to Eq. (3.35)

may then be written

Wo = w s H (kp)uw, t, (3.38)
where w = F(K_l,g') and Y, z F(K_l,éé). As a result, we find
£ = +(w, /K)en(w), and
- _‘2_. w.éh - S
AY, = % k, g {Ch [W ¥ H,,(/ﬁ/a) w‘ht] - ch (w) 5 (3.39)
The quantity AYln is
-U. wb 2 A
Algn = kv { cos [ kyz - Hh(klp)/(,,v;t] - Cos (k,,z)jf}) (3.40)
so that Av is
TN
w 2
N e L (k,z) [l~ cos (k,,vzt)]??". (3.41)

2
k, v

2
A

From Eqs. (53.37). (3.39), and (3.41), we see that Avn and Avnr
are anti-symmetric with respect to the exchange (v,z)>(~-v,-2);
whereas, the quadratic terms 2vAv_, Av_Av_, and 2vAv are sym-

~ N “n.n - .nr
metric. Noting that Gwc = 6w - 1y, where &w is the real frequency
shift and y is the damping, we may take advantage of these symmet -

ries to split Eq. (3.32) into its real and imaginary parts as

follows
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€, §r =
L (awr)_z_ § = ~4TfenoZ S%szmdn dv,
hz-oo O
S (3.42.
sin (koz) T, (kop) (g‘f)éyh y »
4]
de -
r 4Ten Z jé—fjurvdv dvy cos (k,z)

tl

(3.42.b)

2* f,
T (kep) (m,,)v t(2vav. cov ey, -avam)

]

Because Av 0 has no component proportional to sin(k,z), it disappears

completely from Eq. (3.42.a).
We now determine y from Eq. (3.42.a). Transforming variables

from (z,vz) to (£,K) for K <1 and to (£7,K) for K > 1, we find
£ Gy snfcost e dl g
" K (1- K*sin*E)'"?
N dz_
stn (k,z) dv, ‘i;‘ = ‘' (3.43)
e T 4¥ > |
ke K* sinfTAK 555 K

Using Eqs. (3.37) and (3.39), and taking advantage of the antisymmetry

of Avn, we find
/(L (96,
o w

e
{ a(K 50(;: 4 wz StnE cos g H (’w")
o ku (I‘ Klsihzg)'/z

)Xé = ‘ﬁbﬁﬁhoi jzwmo(vg_ jh(k“o)

[a{h - (";z"t)

(3.44)

T L2 ;llh E/

i

T
“dn (u+ wbht)] + fi},{_fa(;’f_ﬁ g
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H, (k.p) 2 f, A
ALZ*“ [Ch(w'wéh‘t)" ch(wew, t)] (57) 5

~

Rewriting this equation, we conclude

3 %0 7Co -
Y= -T /<z( £> gm}zwm({m ‘Thz(k‘/a) (;EF)'},’
64 4K A
{Fé”?J-‘h(u)Ch(u) [A"(“‘wb" ) - dn (u- w'éh )]0( (3.45)
, FK)
+ $5K3AKJSh(w)dh(W) z[en(w-w,,t) - cn(w. w‘ht)] dw}’

where F(K) is a complete integral of the first kind.

The function in curly brackets has been tabulated,28 and will be
referred to here as the function, go(wbnt). 0'Neil's deriva-
tion was somewhat less straightforward than the one presented here,
and his final result was expressed as an integral over a sum rather
than a double integral. We can obtain this result by first noting

that the Fourier transforms of cn(u) and dn(u) may be written49

dn(u) = T +3£! q" h T u
Y F oL ogem 97 (“F%) »

e s ( ) (3.46)
> 9 [ 2h-t Tru]
Ch[“) Z + zh-: cos 2 F ?
n=i
where q = exp{-mF[(1- K 1/2]/F(K)} It follows that
shlu) cn(u) = -}-’EZ sz dn(u) = Z e Sih(h;ru) )
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= AT Zw g" : hru hirwg, t
Sth m)s il
Fh-:l*‘;"" (F (KF ’
d = S1yoh-1 (3.47)
Sh(u)dn(u) = - = cnu = 20 ¥ (-3)977: [m-w

—,': [Ch (w-wy t) - cn(u«rwéhf)]

heid n- /2 . . . hr -t
N 2ﬂ'z€ %LM' Sth[(ugﬁnujflh( m|)
KF I+ g F

Substituting these expressions into the definition of co(wbnt) and
integrating over u, we find
oo {
64 2h ¥ sin [RTTot
Ué(‘*’sht)=2?5“f{ (%)
hzo I3 =
K.S’Fz (,*2“) (“i—zu)
(3.48)
- h
(2hei) T2 K Sin [(2 u)rrwé,,f];
Fz(l+22‘h”)([+ g k-t
which 1s just O'Neil's result. Our final result is
o0 [»-]
of nfl 0f
¥(t) = -m & jor v, d ( S+ °)
(t) k‘ (aw) zi oV, kv, 2w
he=eo o (3.49)

Comparing this result to Eq. (2.10) and noting that OO(O)

I}

1, we see

0

[

that Eq. (3.49) yields the usual linear damping rate at t , just

as it ought to. Because Oy = [ek”2®IJn(klp)]/m]1/2 depends
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on v,, the time-dependent damping rate must be determined by numerical
integration even for a Maxwellian distribution.
The time-dependent frequency shift can be determined from Eq.

(3.42.b). Recalling that v+ Av = v it follows that 2vAv - AvAv =

~ .0’ .~ -~ o~
VoVg VY. From Eq. (3.37), we see that when K < 1,
- i w‘hz 2 w‘-t 2 A A
Vo yo l,”,f - /("1 K {ath [U.;Hh(/u/o) X ]-g(h (u)}}{"l\{ ) (3.50)

and, from Eq. (3.39), that when K > 1,

4 wyr
LY-YY s ogs o
o K

{c [ H (kp) 2] - @iy . Gy

From Eq. (3.41), we have

2
2VAY, = - 2 Wy

~Fp

cos (k,z) [I— cos(k,,vzt)]l}}? . (3.52)

Ll

Making use of the relationship
€0 (/(.(Z) = Hh(A‘IU) [I'K:. K}. dn (u)] = /{h(/(‘/)["f{{"ihféchz(w)] ) (3.53)

and transforming variables

——

ki, K” wlkip) [I—zsn (u)]——~ dK ;' K</
dz
cos (kuz) ¥y 5 = ) (3.54)
2z — >
= bt [1- 2] K K

47



we obtain from Eq. (3.42.b)

k? (%—Ej) Sw ¢ = '477’9“02” fzvaolm }'Th“‘*/”)}

hz -6

n ° L A A
= (Bybg) vy (?J‘p[[r-sn‘w}]{dﬁ(u-‘;?*)
[+]

10w t

Pdat(we i’:‘}ﬁf_) - []{2-2 + 2dn*(w)] cos[ X dh(u)}'sz‘l} du

F(/K)

Qo

1. 1 dK
Lo ) [ o] fert (a8 e )

i

(3.55)
0

- [Kz-z +2 Chz(W)JCOS[l;;‘“t Cy,(w)] + Kz-l } dW) .

The qﬁantity in curly brackets is a tabulated function28 which will be
referred to here as cM(wbnt) . Because of the terms containing
cos[(wbnt/K)dn(u)] and cos[(mbnt/K)%ﬁﬁ(w)], there 1s no simple way to
reduce the double integral to a single integral over a sum. Rewriting
Eq. (3.55), we conclude at last

Sw = - w”z(i-f—':)d(%g)’/zi j’azvrmp(m_ (8‘{,

k’- dw hz-o0 avzz

2% 4, hY 3 mn 35, 5
g e oy g 2 ) ljh(i(L/o)l /2

oV, 2V v Y, kv, (3.56)

Uf;’ ((A)éh't) °

Eqs. (3.49) and (3.56) together determine the complex frequency

shift.
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3.5 Numerical Results

The solution of Eq. (3.49) when fO is Maxwellian will now be ex-
plored in order to determine the effect of the multiple resonances on
the time-evolution of the amplitude. In dimensionless variables, Eq.

(3.49) becomes

el R P e 0 e 1)

(3.57)

JE(ky) o [2713, (k.1)]"*<]

where ¢ = vl/vt, ¢ = ed/T, and © = (k,v,_ )t. As discussed in Section
2.2, we must specify the four parameters o, K,, r, and ¢ in order to
determine the system. Noting that [do(t)/dt] = —[ui(T)[@, the power

ratio evolution is described by

2 t
P(t) = 21::)) = exp (-2fr(e)de’)

3.58
. (3-58)
= exp CASIU;FFUIAT:) .
o
Beyond the range x = 5n, oo(x) has not been tabulated. Since we expect
it to be small beyond this point, we set it equal to zero.

Calculated results for y(t)/y(0)

K}

]ui(T)[/]ui(O)! and P(t) are

shown in Fig. 3.2 with k, = 1.0 and ¢ = 0.05. Since we wish to make
contact with possible full particle simulations, we chose values of o
such that the observed change in P(t) is large enough to be visible in
a simulation, rather than strictly adhering to the condition # << wy, -

Experience with parallel-propagating waves indicates that this approach

yields qualitatively correct results in the entire range y < w,.
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Fig. 3.2 Variation of y(t)/v(0) and P(t) with r (increasing angle).
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The effect in which we are primarily interested, the disappearance
of the amplitude oscillations, is clearly visible in Fig. 3.2. At r =
0.25, which corresponds to an angle of propagation of about 14°, the
oscillations in y(t)/y(0) are still visible, although quite reduced
in comparison to the case when r = 0.0. By contrast, the oscillations
in P(t) have almost disappeared. When r = 0.5, which corresponds to
an angle of propagation of about 27°, virtually no oscillation in
y(t)/¥(0) and P(t) can be detected. The disappearance of the amplitude
oscillations with increasing r is not dependent on our choices of o
because the shape of y(t)/y(0) is essentially independent of o, as
shown in Fig. 3.3.

This disappearance is not a simple phenomenon and is due to a can-
cellation between different resonances, as shown in Fig. 3.4, where the
ratio Yn(t)/y(o) is plotted for various values of n. Each resonance
contains some averaging over different bounce frequencies, but not
enough to destroy the oscillations in yn(t)/y(O).

Shown in Fig. 3.5 is the variation with increasing «,, of v{t)/v(0)
and P(t). We see that as «, is increased, the amplitude oscillations
become even more evident even though the number of resonances partici-
pating in the damping increases. Essentially, the resonances now
interfere constructively. At the same time, the total damping of
the wave decreases when k, increases because the resonances 'bite"
less deeply into the distribution function. It must be noted that
since stochastic overlap occurs when k, > 0.25¢—1/2 = 1.4, this theory

1s not expected to be valid for large x,, and, in fact, as will be
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Fig. 3.3 Variation of y(t)/v(0) with «.
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Fig. 3.4 Display of yn(t)/y(O) for various values of n. The oscilla-

tions of Yz(t) and Yg(t) tend to cancel each other.
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Fig. 3.5 Variation of vy(t)/y(0) with «,,.
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shown in the next chapter, the total damping is expected to increase

as «,, increases, beyond the point where resonance overlap occurs.
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4. TRANSITION TO THE STOCHASTIC REGIME

4.1 Preliminary Discussion

The determination of when the transition between regular and stochas-
tic motion occurs has received much attention in the last few years.
Such‘a determination is often important because it tells us when particle
motion can be treated statistically aﬁd when not. In fact, the onset
of stochasticity could very well be the physical basis of the ergodic
hypothesis, one of the central tenets of statistical mechanics.

Most of the progress in recent years has centered about the
Kolmogorov-Arnol'd-Moser theorem, which states that particle motion can
be stable, i.e. local invariants of the motion can exist, even though
global invariants do not. (Invariants are functions of position and
momentum which confine particle motion to subspaces of lower dimension-
ality than the space as a whole. These invariants can apply to part
of the space, in which case they are local, or to the whole space, in
which case they are global.) This theorem has been verified in many
numerical experiments, and Chirikovzo has distilled the results of
these numerical experiments into a simple criterion: When resonances
overlap, particle motion is stochastic; when they do not, it is regular.

The numerical experiments have generally looked at situations
where the six equations of motion can be reduced to four as is the case
in the oblique wave problem; these four can then be reduced to two by

making surface-of-section plots. One also generally examines situations
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in which the motion is conservative, in which case one can determine
whether the motion is stochastic or regular by simple visual inspec-
tion of the surface-of-section plots. If the motion is non-conservative,
then one cannot, in general, simply examine the surface-of-section plots
to determine the character of the motion, because the resonance structure
is itself time-dependent. Nonetheless, the resonance overlap criterion
appears to be valid in this case as we11.16
The work done to date has focused primarily on particle motion in
fixed fields and not addressed the question of how the fields change in
response to the particle motion. This question is of interest in many
of the applications where the transition between regular and stochastic
behavior has been used. Moreover, in any basic physics experiment or
simulation which would look for the transition, the change in the field
would be the principal observable.

Electron motion in the transition regime w, =Q, where overlap

b
between the largest resonances first occurs, is quite complicated even

1f we assume y<<w Regular and stochastic regions in phase space are

b*
pathologically interwoven, and solving for the electron motion expli-
citly, as we did in Chapter 3, is evidently not possible. We can, how-
ever, determine the asymptotic (t==) change in the wave amplitude, given
the assumption that the distribution function is asymptotically flat-
tened in the resonant regions subject to the constraint that particle
number is conserved. Similar approximations have been used in the

24 .12 . 9 .
past by Dawson and Shanny, Stix, and Smith and Kaufman. This

approximation allows us to treat the trapping and stochastic regimes in

a unified fashion and explore the transition between the two. In
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Sections 4.2 and 4.3, this model is used to show that the total damping
R, i.e., the fractional decrease in the wave amplitude, significantly
increases when resonance overlap occurs.

As k,, = k”vt/Q increases (Q decreases), and we move well into the
stochastic regime, there is a region in velocity-space where resonances
overlap and particle motion is expected to be stochastic. This situa-
tion is shown schematically in Fig. 4.1. The stochastic region in vel-

ocity space is symmetric about v, =V and its width in the vz—direc—

>
tion increases as v, increases. Since electrons in the stochastic re-
gime can undergo large changes in v their motion is expected to domi-
nate the wave evolution. Moreover, motion of the stochastic electrons
is expected to be roughly diffusive, so that it makes sense to try using
a quasi-linear type approximation to calculate the wave evolution. Un-
fortunately, there are two major difficulties with this approach. First,
we are dealing with discrete resonances whose amplitudes vary widely
from one resonance to the next. Hence, it is not clear what the dif-
fusion coefficient should be. If we try to use quasi-linear theory with
resonance broadening to calculate the diffusion coefficient, we end up
with equations whose solution appears to require as much numerical work
as a simulation. Second, since our distribution function is Maxwellian,
most of the electrons in the stochastic region of velocity-space are
actually on the edge of this region at t = 0. At the edge, large reg-
ular regions are inter-mixed with the stochastic region, and the par-
ticle motion is not simply diffusive.

These issues are discussed in Section 4.4., where the appropriate

diffusion coefficient is derived using a method based on Dupree'sso
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Fig. 4.1

-1 0 1 -2 -1 0 1
z/=(vz—vp)/vt v=(v,-v )y
The resonance structure at various values of «,,. The reson-

ance widths are shown in the range 3.5 < (Vz/vt) < 5.5,

which is important in the simulations of Chapter 5. Shown
also are the constant energy surfaces along which the distri-
bution is flattened. a) «, = 1.0, b) «,, = 1.4, c) «, = 2.0,

and d) x,, = 4.0.
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resonance-broadening theory. In keeping with approximations that have

often been made by Dupree and co-workers, we then average the diffusion
2
p)

2 . . . . .
+ v, = constant, and obtain equations which are easily soluble. Solving

coefficient, in Section 4.5, on each constant energy surface, (vz~v

these equations and looking ahead to the simulations of Chapter 5, we
find that this model helps us understand the important qualitative
features of the true evolution, but does not yield quantitatively

correct results.

4.2 Theoretical Determination of the Total Damping

To derive the total damping, we begin with the momentum relation

derived in Appendix A,

O(S de, A ES/1em
— {d3v mv, n,f = -k s ° 4.1)
At 0 N 0(‘(3
where
A"d :\L
z (d
}‘-('U’ t = S-—»— J r
(nt) A, \;:7(5)}{&) - (4.2)
o
[+]
We integrate over time to obtain the asymptotic limit,
Z
3 € E
350( v mu, no{o x -,l(‘_, e 522, (4.3)
‘w 16T
2 e
and noting that EO = k"¢, we find
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(4.4)

"/(”aaz; AET T S( )z.

For the fractional charge in the wave amplitude, we obtain

58° ,(ae,)" 4k, T

3
@z i l(“ 0w klel 554 v mv, ?gé'@ . (4.5)

We can think of R as the ratio of the amount of power needed to flatten
the distribution function in the resonant regions to the power initi-
ally present in the wave. When R >> 1, indicating that more power is
needed to flatten the distribution function than is available in the
wave, experience with parallel-propagating waves indicates that the wave
simply damps away.24 If R < 1, then the fractional decrease in the wave
power is approximately equal to R. In effect, we are implicitly making
use of the same assumption we used in Chapter 3, where we assumed

Y << w since we use the initial wave amplitudes when calculating the

b,

resonant widths. Only when R is quite close to one will self-consistent

effects be important since the resonance widths scale weakly with R, go-

1/4

ing as (1-R) Recalling that

t

b (t) = @exp[ jb'(f’) d*’] , (4.6)
we find that for y << w

b)
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ol

R,:-— e = ZJX(tV dt’ 5 (4.7)

o

so that it is related to the quantity P defined in Chapter 3 through

the relation
P(t=c) = exp(-R) - (4.8)

At t = 0, we assume that the electrons have a Maxwellian distrib-

ution
3/2 m 2 N 3/2
o) - @ e[l G L),
where, letting v = (VZ - vp)/vt and ¢ = vl/vt,
7 (t=0) = exp[-7H (% + )] exp D*(”*“)J/lj (4.10)
Then, it follows
_ S@l uzuﬁf 2E, —15 . y
S e 3 e
(ag(t:oo)a exp{~[)'1+(y+u)1]/1}) o dan

If the wave damping 1s neglected, energy conservation in the wave frame

gives
) _uYi vl v+ edcos(k-2x-wt) = copstant.
-‘-z—m[(vi VP) + L ] é (ov Py ) (4-12)

Since ¢ = ed/T << 1, in all the case dealt with here, it follows that
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2
';;'M[(Vz-?/,,) + UL’“] ~ constant , (4.13)

so that electrons will move along the constant energy surfaces shown in

Fig. 4.1. It is useful to change variable from (v,Z) to (v, cm) where

1 2> 1 2
)’M = (y +)’) = ——Vz [(vz-v’,)zﬁv*] .

i

(4.14)

Then, Eq. (4.11) becomes

)"de df (v+u) )'m

so("u. bg,,
R= T~I 99:' (uau

{4 () - expltpp]enpu) . 49

Since - is, according to Eq. 4.17, approximately constant for any given
electron, the factor exp[~(u2 + gmz)/z] remains unaffacted by the flat-
tening of the distribution function; only the factor exp(-uv) is af-
fected as the electrons change their v-values. The resonances are loca-
ted at v = -n/k,, and have total widths given by

12 2 S N I R
W, = 497 |5, (k)] = 49 |7, [ (), 72”)/]/ ' (4.16)

I

Referring to Eq. (4.14), we see that the resonance widths cannot ex-
tend past v = L5 1f Eq. (4.16) yields width which extend past these

1imits, then the resonances are cut off there.
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When the resonances do not overlap, the final distribution is
approximated as being flattened over the resonant regiéns; when more
than one resonance’overlaps, the final distribution is approximated as
being flattened over all of them. Letting Qi and Ss be the lower and

upperivalues of v for given values of n and Cn’ Eq. (4.15) becomes

R=J2 —;—;—: « (uii’)-lexP (-u*/2) fo)’,,,ol)'m exp (-3,/2)

o}

Z {g%él [exp (-ud;) + exp(—usi)]

[4

(4.17)

-i— [exp (-ut;) - BXP(-uSa)]g .

where the constraint that particle number is conserved has been used.
In the case of a single small resonance, this calculation is ex-
pected to yield a result which is somewhat high since only the part of
the distribution function inside the separatrix shown in Fig. 4.2 is
really flattened. The result of our calculation can be compared to
O'Neils,26 which is valid in this 1limit, and shown to be high by nearly

a factor of two. If a resonance is small, then

(Si'gi) '
— [exp (-ut;) « expl-us;)] - = [exp (-ut,)
(4.18)
. 3
- ex[o(—uSL)J = exp (un/[{“)% ($:-1;) .
. 1/2
In the case of a parallel-propagating wave, n=0 and Sy - Qi = 4¢ s
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Fig. 4.2  Schematic structure of a resonant region in the trapping
regime. The distribution function does not flatten
asymptotically over the whole resonant region, shown inside
dashed lines, but only over the unshaded portion inside the

separatrix.
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so that Eq. (4.17) becomes

T de,\" 16 /
-l (25 expur) (4 7
L ER - S (uae

r-l
3jm g2 Su exp(-u‘/z) . (4.19)

In O'Neil's calculation, R is

co
Ro = Z,SX(f)dt = 2 Slui(f)’ dt = 2’/“[(°)}Tef{ . (4.20)
° 0

Solving the 0'Neil problem numerically, we find Toff = l.746¢—1/2,
and using Eq. (2.20), we conclude
2 -1
_ o 2 be?‘) __.Luz'
Ro = |74 oz W (“Wau exp (-3 ) . (4.21)

Eq. (4.19) has the same parameter dependence as Eq. (4.21} and only

differs by a factor which is

AT =94, (4.22)

and corresponds to a difference in the final amplitudes of a factor of
1.39

In the limit where resonances are large but non-overlapping, Eq.
(4.17) is not expected to yield results which are very accurate, since

in this limit neither the trapped nor untrapped clectrons are treated
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in a precisely correct fashion. Nonetheless, because the distribution
function 1s not approximated by a Taylor series, this approximation is
a significant improvement over O'Neil's. O'Neil's theory predicts that
as ¢ increases, R will decrease indefinitely. However, as Dawson and
Shannyz4 showed, beyond some value of ¢, a Taylor expansion of the dis-
tribution function is not adequate, and R will increase because the
number of electrons trapped by the wave is growing exponentially. This
effect, called enhanced Landau damping, is contained in Eq. (4.17), as
shown in Fig. 4.3, where we plot R as a function of the electrostatic
amplitude for a parallel-propagating wave. To facilitate comparison
with the results of Dawson and Shanny's Fig. 2, we have plotted R vs.
¢DS = ¢2/u2. Like them, we find that we must have u > 4, in order for
it to be possible that R < 1. It should be recalled, however, that
our calculation of R is expected to be about a factor of two too high.
Our results are somewhat different from those of Dawson and Shanny
because we flatten the distribution function along the curves Ly =
constant, rather than ¢ = constant as they do.

In the limit where there are many overlapping resonances, Eq.
(4.17) should yield a fairly accurate result, since electron motion
will be stochastic in the entire resonant region. This contention is
confirmed by the simulations of Chapter 5. However, as the results of
Section 4.5 and Chapter 5 make clear, the approach to the asymptotic

state 1s extremely slow.
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Fig. 4.3 Total damping of a parallel-propagating wave as a function of

Pps = ¢2/a2. If u < 4.0, it is impossible to ever have

R < 1.0, due to the effect of enhanced Landau damping.
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4.3 Numerical Calculations of the Total Damping and Discussion

There are two ways to make resonance overlap occur. One can in-
crease the widths of the resonances by increasing ¢, or one can move
the resonances closer together by increasing «k,, (decreasing Q). The
second approach has two principal advantages. First, as ¢ increases,
the resonances bite more deeply into the distribution function, and
there is a possibility of confusing the increase in R due to resonance
overlap with the increase due to enhanced Landau damping. By contrast,
when «,, is increased, the resonances with n > 0 are moved farther out
on the tail of the distribution function and bite less deeply into it.
As a result, R is expected to decrease until resonance overlap occurs,
as shown in Fig. 3.4. Second, the resonance widths are proportional

to K”¢1/2

» SO0 that k,, 1is a more sensitive parameter. In this section,
we therefore concentrate primarily on discussing resonance overlap due
to increasing k,,, although for completeness we have included an
example of resonance overlap due to increasing ¢ as well.
. . th th
The criterion for the n and (n+1) resonances to overlap at a
iven is
g b

29 (3 [ree)] < 30 [xff;}-m.rﬁf?)

> 1/;{“ . (4.23)

For each pair (n, n+l), there is a particular Qm where the function
/. V. tfa PINEY-] 2 ta
Jh 2 [(Kff:rhzrz) LJ + jh“{[KL ); - {n+t) y;} }

has its maximum. Designating this maximum jn nel’ its numerical
3
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values for n = 0, 1, 2 and r = 0.25, 0.5 are shown in Table 4.1, and
given these values, we can calculate the point at which resonances
first overlap. These results are also shown in Table 4.1.

Shown in Fig. 4.4 are our principal results. Since we wish to
make contact with possible full particle simulations, the values of
o were chosen so that R is a significant fraction of one in the re-
gime were resonances first overlap. Shown also is the overlapping
fraction, the fraction contributed to R by electrons in overlapping
resonances. This overlapping fraction increases rapidly when resonance
overlap first occurs and allows us to definitely correlate the observed
increase in R with resonance overlap.

In all cases, R is first observed to fall as k, is increased be-
cause the resonances are moved closer to the central resonance, and,
thus, bite less deeply into the distribution. This result agrees with
those of Fig. 3.5. When r = 0.25, there is a sharp rise in R which
occurs at x,, = 1.4 when ¢ = 0.05 and at x,, * 1.0 when ¢ = 0.1. Ref-
ferring to Table 4.1, we see that this rise to due to the overlap of
the n = 0, 1, and -1 resonances. At this point the overlapping frac-
tion also rises sharply from 0 to more than 0.75, indicating that more
than three-quarters of the contributions to R comes from electrons
in the overlapping resonances. As the resonances move closer together,
R falls again, and then rises again as more of the resonances overlap.
This second rise cannot be directly correlated with the overlap of par-
ticular resonances, presumably because the resonances first overlap at
high values of L where there are few electrons, and the resonances

must overlap at lower values of S before R is noticeably affected.
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TABLE 4. 1

res;r;ince Jn,n+1 1o Jn,n+1 K—‘—Cm
P (r=0.25) (r=0.25) (r=0.5) (r=0.5)
(0,1) 1.53 1.0 1.51 1.1
(1,2) 1.37 2.4 1.36 2.5
(2,3) 1.29 3.5 1.28 3.7
resonance K,, at overlap K, at overlap
pair (r=0.25, ¢=0.05) (r=0.25, $=0.1)
(0,1) 1.45 1.03
(1,2) 1.63 1.15
(2,3) 1.73 1.22
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In the case where r = 0.5, resonance overlap is more gradual
than when r = 0.25. The overlapping fraction rises more slowly and R
does not start to rise until k,, is somewhat larger than the point at
which overlap takes place. This effect presumably occurs because
there is a larger contribution from the high—[n[ resonances when r is
greater, and the effect of resonances with n > 0 moving farther out on
the distribution function tail must be overcome before R can start to
increase. In constrast to the cases where r = 0.25, when r = 0.5,

R continues to rise as «,, increases instead of saturating.

Comparing Fig. 4.4a to Figs. 4.4b and 4.4c, we see that the shape
of R(x,) is not very semnsitive to changes in u or ¢; whereas, comparing
Figs. 4.4a to 4.4d, we see that it is quite sensitive to changes in r.
That is not surprising since it is r which determines the relative
strength of the different resonances at a given value of «,. While
the shape of R does not change greatly with increasing ¢, the argument

of R scales as ¢“1/2; for example, the sharp rise in R which is visible

at k,, = 1.4 when ¢ = 0.05 occurs at «x,, = 1.0 when ¢ = 0.1. This ¢-1/2
scaling should be visible in simulations and experiments and ought to
be looked for as one of the signposts that the phenomenon being ob-
served 1s really resonance overlap.

Shown in Fig. 4.5 is R as a function of ¢, with k, fixed at 1.2.
The sharp rise in both the overlapping fraction and in R when reson-
ance overlap occurs at ¢ = 0.7 indicates that the effect of resonance
overlap dominates over that of enhanced Landau damping for the values

of ¢ considered.

Some discussion of the errors inherent in our approximations is
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now appropriate. First, the assumption that the distribution will be
asymptotically flattened in the resonant region yields values of R that
are a factor of two too high in the trapping regime. A correct calcu-
lation of the orbits, which is found in Chapter 5, leads to an enhance-
ment of the increased total damping observed in Fig. 4.4 when «, in-
creases. However, it is shown in Chapter 5 that it takes the wave far
longer to reach its asymptotic state in the stochastic regime than it
does in the trapping regime, so that if a finite time is taken rather
than t = =, this enhancement is decreased. Second, the assumption that
the change in the field is small (y << mb) is evidently violated over
some of the range in Fig. 4.4. However, we expect that since the
resonance widths scale only weakly with R, as (l—R)l/4, that until R

= 1.0, self-consistent effects make only a small difference; the re-
sults of Chapter 5 confirm this expectation. Third, the assumption
that the onset of stochasticity is sudden is responsible for the sharp
initial rise in R seen in Fig. 4.4 a-c. The more realistic treatment
of the onset in Chapter 5 leads to a smoothing of this sharp rise, but

no change in the qualitative results.

4.4 Wave Evolution in the Stochastic Regime: Quasilinear Theory

with Resonance-Broadening

In the stochastic regime, the wave evolution is largely determined
by electrons which move chaotically in the region of velocity space
where resonances overlap. This region is symmetric about the velocity
v = (v - vp)/vt = 0, and has a half-width which we will designate

Z
w(r )}, where = vz v g2 with
o’ Qm = c 1 C

i

vl/vt. We consider small amplitude
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fields (e?/T = ¢ << 1.0), so that to good approximation electrons
move along curves in veloicty space where Cm is constant. The sto-

chastic character of the electron motion suggests that the distribution

function evolution might be described by the diffusion equation

0
o _ — = 0
oy b vi; , (4.24)
where
o8]
Q z gci’t KV () VU (£ 7)) (4.25)

and the

space.

o]

brackets indicate an average over initial time t and over

This assumption is not really justified over the entire region

in velocity space where resonances overlap. In this region, regular
regions are pathologically interwoven with the principal stochastic
region and can be quite large near its edge. Because particles tend to
spend long times in the neighborhoods of the regular regions, these

20,51 (4.24)

regions can greatly affect the motion. Nonetheless, Eq.
provides some useful insights into the qualitative nature of the wave
evolution.

Using v and ¢, as our independent variables, and recalling that

Em is held constant, Eq. (4.24) reduces to the one-dimensional diffusion

equation
o 3 b 3
e T wp (- 20)
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where
D = Jo(t KV (1) Uy (£+T)) . (4.27)

To calculate D, we begin by using standard quasilinear theory.

Recalling from Eqs. (2.23) and (2.24) that

- (ek, é/m)z Jy(kep) sin(kyzy+k,y, + (4.28)
+ kvt +nﬂt~wt)

we find

e k @ J"IT' < 2
D - ("Tf‘) flq,z To (kepp) 0((/<~Vz*"ﬁ'w) . (4.29)
he-8
This result, which exhibits the well-known resonance singularity of
quasilinear theory, is is not quite suitable as it stands for our
purposes. The problem comes about because we have taken no account of
the change in v, which occurs in the electron motion. To account for
this change, we may use a simple and intuitively appealing ''resonance-
broadening' scheme due to Dupree.50 If we neglect the variation of D

during one electron autocorrelation time, it follows that

(av)* (t) = 2Dt ,

(az) (8) = 2Dt*/3 .

Hence, the electrons have a correlation time approximately equal to

1/3

(S/k” D) , just as in the case of parallel-propagating waves. If we

neglect non-linearities in é, which should be valid since ¢ << 1.
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Eq. (4.29) becomes

D= fdr <v, ()7, (t+1))

°

/<u > = .
S (f?g) _JITZ th(h,a)<5tn[k,,z(f)+hnt—wt]

hz - 80

"

sin[ku Z(t+T) + Rl (t+1) ~w(“t)]> dt
(4.30)

O

— el‘né zl il 2
= ( o ) 2 Z J—h (l(.L/D) 5&7 EXP [—/("J'DTZ/.B) COS[(/(”‘UZ-fhn_—&))‘tJ

h= -0
e/(u@ 2 1
( M ) %

where Hi(x) is an Airy function.s3 In effect, we see that the delta

N Dll’ 3
=~

iiﬁ%hﬁ)Eﬁ%ﬁ#ﬂﬁﬁjﬁﬁg+mﬁﬁﬁ%ﬂgg),

functions in Eq. (4.29) are broadened into resonances with widths
approximately equal to wb/k”, consistent with the widths calculated
assuming that the resonances are well-separated.

In principal, Eqs. (4.24) and (4.30) together determine the dis-
tribution function evolution and the resultant change in the electro-
static amplitude; however, because Eq. (4.30) is an implicit equation
for D, these equations are not simple to solve. Moreover, there is
little point in doing so, since the equations are expected to be only
qualitatively valid. Instead, we approximate Eq. (4.30) at each value
of Qm by averaging Eq. (4.30) over the region in velocity space where
resonances overlap. This approximation leads to equations which are
simple to solve and provide insight into the physical issues involved
in the wave evolution. Similar approximations have been used by

Dupreeso and Stix.12
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Normalizing D by vi and averaging Eq. (4.30), we find

= i 1 [ek, ¢ *
- - 4 i — 2
D = 2w} d» D vt ( n )4/<,,w Z ki) (4.31)

t

where the sum of Bessel functions is over resonances in the stochastic
region. Noting that almost all the resonances which make significant

contributions to the sum are in this region, we find

Z fhz(lg_/n) = ;

o (4.32)
and Eq. (10) becomes
et
_ (k, V) e Jvl< W
D = > (4.33)
o , (vl > w

where w has been normalized to the thermal velocity. As noted previous-
ly, there are expected to be large regular regions in velocity space at
the edge v = -w, where most of the electrons are initially located.
These regular regions impede the distribution function evolution, and
hence, the use of Eqs. (4.24) and (4.33) is certain to overestimate the

rate at which the distribution function approaches saturation.
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4.5 Solution of the Diffusion Equation

Given the diffusion coefficient shown in Eq. (4.33), Eq. (4.26)

becomes
o7, - %1
—2 - D L o= 0.
ot 2 ¥

Recalling that our initial distribution has the form

f(c=0) = A(5) F(t-0),
where
m A\ 32 2 b3
Ar) = (55) Texpleten) /2]

~

f(t=0) = exp (-yu) .

Eq. (4.34) becomes

LA S S

2t PR

The general solution of Eq. {4.37) may be written in the form

Fzoa, Y a, exp(-1"10) cos (A7)

h= |

v ) b, exp(-b’,f”(t)) sin (B,v) .

oty
/

hzx

30

(4.34)

(4.35)

(4.36a)

(4.36b)

(4.37)

(4.38)




The coefficients An and Bn have to be chosen to satisfy the boundary

condition

2% l -0

—— Pl

4,39

0V Iy oayy (4.39)
whence

A - ﬂ B _ (Zh—l)'TT

oW n =~ 2w (4.40)

— FA
- D r @ . (2n-0)" %
oo ’ h T a2

— P . (4.41)

It only remains now to calculate the coefficients a_and bn

Fourier
decomposing Eq. (4.36b), we conclude
!
Q = [exp(uw) - exp(-uur)] ,
(n=1) >
-1 w
- exp(uw) —exp (-uur)]
%W e, el [ P ’ (4.42)
W-’L
en"
L - _‘__,Lw;w [exp(uw)+exp(~uw)] .
h WS u1+(2h") wr
4w

In order to determine the change in the wave amplitude, we must calcu-

late the change in the distribution function's momentum, which can be

done conveniently in the wave frame. The cosine components carry no
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momentum since they are symmetric about the point v = 0; only the sine

components contribute to the momentum change. Noting that

(4.43)

w 2
. (2h-1) 77 h-1 w
o < s [T 4 < e ]
w

the momentum as a function of time may be written

= swu N exp (-4,t)
PO) = D bp, explne) = - LEE ) s~
W=l hel * “ng;?”

where the superscript (2) has been dropped from Y, At t = 0, the
series may be explicitly summed, using a method described by Morse and

Feshbach,s4 to yield

p (o) - -ﬁ.’ [exp(ww)texp Cwa)] + Llexpra) - explwn] , (449

whence

dp(t) = )o(t)«p(o) = -25 [exp (wu)+exp(-wu)}

, wu)] o wa & exp(-¥.t) (4.46)
W [exP(wu)— expl- T 'Z (zn-1)* >, Gr0tw?
' 4t
Recalling the momentum equation
k (f)_f.f) d B/ 1em d (3
"Law/ T - ;:c‘jd von v, f (v, t) (4.47)



and the form of the distribution function shown in Egs. (4.35) and

(4.36), we conclude

2 -1
R(t) = gzl(*) - %%; u (u.g_%t) exp (-u*/2)

o N (4.48)
[y a5 exp(-1,7/2) dpte) ,

]

where ¢ = ¢(t = 0).
The solution to Eq. (4.48) is quite simple to calculate numeri-
cally, but, before doing so, it is worthwhile to discuss some of its

qualitative features. Recalling from Eqs. (4.33) and (4.41) that

(zn-)*m? = (an-1)*7° @*
Xh.t = WTF Dt = P W3 (/“'uv:;)t 2 (4.49)

and noting that the bounce frequency w, may be written

b
/2 172
k, (e §/m) = (kw)9?'"* |
we find
/2
(an-1)*mwie’?
5§t = ——7F (%t) . (4.50)

16 w?

We observe that the diffusion time depends strongly on w, increasing
rapidly as w increases. One power of w is due to the decrease of the
power in the individual Bessel functions as w increases, and the other
two powers are due to the greater distance that electrons have to dif-
fuse in velocity space. Noting that w increases with increasing Cm

as shown in Fig. 4.6a, we conclude that the diffusion time should
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Fig. 4.6
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and t = SOTb.
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increase rapidly with increasing o This result is confirmed in the

simulations in Chapter 6. We further note that the diffusion time

/2

scales as ¢_2; whereas, the bounce time scales as ¢»1 Since we are
interested in the limit ¢ < 0.1, it follows that the diffusion time
will be long compared to the bounce time. Shown in Fig. 4.6d is RC’

where Rcdcm is the contribution of electrons between Em and am+d§m to R.

Ry = JF 555 (5] exp [ (w25 /]

{3:{« [exp(wu)+exp(-wu)] - JLE [exp(wu)- ex,b(‘*"“)]j : (4.51)

We see that RC peaks at about Cn = 2.3, at which point w = 1.2, Sub-
stituting this value of w into Eq. (4.50), along with ¢ = 0.05, we
find that the time for the n = 1 contribution to R(t) to go through
two e-folds, at which point R(t) should be close to saturation, is
wbt-= 92, which is about 15 bounce periods. The saturation time cal-
culated here is a lower limit, and the simulation results in Chapter
6 indicate that the saturation time is actually much longer. By com-
parison, the saturation time in the trapping regime is at most about
five bounce periods.

The solution to Eq. (4.48) is shown in Figs. 4.6c and 4.6d for
ten bounce periods and 80 bounce periods. We see that R(t) rises mono-
tonically with an ever-decreasing slope. This smooth rise is confirmed

in the simulations in Chapter 6, and is in marked contrast to the re-

sults in the trapping regime.
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5. NUMERICAL SIMULATIONS

5.1 Description of the Method

In order to test various aspects of the theory presented in this
thesis, as well as to determine the time evolution of the wave in the
stochastic regime with greater accuracy than was done in Section 4.5,
we have run a series of "mini-simulations;' electrons in a small
region of velocity space are followed numerically, while elsewhere in
velocity space, the electrons are assumed to respond linearly to the
wave and are treated analytically. This approach has been used before
in studying the beam-plasma problem38 and the parallel-propagating
wave.33’39 In both these cases, there is only one resonant velocity,
so that the division into resonant and non-resonant regions is fairly
simple. In the case of the obliquely propagating wave studied hefe,
there are infinitely many resonances, and this division is consider-
ably more delicate.

In this chapter, we discuss two types of simulations. The
first is non-self-consistent: The amplitude of the wave is kept
fixed at its initial value when determining the particle trajectories,

and the change in the field is determined from the momentum equation

derived in Appendix A,

-k 3&55 - §P (5.1)
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where PZ is the z-momentum of the simulation electrons. This approach
mirrors the theory of Chapters 3 and 4, where the field was also held
at its initial value in determining the distribution function evolu-
tion, and is useful for examining the validity of the assumption made
in Chapter 4 that the distribution function is asymptotically flattened
in the resonant regions. Since the field is held fixed, separate reg-
ions in velocity space (and in fact individual particles) have no in-
fluence on one another, and the total 5¢2 is just the sum of the con-
tributions to 6¢2 from the separate regions. We can thus determine

the electron response in the region surrounding an individual resonance
without the necessity of following electrons ffom other regions, allow-
ing us to make a resonance-by-resonance comparison with the trapping
regime calculations.

The second approach used is self-consistent. The change in mo-
mentum is used to modify the field amplitude at every time step. This
approach differs from a full particle simulation in that the possibil-
ity that new modes are generated is ignored. In non-self-consistent
simulations, the linear part in the momentum change of the simulation
particles is zero, because the change in the field experienced by the
particles is zero. By contrast, in self-consistent simulations, there
is a linear part in the momentum change of simulation particles which
must be compensated for. So, as discussed in Appendix A, the momentum

equation becomes

(5.2)

Oty ERST, )
(5 ) <

ow dSw 6™
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where X]p is the real part of the linear susceptibility in the region
of velocity-space being simulated. In order to use this approach, it
must be possible to include in the region of velocity-space being sim-
ulated all parts of the distribution function which contribute sig-
nificantly to the non-linear wave evolution. As the region to be simu-
lated increases, noise due to our use of a finite number of particles,
rather than a Vlasov fluid, will eventually overwhelm the effects we
wish to observe, placing a limit on the size of the region which can
be simulated. In the trapping regime, it turns out that the important
resonances are spread throughout the distribution function, and the
fraction of the distribution function that would have to be kept in a
self-consistent simulation is too large to be feasible using a mini-
simulation technique. However, in the stochastic regime, the important
resonances are clustered in the neighborhood of the phase velocity, and
self-consistent simulations are feasible. By comparing the self-con-
sistent simulation results to those of the non-self-consistent calcu-
lations, we can determine the extent to which self-consistent effects
reduce the total damping of the wave.

In order to compare the results of this chapter directly with
those of Chapter 4, we define a quantity R(t) = 6¢2/¢2, where

= ¢(t = 0). For the non-self-consistent simulations, Eq. (5.1)

yields

R(t) 20c* u bér) 5}az ) (5.3)

and for the self-consistent simulations, Eq. (5.2) yields
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2atu 2r _ 03X -
R(t) =—= (“5‘“‘%“ ") Spz s (5.4)

where p, = Pz/mvt is the normalized momentum calculated in the simula-
tions.

As noted at the beginning of Chapter 3, an electron's position
and velocity are specified by four independent variables, which are
chosen here to be ¢ = k,z + k,y, 6 = tan_l(—vx/vy), T = vi/vt, and
v = (VZ - Vp)/vt' Thus, we have a four dimensional phase space to
fill, in contrast to the parallel-propagating wave problem, where
phase space is only two dimensional. In this latter problem, it has
been found that about four thousand particles must be used to obtain
good results, and if we directly scaled this result to four dimensions,
we would conclude that we need sixteen million particles, well beyond
the capacity of most modern simulations. Of course, we can do much
better than this simple scaling suggests by suitably randomizing the
initial particle locations, but phase space granularity and the re-
sultant noise remains a problem. The technique we have used of load-
ing particles into only a small region of velocity space allows us to
reduce this noise considerably.

The initial coordinates of the particles to be simulated were
chosen as follows: First, we select the number of different values
in each dimension, N N

‘J)’ e’

N, equals NwNeNJN“ Values for v and ¢ are chosen using one of two

N,, and N,. The total number of particles,
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algorithms. The first uses an equal weight scheme in which we first
ick the boundaries, & = v_./v d = v . d

pic bou s Zl/ . and s zf/vt’ where v, an vZf are

respectively the lower and upper z-velocities of the region in vel-
ocity-space to be simulated. Since we wish to approximate a Maxwel-

lian distribution, we choose the N, values of v, namely v =

2,..., N, such that

1"

yh u+ YV R

S(Lv exp[-;i(m@ﬂ em‘( 3 L)" erf 'v%)

5;“0()/ eXP [-%’()H-u)?—] erf (%i) - er,}ﬁ (Vlii_) N” (5.5)
f-u

This choice spaces the particles in v such that each simulation par-
ticle represents the same fraction of real electrons. Similarly, we

choose the N, values Qi of ¢, i =1, 2,..., N, such that
J;

J 34y exp (177

£

= eXP(,.’.r_l 2t-1 .
7 57) 2N, (5.6)

it

;amf exp (-3

At each time, to calculate p,, we use

erf ("5;)* evf '8; T w
Pz :-I;- ﬁr (r) Z () (5.7)

N h=

where v, is the v-value of the nth particle at time t; the fraction

of the distribution function being simulated is [erf(s/vV2) - erf(&/v2)],
so that the fraction of the distribution contributed by each simulation
particle is [erf(s/v2) - erf(4/v2)]/N. The second algorithm is a Max-

wellian weight scheme. As before, we first pick the boundaries s and
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2. We then choose the v and z-values such that

h~1

o= (A-u) + (‘N’;:T) (s-2),

X
\

i

J, 2~
L (IN.L); 3
where the value 5 is chosen as the upper bound for the gi's because

beyond Svt, the electron distribution function is quite small. Ad-

ditionally, we define a particle weight

Wi s exe {5 O] 5.9)

and, in accordance with the trapezoidal rule, multiply this weight by

one-half if h = 1 or h = N The momentum is then calculated at each

L

time step using the formula

Ny  s(s-%)

Pr ST T

Z' W, yh (t) . (5.10)
h

No matter which algorithm we use, the 6-values are chosen so that

6. = 2M(1-1) 6,. (5.11)

where j = 1, 2, ..., Ne and 6hi is a random number chosen between

0 and 2w for each h,1 combination. Similarly, the v-values are chosen

so that

,\y‘( - 2,71(}(-1) . YMJ‘

Ny Ny (5.12)
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where whij is a random number chosen between 0 and 2n for each h,i,j
combination.

The final answer should not depend on the particle initialization,
assuming that velocity space is filled densely enough to adequately
simulate a Maxwellian distribution, and to verify this, we ran many of
the results presented in this chapter with different initializations,
i.e., with different choices of N, , N, Ne, and Nw and with the two
different weighting schemes. All the simulations were run with 4096
particles, and a standard leapfrog algorithm was used to advance the
particle coordinates. The simulations were run in the wave-frame, so
that the shortest fundamental time appearing is min[Q—l,[k Vzi_w‘ﬂ

1" >

[k”vzf-ml~l], where the second and third elements are respectively the
time for particles at the lower and upper boundaries to pass through
one wavelength. We chose our time-step such that At = (k”vt)At =

0.2 min[Knﬂl, lz—ul_l, [s~u]_1]. There are two sources of noise in
these simulations. The first is the phase space granularity mentioned
previously. The noise is strongest at a frequency near w- k"vzi be-
cause particles are concentrated near this boundary in the equal
weight simulation or are heavily weighted near this boundary in the
Maxwellian weight simulation. As v is OT equivalently ¢, is lowered,
the fraction of the distribution function included in the simulation
increases rapidly and so does the noise, setting an effective lower
limit of & = 3.0. A second source of noise is the transient which
occurs at t = o when the field is "turned on." Because only part of

the plasma is being simulated, the transient phase mixes slowly rela-

tive to full particle simulations and is strongly visible in the simu-
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lation of Landau damping shown in Fig. 5.1. The transient's frequency
of oscillation is approximately equal to w - k”vzi’ just like the noise
due to granularity. This transient is evidently a major perturbation
on the short time scale of Landau damping; on the long time scales of
the non-linear phenomena in which we are interested, it fortunately
turns out not to have much importance, except for a spurious initial
jump which it causes in R(t).

-Since the noise fluctuations occur at frequencies much higher
than those of the non-linear phenomena, we were able to almost com-
pletely eliminate these fluctuations by filtering our simulation data.
We Fourier-transformed the data, multiplied it by a Gaussian
exp(—wz/sz), and then inverse-transformed; this procedure is equiva-
lent to convolving our unfiltered data with a Gaussian. The cutoff

frequency w_ must evidently be chosen with case in each particular

0
case, so as not to affect the phenomena in which we are interested.
The effectiveness of this filtering is evident in Fig. 5.2, where we
have simulated the amplitude oscillations of a parallel-propagating
wave. There is excellent agreement between the filtered data in Fig.
5.2.¢ and the theoretical results in Fig. 5.2.a; whereas, the unfil-
tered data in Fig. 5.2.b looks quite different from the theory. The
results of a filtered, self-consistent simulation are shown in Fig.
5.2.d; both the expected decrease in the peak of R(t) and increase
in the period of oscillation are observed.

Another example of this filtering is shown in Fig. 5.3 for an

obliquely propagating wave in the stochastic regime. The dotted line

shows R(t) calculated from linear theory, which should be the same as
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Fig. 5.1 A linearly damping wave plotted on a log scale vs. time.
The solid line shows the simulation results and the dashed

line the usual theoretical result.
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Fig. 5.2 Wave variation in the trapping regime. The effect of fil-
tering is shown. a) theoretical result, b) unfiltered
simulation result, c¢) filtered simulation result, d) result

of a filtered, self-consistent simulation.
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Fig. 5.3 Wave variation in the stochastic regime. a) filtered, b)

unfiltered. The dotted line shows the linear variation.
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the R(t) observed in the simulation near t = 0. Before filtering,
the two results look different because of the transient at t = 0,

but, after filtering, they appear quite similar.

5.2 Results

In this chapter, we are primarily interested in checking the
theoretical results of Chapters 3 and 4, and accurately determining
the time evolution in the stochastic regime. One result is already
apparent in Fig. 5.3. Saturation of R(t) occurs on a long time scale.
R(t) is still increasing even after ten bounce periods, lOTb; whereas,
we recall from Chapter 3 that in the trapping regime, the wave satur-
ates after about STb. We also see that R(t) continues to rise mono-
tonically, at an ever-decreasing rate; whereas, in the trapping re-
gime R(t) varies much less smoothly and at times actually decreases.

In all the cases discussed in this section, we set r = 0,25,
¢ = 0.05, and u = 4.98 (o = 4.5) and varied «,. The results of cal-
culating R = R(») for these cases, using Eq. (4.17), are shown in
Fig. 4.4b and are repeated as the solid line in Fig. 5.4. All our
self-consistent simulations were done with the boundaries set at 2 =
3.5 and s = 5.5. If we calculate R using Eq. (4.17) but only keeping
resonances within these boundaries, we obtain the result shown with
a dashed line in Fig. 5.4; the jump shown at x, = 1.33 is due to the
n = 2 resonance crossing into the region being considered. Comparing
the solid and dashed lines, we see that in the stochastic regime al-

most the entire contribution to R comes from inside the region being

simulated, and it is reasonable to assume that particle behavior is
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Fig. 5.4 R =z R(») VvSs. . The solid line shows the asymptotic total
damping keeping all resonances and is the same as Fig. 4.4b.
The dashed line shows the contribution to R from resonances
in the range 3.5 < v,/V. < 5.5. The points show the results

of particular simulations.
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is nearly linear outside this region, allowing us to do self-consistent
simulations. In the trapping regime, significant contributions to R
come from outside the region & < v < s, and self-consistent simulations
are not possible. Non-self-consistent simulations, however, give useful
information in this regime.

The points in Fig. 5.4 summarize the results of a number of simu-
lations of various lengths, both self-consistent and non-self-consistent,
which are described in detail in the following paragraphs.

Shown in Fig. 5.5 are the results when «, = 1.0. Fig. 5.5.a shows
the theoretically calculated total damping, as well as the amounts which
the separate resonances contribute to it. Fig. 5.5.b shows the resonance
structure when «, = 1.0. Shown in the first half of Fig. 5.5.c is Ro(t),
the theoretically calculated contributions of the n = 0 resonance to R(t)
using the methods of Chapter 3; shown in the second half is a simulation
in which the boundaries were taken at 2 = 4.5 and s = 5.5, so that only
the n = 0 resonance contributes. The theoretical and simulation results
compare quite well, except that the non-linear phase-mixing of the amp-
litude oscillations occurs considerably more slowly than the trapping
regime theory predicts, due to our having cut off the boundaries at
finite values rather than at infinity. 1In Fig. 5.5.d, the theoretical
and simulation values of Rl(t) are compared. Once again, there is little
difference except for the slow phase-mixing ef the simulation results.

Shown in Fig. 5.6 are similar results with «,, = 1.25. The simu-

lation results for RO(t) were calculated with ¢ = 4.6 and s = 5.4, and

the simulation results for Rl(t) were calculated with £ = 3.8 and s =

4.6. The tightness of the boundaries have affected the results for
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Fig. 5.5
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Contribution of specific resonances to R(t) when k, = 1.0.
a) contribution of four of the resonances to R(t), b)
resonance structure, c¢) the theoretical and simulation
calculations of Ro(t), and d) the theoretical and simula-

tion calculation of Rl(t).
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Fig. 5.6 Contribution of specific resonances to R(t) when K, = 1.25
a) contribution of four of the resonances to R(t), B)
resonance structure, c¢) the theoretical and simulation
calculations of RO(t), and d) the theoretical and simula-

tion calculation of Rl(t).
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RO(t) quite a bit, leading to a decrease in the amplitude oscillations

as well as slow phase-mixing, but there is still no sign, such as an
increase in Rl(t) due to diffusive particle motion, that stochasticity
has set in. By contrast, when x,, = 1.67 the onset of stochasticity is
quite apparent in Fig. 6.7 where the simulated Rl(t) continually rises as
opposed to the theoretical Rl(t) which has saturated by Srb.

For k,, = 1.67, Fig. 5.4 indicates that we may run self-consistent
simulations with the boundaries set at £ = 3.5 and s = 5.5 since the total
damping obtained by just including resonances within these boundaries
(dashed curve) is almost the same as the total damping including all
resonances (solid curve). Figure 5.8 shows the results of running both
self-consistent and non-self-consistent simulations with these boundaries.
In this case, R(t) is always small enough so that self-consistant effects
make little difference in the final results. In addition to the simula-
Eighty bounce

tions of length 10t we Tan simulations of length 80t

b’ b”
periods is far too long to be observed in present-day experimental de-
vices, as discussed in Chapter 7, but it could be observed in some full
particle simulations. Even after this large amount of time, R(t) still
has not saturated, and its derivative with time is still steadily decreas-
ing, if statistical fluctutations are ignored. It should be noted that
at IOTb, R(t) is already about one-and-a-half times as the 0'Neil theory
prediction shown in Fig. 5.7.a, indicating a significant increase in
total damping due to the onset of stochasticity.

In Figs. 5.9-11, similar results are shown for k, = 2.0, 3.0, 4.0.
Comparing Figs. 5.8-11, we see that at any given time R(t) increases

monotonically with x,, from x,, = 1.67 to k,, = 3.0 but it unchanged as

Kk, goes from 3.0 to 4.0, indicating a saturation with respect to «,,.
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Contribution of specific resonances to R(t) when x,, = 1.67.

a) R(t) vs. time, b) resonance structure, c) the theoretical
and simulation calculations of Ro(t), and d) the theoretical

and simulations calculations of Rl(t).
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Fig. 5.8 Variation of the total damping when x,, = 1.67. a) non-self-

consistent simulation (IOrb), b) non-self-consistent simula-
tion (SOTb), c¢) self-consistent simulation (IOTb), and

d) self-consistent simulation (SOTb).
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Fig. 5.9 Variation of the total damping when x,, = 2.0. a) non-self-

consistent simulation (10t b) non-self-consistent simula-

b))
tion (SOrb), ¢) self-consistent simulation (IOTb), and
d) self-consistent simulation (80Tb).
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Fig. 5.11 Variation of the total damping when «, = 4.0. a) non-self-

consistent simulation (101b), b) non-self-consistent simula-

tion (SOTb), c) self-consistent simulation (107 and
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d) self-consistent simulation (801b).
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The results of Figs. 5.5-11 for R(lOTb) and R(SOTb) are summarized
in Fig. 5.4. We see that the increase in total damping observed in the
simulations when resonances overlap is not quite as rapid as predicted
by the asymptotic theory of Chapter 4, but it is still fairly rapid. At
a fixed time of IOTb, the theoretically predicted value of R is roughly
a factor of two higher than that obtained numerically in both the tfap»
ping and stochastic regimes. The factor of two appears in the trapping
regime, because, as discussed in detail in Chapter 4, the distribution
function is not really flattened over the whole resonant region, but
only over the portion inside the separatrices; in the stochastic re-
gime, as we have noted R(t) converges towards its asymptotic value very

slowly, and at t = 101, has only attained half the theoretical value of

b
R.  However, the principal qualitative result of Chapter 4 is confirmed;
there is an increase in the total damping, correlated with the transi-
tion between the trapping and stochastic regimes, and this increased
total damping should be observable in both experiments and full par-
ticle simulations. Moreover, we find a qualitative difference in the
wave's behavior in the two regimes, In the trapping regime, the wave
has essentially saturated after about STb, while in the stochastic
regime, the wave amplitude continues to decrease for as long as can
be observed.

From a theoretical point of view, it is interesting to determine
whether or not R(t) ever reaches the theoretically calculated value
of R. To explore this question, we have run one non-self-consistent

simulation extending to 15001, , with the results shown in Fig. 5.12.

b’

We find that the theoretically calculated value of R is reached and
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even slightly surpassed. To check that no obvious numerical drifts were
introduced over the long time scale of this simulation, we verified that
- non-stochastic particles remained bound in phase space.

In order to get a better feeling for the time-evolution of the dis-
tribution function, we ran non-self-consistent simulation with N, = N, =

N6 = Nw = 8. Thus, at t = 0 there are 64 particles with different 6

and y-values at each initial velocity pair (vh,ci). At subsequent times,

we can calculate

— , Ne Ny
YV, = v, ..
hi No Ny/ jZ=: f(z-l hijk ’

(5.13)

No Ny
— Yo
TH Ny N‘f' Jzz'; 22, hij k

where vhijk and

v, . and Chi

hi
which initially begin with the same v and . Plots of (v

Chijk are the v and ¢-values of particular particles and
are the ensemble-averaged v and C-values of all the particles
his Cpi) With

K, set equal to 3.0 are shown in Fig. 5.13. Since the resonance struc-
ture is symmetric about v = 0, stochastic particles should on the average
tend toward v = 0, as is seen. Stochastic particles with low initial

2
2 . €2)1/

values of Qm = (v diffuse rapidly, and their v-values rapidly
approach zero, but as - increases, the diffusion rate decreases sharply,
in part because of the falloff of the effective wave amplitude and in
part because the particles have farther in velocity space to diffuse, as
discussed in Section 4.5

Knowing how the particles diffuse allows us to understand the time

development of R(t) in the stochastic regime. At short times, particles
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Fig. 5.13 Variation of the ensemble -averaged velocities in the
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with low gm—values, which diffuse rapidly, contribute to the initially
sizeable value of dR(t)/dt. The contribution of these particles then
saturates, and the principal contribution to dR(t)/dt then comes from
particles with slightly higher values of Cm’ which diffuse more slowly,
leading fo a slightly lower value of dR(t)/dt. After a bit more time,
the contribution of these new particles saturates, and the process
repeats itself indefinitely, leading to a continually decreasing value
of dR(t)/dt.

In order to exhibit the correlation of the diffusive particle be-
havior with the overlap of resonances, we have plotted in Fig. 5.14
the average particle velocities at t = 0 and t = 80Tb with the reso-
nance structure superimposed. The only particles which diffuse are
those in the regions of velocity space where overlap occurs; outside
these regions, the particles are bound. As further corroboration, we
show in Fig. 5.15 a similar plot for €, = 1.0, where there is no reso-
nance overlap. We see that the particles are bound, and the average

velocity plots look the same at 20T, as they did at 5t

b b’
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6. BOUNDARY-VALUE PROBLEM

Up to this point, we have considered the initial-value problem,
since it is the simplest to treat conceptually. Moreover, it is the
problem dealt with in simulations. In experiments, however, waves
are launched from a grid at fixed w and evolve spatially, and it is
therefore necessary to solve the boundary-value problem.

In this chapter, we consider a dipolar, phased array immersed in
the plasma, oriented perpendicular to the magnetic field, as shown
schematically in Fig. 6.1. The phased array fixes w and k,, and the
plasma then fixes k,, which may vary spatially due to nonlinear effects.
The quantity k, is in general complex and may be written in the form

ky = k

o +5/‘u o8, (6.1)

where k”O is the solution of the dispersion relation Er(k”o’ k,, w) =0,
8k,, is the real wave-number shift, and Y, is the spatial damping rate.

The wave variation may now be written quite generally as
z
§(r,t) = @ exp [-f¥,(2) dz’]
o

. 2 (6.2)
SLH[AMZ +55k"uvdz'+hy-wt])
0

The problem of determining the wave evolution in the boundary-value
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problem is just the problem of determining yz(z) and &k, (z), a

problem analogous to that of determining y(t) and Sw(t) in the initial-
value problem. We concentrate here on the determination of the change
in the wave amplitude with z, which is given by yz(z). This question
has been treated for the case of a parallel-propagating wave by Lee
and Schmidt.29 They found that the spatial evolution in the boundary-

value problem is self-similar to the time evolution in the initial-

value problem, but that the total damping as a function of z,
z
- Y ]
R,(z) = 2;6’(2)42 ; (6.3)
©

is a factor of vp/vg larger than R(t = z/vp) in the corresponding
initial-value problem.

Eq. (6.3) is derived in both Section 6.2 and in Appendix A from
somewhat different points-of-view. Physically, this self-similarity
exists because all the resonant electrons move with VZ = Vp' Hence,
the momentum change that the electrons have undergone in going from
z =0 toz =72 is the same as the momentum change we calculate in the
initial-value problem for electrons going from t = 0 to t = Z/vp. By
contrast, this self-similarity breaks down in the oblique wave problem
because electrons trapped in different resonances move at different
velocities, v, =V, = (w - nR)/k,,. As a result, electrons trapped in
the different resonances take different amounts of time to get from

z =0 toz =1, and an exact correspondence between time and space can

no longer be made.
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Nonetheless, as we show in the remainder of this chapter, the
primary qualitative effects in which we are interested still persist.
First, in the trapping regime, super-phase-mixing of the electron
motion due to the many bounce frequencies leads to disappearance of
the amplitude oscillations. Second, in making the transition between
the trapping and stochastic regimes, increased total damping of the
wave is observed. While RZ is not related to R by exactly a factor of
vp/vg, except in the case of parallel-propagation, we still expect this
factor to be approximately correct since the low-|n| resonances are the
principal contributors to R. As we shall see in Section 6.3, this
approximation gives the correct answer within a factor of two. Because
vp/vg tends to be rather large in the cases of interest (>10), we must
use values of o higher than those used in the initial-value problem in

order to be in the non-linear regimes.

6.1 Linear Regime

The real variables a, k,,, r, and u which have been used thus far,
all involve k,,, and are not, strictly speaking appropriate for de-
scribing a situation in which k,, has an imaginary part. To circumvent
this difficulty, we redefine these variables to include only the real
part of k,,. At this point, we restate the relation of these parameters

with the physical parameters w, k a, nos and T, which are set experi-

1>
mentally and k,, which is determined through the dispersion relation.
Since the four dimensionless parameters are determined from the six

physical ones, two of the latter may be considered as specifying the

length and time scales. We can fix any two of the physical parameters
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save for k,, which is fixed through the dispersion relation, and, by
varying the others obtain all possible values of the four dimension-
less parameters. In general, T is fixed experimentally, and we shall

consider it to be fixed here. We shall also consider n, to be fixed,

although one can imagine cases where it is far more convenient experi-

mentally to fix k, and vary ng. Fixing n,

thus, fixes our length and time scales. Recalling the definitions of

and T fixes k. and w_ and,
D P

¢, K,, r, and u,

di}(p//(> /(”E /(”v’t/ﬂ)
(6.4)
r Ek;/k” ) U = w/kllv"t J
we may write our physical variables in terms of the dimensionless
parameters as
n l w
Ko (1+¢2)7> P (6.5a)
r
= p
ki o« (1+¢2)"* b (6.5b)
W 3
- e iy - + R
w = o( (H-k‘z’)'“' wP (' 10(")['0/9 ’ (6.5¢)

where the asymptotic approximation to the Bohm-Gross dispersion rela-

tion has been used in Eq. (6.2c). We showed in Chapter 2 that this
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dispersion relation is quite accurate for a homogeneous, infinite
plasma when x,, > 1.0. However, because a real experimental device is
not infinite and not necessarily homogeneous, the dispersion relation
may, in_general, be altered significantly, as was the case in the

3,41 and must be determined

experiments on parallel-propagating waves,2
for the particular experimental device.

We continue throughout this chapter to use the dimensionless
parameters. To convert these to physical variables, Eq. (6.5) should
be used. From an experimental point of view, Eq. (6.5) yields the
values of the physical parameters which are necessary to generate
desired values of a, k,, r, and u.

Linear theory in the boundary-value problem is not as simple as
linear theory in the initial-value problem; the presence of the grid
is an inevitable complicating factor. Close to the grid, there will
be a complex near field which does not vary exponentially with distance,
and, in the limit far away from the grid, there is, in principle, a far
field, due to the ballistic contributions, whose variation with distance
is slower than exponential.40 Nonetheless, in between these two limits,
the field variation is given by the "least-damped" root of the disper-
sion relation and is exponential with distance. In this chapter, we
concentrate on this intermediate regime in z.

The asymptotic solution to the dispersion relation is determined
much as in the initial-value problem. For an infinite, homogeneous
plasma, the real part is given by the asymptotic approximation to the
Bohm-Gross dispersion relation, and the imaginary part 1s given by

dividing the dispersion relation into the real and imaginary parts and
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noting that

PR
—_— ¥, = - £ .
Recalling that
2¢€,
3;2; ¥ =€, , (6.7)
and noting that
v _ dw - . (agr/aku)
3 - d L - (6.8)
1T (aﬁk/aw)
" we obtain the well-known result
4
It A (6.9)
.4 Vb

The group velocity is parallel to the magnetic field because we have
fixed k,. Using Eq. (2.21), which gives us the expression for ¢. and

using Eq. (6.6), we find

. -1
K . = XZ U‘t - I o(z'u' K” (k 32, )
e 2 i
€ o Ky

(6.10)

_f: Anti) expl3(u-2 )]

where
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o0&y J 6k
K, 3 = Ky “jit s T T TNy (6.11)
Ky ak” (x*+3) (/+r )
The number of oscillations a wave makes before damping to 1/e of
its initial value 1is Nt = ]m/2ny] in the initial-value problem and

NZ = ]kn/2"Y2| in the boundary-value problem. Using Eq. (6.9), we find

that the ratio of Nt and NZ is

Ne © w (06,000 | 1w (6.12)
" (aﬁr/bk") Vyg

3

N,k

This ratio is a measure of the relative lifetime, in the initial-value
and boundary-value problems, of the wave measured in units of oscilla-
tions. This quantitative difference between the two problems carries
over to the non-linear regimes where, as shown in Appendix A, the

total damping is increased in the boundary-value problem by a factor

of approximately vp/vg. In the case of an infinite, homogeneous plasma,
this ratio becomes

3
Ea 2
vp o (%Fx3) (1er) 6.13)

4
Vy 3«

which is shown in Fig. 6.2. This ratio is quite large, greater than
ten in the region of interest, and must be overcome by an increase in
u. Because increasing u leads to an exponential decrease in the total

damping, a large increase is not needed.
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Fig. 6.2 Variation of vp/vg with o = kD/k.
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6.2 Trapping Regime

The field strength in the trapping regime is bounded on the upper

1/2 < @, so that the resonances

end by the condition that wy = k,, (e®/m)
are far ‘apart. This limit is the same as in the initial-value problem.
On the lower end, the condition is Y, < wb/vp, which can be understood
as follows. In the wave frame (i.e. in a frame moving with velocity vp)
the wave amplitude appears to damp temporally at a rate szp’ and this
must exceed wy if the trapped or nearly trapped electrons are to have
many bounces before the wave decays. Recalling Eq. (6.9), we see that
this condition is a factor of vp/vg more restrictive than in the
initial-value problem.

We begin, just as in the initial-value problem, by subtracting

the real part of the linear plasma response from the full plasma re-

sponse to obtain, where Sknc is the complex wavenumber shift,

) o&,
Sk = - 3 , (6.14
ik (Ak,,) e E,(“w 47rh0e50( V(f/(“w f‘(“wr)) )
which is analogous to Eq. (3.19). Since we are in the limit where
(Yz/k”) << 1, it is legitimate to define ka)Q)
T N RL&
_ t ¢ dy .
)Ck“w = 5 = 5 % exp [-i(kpz * k,y-wt)]f | (6.15)
o
[+]

where T = 2n/w.
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Our development now proceeds in a manner exactly analogous to

that of Chapter 3. We change variables from y, v_, x, and Vo to X,

Y, 8, and v, and expand the distribution in a Taylor series about each

of the resonant locations to obtain

k2 (%_%I:) ¥z § = 41Tehoh2wjz7rmdvi_ J-h(/(i/o)

(6.16)
i 2,
Jt
?J v sin(ut) (32 )47,
0 oo 2
where Avn is the deviation M in the neighborhood of the nth reso-
nance. The equations of motion from which we determine Av_ are the
same as before
: ek, d
v, = '”’*"""" Jn (k.p) sen (kyz),
(6.17)
. hﬂ »
v = — V 3
* kllvl z
Integrating these equations of motion formally, we have
t
Z= vV, t + fgz-Ayh (t') dt’, (6.18)
0

where v, = (w - nQ)/k,,. Since the resonances are small, we have, to

lowest order in ¢,

z=V,t. (6.19)

The remainder of the discussion of the boundary-value problem is

just like that for the initial-value problem. We solve Eq. (6.17),
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substitute the results into Eq. (6.16) and use Eq. (6.19) to replace

t with z. We then integrate over z and v, to finally obtain

¥, (2) Wt 1dg, &
z I (37:) Z fzwv,_ Av,
IELEE (6.20)
(:’J_‘z Y. 3")J' (k) 7 (%2) -
d vy

We know from our study of the linear theory that the contribution of
the backward-going resonances is negligible, and they are ignored in
Eq. (6.20).

Because of the different vn's which appear in Eq. (6.20), there
is generally, as noted earlier, no simple relation between y and Y,
The exception is the case of parallel propagation, where, comparing

Egs. (3.49) and (6.20), we conclude

¥, (2) - ;‘_.. y(}.) . (6.21)
3 U}

The total damping in the case of the boundary-value problem is exactly

a factor of Vp/vg greater than in the initial value problem.

Shown in Fig. 6.3 is the solution of Eq. (6.20) for a Maxwellian
distribution. This figure is analogous to Fig. 3.2, and we chose
values of a such that the total damping would be significant but not
overwhelming. Because of the vp/vg factor, higher values of o are
needed in the boundary-value problem to get approximately the same
total damping as in the initial-value problem. Also, the shape of
the curves for r # 0.0 are somewhat different in the two problems;

nonetheless, in both cases we find that super-phase-mixing causes
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Fig. 6.3 Variation of Yz(z)/yZ(O) and P_(z) with z.

127



the amplitude oscillations to vanish when r > 0.25, i.e. when the

angle of propagation with respect to the magnetic field is greater

than 14°.

6.3 Transition to the Stochastic Regime

We begin with the momentum equation which is derived in Appendix

A for the boundary-value problem

d de, dE*/im
— |d? 2 = r 2 e .
o j v v, n,f, =k, T . (6.22)

If we assume that all the electrons which are contributing to the non-

linear wave response move with v, = Vp’ then Eq. (6.22) becomes

LT 3¢, d EF/um
v, dzjot v mv, o, f, =k, = o , (6.23)

as was shown in Appendix A. Eq. (6.23) may be integrated to yield

Z
€ £
v, S)'O(SV mv, hof, = k, 3_7;: § (/ur) . (6.24)

Developing Eq. (6.24) in exactly the same manner as we developed Eq.

{(4.3) in Chapter 4, we conclude
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5?z v g o? o0& \!
= - - = YUp = |8 == it S -u?
Rz . z ’ Py u (K,, 3/(,,) exp (-u*/z)

j}’ 4y exp(-¥ /z)Z{(‘ [exp(uf) (6.25)

expus] - fenptet) - exp Caso])

A more accurate result can be obtained through the direct use of Eq.

(6.22), which upon integration, leads to

2 p) E
§SA’V mv, nf, = k A 5( ) . (6.26)

i ak 16T

We assume that the distribution is asymptotically flattened subject

to the constraint that particle flux is conserved,
3
Uo( v VU f, = 0, (6.27)

as discussed in Appendix A. We then find, developing Eq. (6.28) in a
manner analogous to that of Eqs. (4.3) and (6.24),

o

x D, | v
Ro < f5 5o v (K52 ) enprara) (nd, exp3212)

<
(sc-4;) (s:+43) 2 (e~ 4;)
Geeds) a0 emdb)
Z( — {I+ AL 3[‘{“2'(5;*&)‘} (6.28)

u_l.

[exp(-ul;)+exp (-ws;)]
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- {I+ (sc-2:) , 2, (si-8)%  (5:-#) g
13 auw u* 6 3 [4“’2’_ (5,""1‘-)1]

[exp(-ul;) - exp (-us;)] ) .

Eqs. (6.25) and (6.28) can be solved in the same manner in which we
solved Eq. (4.17), and their limits of validity are expected to be
the same. The results as a function of «,, are shown in Fig. 5.4 and
should be compared with Fig. 4.4d, since, in both cases r = 0.5, The
quantity o was chosen so that RZ would be significant but less than
one over the range of x,, where resonance overlap first occurs. As a
result of the vp/vg factor, the value of u went up from 5.66 to 6.45
in the boundary-value problem. We see that the result obtained from

Eq. (6.28) is about a factor of two lower than that of Eq. (6.25).
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The plasma parameters are ¢ = 0.05, r = 0.5, u=6.45 (a = 5.5),

and v /v = 16.7.
P g
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7. CONCLUSIONS

The transition between regular and stochastic particle motion
which occurs when resonances overlap is believed by many researchers
to play an important role in several areas of fusion research and
basic plasma physics. As a resﬁlt, this transition has been subjected
to intensive scrutiny, by examining the single-particle motion in a
wide variety of situations, and is now fairly well understood. How-
ever, there has been little effort to understand how an ensemble of
particles being influenced by a given wave feeds back on the wave to
affect its evolution. In particular, it has not been shown that there
is any observable difference between the wave evolution in the regime
where particle motion is primarily regular and the regime where parti-
cle motion is primarily stochastic. This determination is important
because, generally speaking, it is waves and not individual particles
which are the primary observables in experiments and simulations.

To explore this question in the simplest possible realistic
context, we studied electrostatic electron waves in a Maxwellian plasma
with a uniform magnetic field. Electrons are resonant with these waves
whenever v, = {(w - nR)/k,,, where n is any integer. These resonances
can be made to overlap by either increasing the electrostatic amplitude
or by decreasing Q, which moves the resonances closer together. To
keep the wave amplitude as small as possible, the phase velocity large
enough to avoid overwhelming the non-linear effects by Landau damping,

and the v, separation of the resonances small enough to allow resonance
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overlap, we were led to consider obliquely propagating Langmuir waves
in weakly magnetized, warm plasmas. We have shown that in this case
the full plasma dispersion relation reduces to good approximation to
the asymptotic Bohm-Gross dispersion relation.

An obliquely propagating Langmuir wave has three distinct evolution
regimes. When Wy <Y, the wave is in the linear regime, and damps
away . When y < Wy < Q, the wave is in the trapping regime, and its
evolution is dominated by regular particle motion. Finally, when
y < Q< Oy s the wave is in the stochastic regime, and its evolution is
dominated by stochastic particle motion.

When the conditions for the wave to be in the trapping regime are
well satisfied, vy << wy << ¢, electrons are influenced by at most one
resonance, and execute trapped particle oscillations when v, o= (w - nQ)/
k,. In this regime, the wave evolution can be treated in a fashion
analogous to O'Neil's treatment of the parallel-propagating wave. We
find that when the angle of propagation with respect to the magnetic
field is increased from 0° to about 14°, the trapped-particle oscilla-
tions disappear because electrons in different resonances have differ-
ent bounce frequencies, leading to a "'super-phase-mixing" of the
amplitude oscillations.

When the condition for the wave to be in the stochastic regime are
well satisfied, y << Q << Wy s the electron motion is nearly diffusive
in the stochastic region of velocity space where resonances overlap.

In this case, it is justified to treat the wave evolution using a quasi-
linear theory with resonance broadening similar to Dupree's. This

theory predicts a slower approach to the asymptotic state in the sto-
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chastic regime than was found in the trapping regime. It also predicts
that the asymptotic state is approached monotonically with an ever-
decreasing slope, and that the diffusion rate decreases with increasing
v,. These predictions are all borne out by the simulations of Chapter
5; however, the simulations find that the wave approaches its asymptotic
state considerably more slowly than the theory predicts. This discrep-
ancy presumably occurs because most of the electrons are initially at
the edge of the stochastic region, and in this region of velocity space
the motion of the stochastic electrons is not expected to be truly
diffusive.

In the transition regime between regular and stochastic motion,
the electron motion is extremely complicated and cannot be simply
treated. However, we can approximately determine the asymptotic (t = )
total damping of the wave by assuming that the distribution function is
asymptotically flattened over each resonant region, and that, if two or
more resonances overlap, the distribution is flattened over all of
them. Using this model, we find that the total damping of the wave
significantly increases when a transition is made between the regular
and stochastic regimes.

In all this theoretical work, the field amplitude is held fixed in
determining the distribution function evolution, and the amplitude
evolution is then determined through Poisson's equation. In this
sense, our approach is non-self-consistent, and is strictly valid only

the limit v << w where the amplitude change is small compared to the

b)
initial amplitude. Nonetheless, these calculations are a significant

improvement over earlier works which study primarily single-particle
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motion and hence provide little information about the wave evolution.

In order to check our theoretical results concerning the asymp-
totic wave amplitude and also to accurately determine the time evolu-
tion in.the stochastic regime, we ran a series of "mini-simulations,"
in which the trajectories of the resonﬁnt electrons were followed
numerically, and the bulk of the plasma was treated as a background
linear dielectric. Using this method, we were able to confirm the
result that increased total damping takes place when resonance overlap
occurs. In the stochastic regime, we were also able to run self-
consistent simulations in which the electrostatic field amplitude was
updated at each time step. The amplitude evolution occured somewhat
more slowly than in the non-self-consistent calculations, since the
self-consistent decrease in the field amplitude led to a decreased
damping rate. However, the qualitative nature of the evolution was
unaffected.

To make contact with possible experiments, we have also considered
an idealized boundary-value problem in which there is a phased array
which fixes w and k,, allowing the plasma to determine k,. The wave
then evolves spatially rather than temporally. We found that the total
damping is increased with respect to the initial-value problem for a
given set of plasma parameters by a factor approximately equal to
vp/vg. In the 1imit of parallel propagation, this approximation be-
comes exact. Despite this difference, the essential qualitative re-
sults obtained from our study of the initial-value problem are confirmed.

We restate the principal qualitative results: First, in the

trapping regime, the amplitude oscillations which occur for a parallel-
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propagating wave disappear due to super-phase-mixing as the propagation
angle is increased, Second, when a transition is made from the trapping
to the stochastic regime, a significant increase in total damping is
observed.

There appears to be no fundamental barrier to testing these re-
sults experimentally. As an example, we consider a plasma frequency
of 500 Mhz (wp = 3,1 x 109 sec_l, no= 3.1 x 109 cmﬁs) and a plasma
temperature of 10 e.v., which are close to where past experiments
have been done. If we set a =5, k,, < 4, and r > 0.5, we find from

Eq. t6.5), BO i 8 gauss, XA, i 3 cm. Hence, there should be no problem
in obtaining the necessary magnetic field strength and in constructing
a phased array which can produce the necessary perpendicular wave-
lengths. Finally, if we set ¢ > 0.05, and demand a total device

length equal to ZOH(VP/w ie., ten bounce periods, we find that the

0
device length should be less than or equal to about 300 cm, which is
long but not impossibly so. Smaller lengths are obtained at larger
values of ¢.

This thesis leaves open many possibilities for future work. One
of these is to determine what other waves are generated in the plasma
as a result of the wave we launch. In the case of the parallel-propa-
gating wave, the well-known sideband instabilities are generated, and
it is reasonable to expect something similar to occur for an obliquely
propagating wave in the trapping regime. But what happens in the
stochastic regime? One cannot say for sure, but it is reasonable to

speculate that broadband instabilities are generated which are resonant

with the region in velocity-space where electron motion is stochastic.
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In that case, quasilinear theory with resonance broadening might well
be appropriate to describe the multi-wave and distribution function
evolution and could possibly yield excellent results.

Moreover, it seems likely that the methods of this thesis can be
applied to a wide variety of problems where the transition between
regular and stochastic motion is important. Applications can be made
to ion waves and electromagnetic waves. It is possible that even
unstable waves can be treated in a similar fashion. Hence, many

questions are left for future exploration.
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APPENDIX A

Within this appendix, the basic equations of Chapters 3-6 are
derived, using a method similar in spirit to a calculation by Landau
and Lifshitz.47 The basic assumption we use is that the non-linear
phenomena occur on é time-scale which is long compared to the wave's
period of oscillation in the laboratory frame T = 2w/m0. This time is
also roughly the time-scale on which phase-mixing occurs.

We begin by assuming a field of the form

E(+)

~

it

Eotw) sin[kx-w,t -pw)]
(A.1)

Ek () exp[i(k-x-wyt)] + ~EZ(({) exp[-i(k-x-wt)],

]

where
" .
h(t) = fcfw(t’) At
]

(A.2)

+
gk({:): 50.“) exp [»ifSw(t’)al-&’] .

2t

Noting that we may quite generally write
t

Eote) = E exp[-{sende’] a5

o
we conclude
3 : ,
0 - 3
=2 exp|-(f8w (') 4t
20 P[ { 3 ])

é:’;: (t) = (A.4)

where
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5wc = SW—(:X . (A.S)

From Poisson's equation

V-E = 4Tp, (A.6)

it follows that

l;’/\‘(-gj( (t) = 4‘TT/0,< (t), (A.7)
where

P =Pyt EX)o[[(ﬁ'Z'wof)] + /O:(t) exp{~i(£<'5"wot)] (A.8)

is the electron charge which generates E.
It is useful in our work to Fourier transform Ek(t) exp (~iwot)

and pk(t) exp (—imot). Doing so, we may write

o0

glg“) s 5:1&;’ E,(w”) EXP[“‘(“’,’“)")’:] 5
(A.9)
Pr(t) = So(w’ Prlw) exp [-i(w-wy )t ],

where Ek(w') and pk(w’) are respectively the transforms of Ek(t) exp
(—iwot) and pk(t) exp (—imot). In general, pk(w’) can be divided into

a linear portion pkg(w’) and a non-linear portion pkng(m’). The

~ o ~
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linear portion pkz(m’) is related to Ek(w’) through the usual suscepti-

bility tensor

“5'5"“5(“)) 34771051(‘“)> (A.10)

which is calculated in linear theory. The quantity pkg(m’) can be
further divided into two portions, pkr(w’) which is related Ek(m’) by
the real part of yx, Xops and pki(w’) which is related to Ek(w’) by the

imaginary part, X; -

11

stk Xy By (@) = 4mp (w7,

(A.11)

ke Yo By w7) = 4T (97

The portion p, (w”), which is 90° out of phase with E, (w”), is
P kr Sk

responsible for supporting the wave, and pki(m’), which is in phase
with Ek(w’), is responsible for the usual linear damping. Finally, it

is useful to define an auxilliary (real dielectric) field, such that

NDkr (w”) = Ly (w”) + gr. gk(w’) z g,,,'g!f(w') s (A.12)

L4
~

where ¢ 1s the usual real dielectric tensor. Using Eq. (A.7) and

(A.11), we find

ik« Dy (w) = 4T (0] -p )]

(A.13)
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We can determine the time-varying quantities, pkr(t) and Dkr(t) by

inverse transforming pkr(w’) and Dkr(w’) in analogy with Eq. (A.6),

Pir (¥) = §do” p (o)) exp [-i(w™w,)¢],

(A.14)
il Id
s ; - +
Dy, ()= }a(w' Dy (w?) exp [Fi(w'- @) 1
~ o~ _ 00 ~
and the Eq. (A.13) becomes
I-’{( . ,.,D/u' (t) = 41T[P!j () -/Okr({;)] . a15)

As a result of our assumption that Ek(t) varies slowly, we

conclude that Ek(w’) is sharply peaked near w” = 0o allowing us to

Taylor expand e;(k,w’) in the neighborhood w” = W Using Egs.

(A.12) and (A.14), and noting that ar(k, wo) = 0, we have

Q!gr (¢) = J dw” &, (L, w’) . gk (w”) exp [,i(w'-wa)-t]

(=3
éf do” 2E* (ww,) Fy(w7) esp[-i(w-w,)t] (A.16)
- 00 ow o ~
3,€b— d gk(t)

substituting Eqs. (A.4) and (A.5) in (A.16), and using Eq. (A.13), we

finally conclude

145



k- ;——%—r- dw, « £y (t) = #W[/oﬁ_(t) ‘pé’_(f)]

~

(A.17)

~

of
- -tnrhoejoﬁv (ﬁc “Ber)

where fk(v, t) and fkr(v’ t) are the contributions of electrons moving
at a given velocity to Py and Prr: Up until now, we have not explicitly

specialized our results to the case of electrostatic waves. Doing so,

we find

(A.18)
A _gf.:gwc E/« (¢) = -‘fﬂ’i’l,,ejols"’ (fb‘fﬁr) )
2y ~

where €. = F-Er~§/k2. Eq. (A.18) is just the subtraction formula
used in Chapt;r 3.

We note that the procedure we have followed of only subtracting
the real part of Prr from both sides of Eq. (A.7) has resulted in the
use of a dielectri; function €. which 1is explicitly real. By using
this procedure, we have also effectively included with the non-linear
response on the right-hand side of Eq. (A.17), the portion of the
linear response which contributes to Landau damping. We could have,

if we had wished, subtracted the whole linear response. Since our
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Fourier transform technique requires expansion about the real frequency

v, we would have found, to lowest order in the Taylor expansion

4Tr(p/:~/o/(1) = i/{(zf:a(wc +E,;) E,/g

DEy

(A.19)
= k dw (5‘ak:'+ KL.) éz:? >

where Y is the usual linear (Landau) damping rate.
The momentum equation used in Chapter 4, as well as the correspon-
ding energy equation, may be derived in a similar manner starting from

Poisson's equation,

V’AE; = lfﬁ/o »

(A.20)
a ’ = —‘47th 4
ot ~

M

where the current j is determined by the continuity relation

3/7 .
P b = O ®
St + V ;] (A.21)

The charge p is related through Eq. (A.8) to Py > We may similarly

define

131

Pro® Pu8) exp [i(k-2-0,t)] + % ) exp[-ilk-x-w,t)]

(A.22)
De 2 Dpy (4) explilkex-w,t)] * Doy te) expl-ilk-x-u,t)] .
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The charge jr can be obtained directly from Py through the continuity

relation. We then find
7- D, =4m(p-rr),

(A.23)

&Qr = ~4W(J'jf),
o v

o

where p - Py is the total charge minus the charge that supports the wave,
i.e., the charge due to non-linear effects and Landau damping; j - jr
is the corresponding current. Hence, when we multiply both sides of

Eq. {(A.23) by E, we conclude

i - AP
gr EVDr = (pop)E = TE
(A.24)
I .agr = ‘, »E = o 3

where P and U are the momentum and energy per unit volume taken from

the wave due to non-linear effects and Landau damping. Using the
relation from Eq. (A.16)

. o Er . o(ﬂﬁ:g(f)
D, = ‘5w

it (A.25)

Eq. (A.1), Eq. (A.22), and the reality of €., We find
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£ t
7Dy + k2 exp [ithpew,e)] - 45D

*
d Ep ()
£ : Y
-!f'—;% exp[-ilkz-w,t)] oAt ’
. L Ex ) (A.26)
0By | 25T exp[illex-@t) T
2t 9 «
Eqre)
. d £k
05 izt AEE
- ﬁ 4t
Recalling
£
E, (¢) : ,
(+) . ~ 9 . ') d+t
£, - fii exp[-‘”(ﬁu ;= exp [Lgéw{t) ])
we obtain
dEr o Tk.x-w t-ne)] . AE,
Vc AD,V = "lf~ ﬁfl‘h['\' -~ (4] ] O‘,t

(A.27)
+ f 2__%: (05[!5-3-"“)0{"7(*)] . «5&)”[0 s

~
~ aw

Eo
D o0kr . i ] A0
--«———zj;k = (wo+éw) 3w Sth[k-x-wot n(e)] 1t

(w,+ §w) 25r cos[k-x- wotdﬂt)]-éwgo (A.28)
- ot 3w
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2 &r [h-x-w,t-n(t)] 47 %0
P e (OTEEETT T
2&r - t-n(t)] 2 ($w E,)
+ _ 7 sm[é'f'wo - .dt ~0 .
dw

Substituting Eqs. (A.27) and (A.28) into Eq. (A.24), and averaging over

one wavelength, we conclude

ok der dES i 4Py
"aw 1t 4t
. 4 (dy(dz( ]
'AtJ'AIJA;:jO(Vh°MI&(7C )
(A.29)
28 d(w,+26w) ES/16m 40
o W At ) dt

dy (dz
A e ) (55

where ﬁé and U are the average z-momentum and energy. If we use a

non-self-consistent approach to calculate the right-hand side of Eq

(A.20), as is the case in Chapter 4, then it follows that fr is

zero when averaged over one wavelength and can be dropped from Eq.

(A.29) to yield

-k 0§, o(Eoz/M'”' 4
"

3
— e = —_— v oh,
2w Lt ol'tjai 0! Vz f;(y,{)} (A.30.2)
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d (w,+26) Eo /g

L
dw 4+t
= S8 on 2R UR) f, (r, 1), (0.0)
where
7to (v, t) = j% % o (A.31)

Physically, there is no contribution from fr because it is proportional
to E, and if E is held fixed, as is the case in the non-self-consistent
calculations of Chapters 4 and 5, then fr must be fixed as well. vHowever,
if E is allowed to vary as is the case in the self-consistent calculations

of Chapter 6, then fr will vary, and its change must be accounted for.

In Chapter 4, we make the approximation

[(Vz'wg/ku)l*mz] = constant . (A.32)

If we did not make this approximation, but followed the true distribu-
tion function evolution, it would be possible to use Eq. (A.30.b) in
concert with Eq. (A.30.a) to determine the frequency shift. However,
given this approximation, Eq. (A.30.b) reduces to Eq. (A.30.a), and
this determination is not possible in this way.

In the non-self-consistent simulations of Chapter 5, fr will not
contribute to the total damping, as stated earlier, and it is approp-
riate to use Eq. (A.30). However, in the self-consistent simulations,

fr does contribute, and should be accounted for. In particular, the
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particles which we are simulating make some contribution to fnz’ fi’ and

fr’ where fn and fi are the portions of fn due to non-linear effects

L L

and Landau damping. In the self-consistent simulations, we assume that
the entire contribution to fnl and fi come from the particles we are
simulatiﬁg, so that the particles in other regions contribute only to
fr' If we split fr into two pieces, fl being the contribution to fr of
the particles we are simulating, and f2 being the contribution to fr of
the particles we are not, then it is only f2 that we wish to subtract
from the right-hand side of Eq. (A.30), not the entire fr'

To determine what Eq. (A.30) becomes in this case, we return to Eq.

(A.15) and re-write it in the form

L/.f [Ql’gr ‘,-Dz/u] - 4/”(/05 ”/0/cz) ? (A.33)
where

b 477?&: . (A.34)

,\XV 7(:'{,‘)60) = %,/I(é/&)) + gz(,/f;“’) ) (A.35)

where X1 is the contribution to Xy of the particles in the simulation,

and X is the contribution of particles not in the simulation, we find
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I k- (.,Dkr “Qk,)

~
“~

ke [dwr [Er(kw) - X))
exp [-i(w”-w,)t] £y (w”)

.

DL (A.36)
ke fuwr [(25 28 )
zl}‘(’s}dﬁ) [(mf_m (w C(Jo) fo]
exp[-i(w-w))t]. E, (w7)
. & XY . d
:15[(3;}- ..:),:.‘_;)-LI; 'g.’f(t) - g’ogi‘({)] .
Noting that
gr“?: = (Pgr*Q:) exp[i(&ywﬁ)}
X X (A.37)
+ (Pnlfr"ggx) e’xP[‘L(,lf'Kawo‘t)J >
and also that
4 £
,’L’E-—-V'(PV-QI) = lnr(pa/a,)g = 1t
47
(A.38)
E B(Qr“!,):) _ iV = d4u
A T LY L D R T

where P and U are the momentum and energy gained by the simulation par-

ticles, we conclude, after averaging over y and z.

J
(A.39.3)

O(P;~-k Ef-_:“a}(, 4502/1577
- "(aw d w At
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a (ig,r,?b_%) d (w, r28w) E2/1em

S = o w
dt dt
(A.39.Db)
cx, A EC/1em

In Chapter 5, numerical noise made it too difficult to use Eq. (A.39.b)
to calculate the frequency shift.
To derive the energy and momentum equations in the boundary-value

problem, we consider a wave of the form

~ ~

E=E,(z) scn (k,z thiy +n(z) -wt),

(A.40)

0 (2) = [Shkz)dz" .

In the initial-value problem, particles can absorb momentum and energy
from the wave because there are many Fourier modes spread over a fre-
quency range which is the inverse of the time-scale on which the wave
changes and ET(F,M) is not zero except at w = W, Similarly, in the
boundary-value problem considered in Chapter 6, in which k, and w are
fixed, there will be many k,,'s in the system and the operator
(Ber/am)(d/dt) is replaced by ~(aer/8k”)(d/dz). One can derive this
result in detail by going through exactly the same procedure we fol-
lowed in the initial-value problem.

What we really calculate in the boundary-value problem is the
momentum flux or energy flux deposited in a length dz. To establish

this point, we begin with the general equation
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dP 3 P
..J=—~—-’-Z-+V'g) (A.41)

where 7 is the momentum flux. Then, we average over t and y, as is

appropriate in the boundary-value problem, and note that, after aver-

aging, all quantities depend only on z, so that Eq. (A.23) becomes

d P 5
ﬁ = ﬁsz . (A.42)

Similar conclusions hold for the particle flux and the energy flux.

Writing each one of these explicitly, we conclude

4 (dtrdys,;
0 = & [T v nv (£-5,)

Bgy d (k" gku)Eoz/léTr

3 k, dz
_ d[dtd 2
= ZGJ - !%Jﬁv nom i (- £, ), (A.43)
Wit dEF/I6T
d kﬁ: Az

dt 1 dy v 2
- A[TIR e () 1),

where T = 2n/w is the wave's period of oscillation. In Chapter 6, the
field amplitude is held constant in evaluating the right-hand sides of

Eq. (A.25); so, the fr terms contribute nothing and may be dropped. We
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also neglect 8k,, so that Eq. (A.43) becomes

0 = f‘z‘ 50(’1’ n, Uy fo (Z,’) Z) ) (A.44.2)
de, d E,) /16 A .
Ky 2k, dz - H{J vommyy fily,2), (A.44.b)

where
f jdt}dy
o T A,
In the case of the parallel-propagating wave, all the particles
which contribute significantly to the non-linear behavior have z-vel-

ocities of vp, to lowest order in the electrostatic field, so that

Eq. (A.44.b) may be rewritten

dE, A& Ej/um 4
ku ()k” dz = Vp ;;j"”” hy mvy ’Co . (A.45)

Comparing Eqs. (A.21.a) and (A.27), we conclude

El
L2y n, mvy f, i(i)
Vp szd ’ s dz \ 16T
7 a = 1/ EZ v (A.46)
3 ety e
3 ﬂ}dvnomv’z f, 1t (Iur)

so that the total damping in the boundary-value problem is a factor of
Vp/v greater than in the initial-value problem. Most of the resonances
which contribute significantly to the total damping in an obliquely
propagating wave are located close to v, = Vp’ implying that even in

this case, the total spatial damping should be approximately a factor

of vp/vg greater than the total temporal damping.
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