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Bit error rates (BERS) are traditionally estimated by running Monte Carlo simulations
and extrapolating the results under the assumption that the electrical voltage at the re-
ceiver after narrow-band filtering is Gaussian distributed in the marks (Ones) and spaces
(Zeros). This method is computationally expensive and not always reliable. Thus, it is
often replaced in practice by approximations—the most common of which is to simply
neglect noise altogether during propagation and add Gaussian white noise at the receiver.
This and similar approaches are usually not well-validated.

The covariance matrix method that | describe in my dissertation is fully deterministic
and relies on the assumption that the interaction of the optical noise in the fiber with itself
is negligible. | calculate the linearized evolution of the noise around the noise-free signal.
The optical noise at the receiver is multivariate Gaussian distributed after the phase jitter
is separated, and therefore completely described by a covariance matrix.

| successfully apply the covariance matrix method to compute the BER in a highly
nonlinear dispersion-managed soliton system over 24,000 km and to a 10 Gb/s 5-channel
chirped return-to-zero (CRZ) submarine system over 6,100 km. The results are far more
accurate than what those from extrapolating Monte Carlo simulations, while requiring a

fraction of the computational cost.
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Chapter 1

Introduction

Computing accurate bit error rates (BERS) is one of most important tasks when designing
optical fiber transmission systems. The covariance matrix method that | derive in this
dissertation yields a speedup in simulation time of orders of magnitude over the commonly
used Monte Carlo simulation technique. Unlike saadlehocapproaches, the covariance
matrix method is based on a sound mathematical foundation that makes use of the result
that the optical noise in a transmission system is multivariate-Gaussian distributed after
phase and timing jitter are separated. This result is derived from the assumption that
the signal evolution is linearizable, which means that the interactions of the noise with
itself in the fiber are negligible once phase and timing jitter are separated. | show that
this assumption is valid for currently used systems. Unlike Monte Carlo methods, the
covariance matrix method is completely deterministic; it does not require random number
generators. In the remainder of this introduction, | will outline the problem of computing

bit error rates and provide a guide to the following chapters.

Optical fiber transmission systems offer the highest data rates among all communi-
cations systems, and their bandwidth-distance product significantly exceeds radio, mi-

crowave, satellite, and free-space optical transmission in the distance range of a few tens
1



2

to thousands of kilometers. Recent experiments have demonstrated the transmission of
5 Th/s over a distance of 1,200 km [1] and 1.5 Th/s over a distance of 6,500 km [2] at
channel data rates of 40 Gb/s. This excellent transmission quality is due to low attenu-
ation and distortion over a very large bandwidth in modern optical fiber waveguides. In
addition, the light in the fiber can be optically amplified, either using doped lumped fiber
amplifiers such as erbium-doped fiber amplifiers (EDFAS) [3], or, exploiting stimulated

Raman scattering in the transmission fiber itself, as in Raman amplifiers [4].

Despite these virtues, the combination of confinement of the light beam to a small
effective fiber area and long propagation distance leads to a significant Kerr nonlinearity
in the transmission. Optical fibers also have chromatic dispersion that interacts with the
fiber nonlinearity in a complicated way. Dispersion can be used to mitigate some of the
detrimental effects of nonlinearity, but in general a quote by Neal Bergano holds true:

“Nonlinearity in optical fibers is always bad.” [5].

The large available bandwidth of about 5 THz in optical fibers is a consequence of
the high carrier frequency of 200 THz, which is more than six orders of magnitude larger
than the UHF radio frequency and four orders of magnitude beyond typical satellite fre-
guencies. However, because the photon energy is proportional to frequency, the photon
flow at the typical low optical signal powers of fractions of a milliwatt to a few milliwatts
per channel is small and hence the field quantization becomes relevant. As a consequence,
guantization noise is significant and dominates over thermal noise in optical amplifiers [3],

where it is known as amplified spontaneous emission (ASE) noise.

Modeling optical fiber communications is a young discipline. All-optical systems,
in which the light propagates from the transmitter all the way to the receiver without
ever being converted to electrical signals, have only been in existence since the advent

of low-loss fibers and EDFAs in the mid-1990s. As the systems have become faster and
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more complex, physical modeling has become more important as well. In particular, fast
modeling tools are required in order to design systems, tune parameters, and verify error-
free operation. Given the rapid progress in commercial systems, it is not surprising that

modeling algorithms are lagging somewhat behind.

The task of computing BERs essentially consists of computing the evolution of the
ASE noise that is caused by optical amplifiers, taking into account its interaction with the
noise-free signal due to the fiber nonlinearity. Typical BERs are in the ranfjeédf—

102 and below, although many systems now employ forward-error correction (FEC) and
can tolerate raw BERs of up t0 3 [1], [6]. A commonly used method to simulate
these rare events is still to run Monte Carlo simulations of the noise and extrapolate the
results [7]. This approach relies on the speed of the signal propagation equation solver,
which usually employs a split-step fast Fourier transform method [8] that requires a large
number of discrete Fourier transforms. Running a Monte Carlo simulation is like repeat-
edly rolling dice or flipping a coin, and it is easy to implement on a computer and very
robust [9]. However, when evaluating the probability of extremely rare events, such as
that of the coin standing on its rim after being flipped, standard Monte Carlo simulations
are too inefficient. One can increase the Monte Carlo simulation efficiency by biasing the
perturbations toward regions of the phase space where bit errors are believed to be more
likely to occur [10], [11], but the success of this method relies on a detailed knowledge of
the system, and the biasing must be optimized in order to achieve a sizable performance
gain over the unbiased simulation. On the other hand, this detailed system knowledge is
sometimes the result of a simulation, and hence it is not known at the time the simulation

is started.

Monte Carlo methods are very expensive computationally. For that reason, they are

often replaced in practice with simplified models. The most common of these models is to
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run a noise-free simulation and then to simply add white Gaussian-distributed noise at the
receiver that corresponds to the noise that would arrive at the receiver in the absence of
any noise-signal interaction due to fiber nonlinearity. Itis known, however, that parametric
pumping of noise by the signal is a significant issue in some systems. For this reason, Hui,
et al. [12], [13] introduced a model, later extended by Pilipetsétial. [14] that takes

into account parametric pumping by treating the signal as a cw wave. Due to difficulties
in carrying out extensive Monte Carlo simulations, this simplified approach is not well-
validated in general.

Systems that suffer from noise are well known in many areas of science. In all commu-
nications systems there is a certain amount of noise that distorts signals during transmis-
sion or storage of information, and therefore limits the capacity [15], [16]. Unless a given
physical system is completely dominated by nonlinearities, perturbation theory based on
the assumption that the noise interaction with itself is negligible is always a powerful
technique for computing error rates. The linearization assumption has been successfully
applied to optical fiber communications and the known results can be divided into several

groups:

e Soliton perturbation theory was applied to transmission with gain and loss, ASE
noise, soliton-soliton interactions, filtering, and synchronous modulation [17]-[20].

However, the results are only strictly valid for classical solitons.

e Standard perturbation theory was applied to an unmodulated (cw) signal [12], [13],

[21], [22].

o Computation of the evolution of noise moments such as timing and amplitude jitter

has been carried out for an arbitrary signal [23].
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However, none of the approaches that have been developed to date are capable of com-
puting the full probability density function (pdf) of the optical noise in the presence of an
arbitrary signal modulation and the pdf of the electrical receiver current. The goal of this

dissertation is to develop a method that

1. linearizes the optical noise propagation in a wide range of transmission systems,

2. yields the accurate pdf of the optical noise over the entire transmission distance,

3. yields the pdf of the electrical receiver current after passing a narrow-band filter,

4. can be easily implemented and is computationally efficient.

| derive such an approach in this dissertation and call it the covariance matrix method.
The approach is capable of computing accurate probability density functions (pdfs) of the
receiver current after narrow-band filtering. With this information, the BER and contour
eye diagrams can then be obtained. | develop two different methods to compute the key
statistical quantity, namely the covariance matrix of the optical noise, and | show that both
lead to a significant efficiency enhancement over traditional Monte Carlo simulations. The
most complex system that | treat in this dissertation is a 10 Gb/s 5-channel WDM chirped
return to zero (CRZ) system, in which | simulate the transmission of 32 bits.

In Chapter 2, | cover some basics of optical fiber communications systems and optical
amplifier noise. | outline different previous linearization approaches in Chapter 3 and
formulate the theory of the covariance matrix method in Chapter 4. | show the results of
calculating the covariance matrix using Monte Carlo simulation techniques in Chapter 5
and using the fully deterministic covariance matrix method in Chapter 6. The work in

Chapter 5 validates the linearization assumption. Chapter 7 contains the conclusions.
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The Appendix contains some mathematical details and a description of the numerical

algorithms.



Chapter 2

Basics of Optical Fiber Transmission Systems

This dissertation is concerned with the nonlinear interaction of optical noise with a sig-
nal and this chapter lays the foundation for the subsequent derivation of the covariance
matrix method. In Section 2.1, | introduce the most important components of a typical
optical fiber transmission system. Section 2.2 contains a brief description of optical noise
sources. | introduce the modified nonlinear Schrodinger equation (NLS) that describes the
evolution of light in nonlinear optical fibers in Section 2.3. Finally, | discuss the effective

nonlinearity in modern transmission systems in Section 2.4.

2.1 Design

Modern optical transmission systems contain a large number of individual optical com-
ponents such as lasers, modulators and demodulators, multiplexers and demultiplexers,
filters, optical fibers, and amplifiers. In addition, there is much electrical equipment at the
receiver, such as photodiodes, electrical filters, amplifiers, and decision circuits. When
simulating these components, the level of detail of the model must be appropriate for

the system under study. For example, optical amplifiers are often modeled by simply
7
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Figure 2.1: Simple optical transmission system.

multiplying the optical field by a factor; | use this method in the simulations for this dis-
sertation. More realistic models can include ASE noise, gain saturation, the gain profile,
polarization hole burning, and transients. The first step of any simulation is to simplify the
transmission system and to restrict the model of the optical propagation to the essential
effects. The nature of the most important effects strongly depends on the type of the opti-
cal system as | will show in Section 2.4, and the effects can be expected to vary when the
data rate is increased. In particular, the amount of nonlinearity has an important impact
on the evolution of the signal and the noise.

Fig. 2.1 shows the schematics of a simple optical transmission system. The optical
signal is generated by a transmitter, and inserted into the fiber. It then passes through
a transmission line that primarily consists of fiber spans and optical amplifiers. At the
end of the transmission line, the signal is optically filtered and enters a receiver, where
it is converted to electrical current by a high-speed photodiode. This current is low-pass
filtered and enters a decision circuit.

In a typical digital optical fiber transmission system, the pulses are either directly
created by an optical laser, or the output of a constant wave (cw) laser is modulated by an
external modulator. | will only consider the case of an intensity-modulated return-to-zero
signal in which a light pulse or “mark” represents a logical “1” and the absence of light or
“space” represents a logical “0”. The pulse stream might then be multiplexed, either by

interleaving pulses in the time domain, called time division multiplexing (TDM), and/or
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by combining channels at different frequencies, called wavelength-division multiplexing
(WDM). All recently-deployed systems employ dispersion management [8], in which the
dispersion varies periodically. Each period consists of a concatenation of several fiber
spans with different local fiber dispersions, and the variation of dispersion in one period
is referred to as the dispersion map.
The systems that | model in this dissertation are depicted in Fig. 5.1 and in Fig. 6.4

and will be discussed at a later point.

2.2 Noise Sources in Optical Systems

All active components in a communications system produce noise that degrades the signal.
These active components include the pulse source, the receiver, and, most important, the
amplifiers. One can distinguish between optical and electrical noise, and this dissertation
will be mainly concerned with the evolution of optical noise. The photodiode and the
electrical amplifiers produce electrical noise, and | will show how it can be taken into
account in principle. In this section, | will first outline a theoretical proof that all optical
amplifiers must produce noise. This discussion is followed by a brief description of noise
creation in the EDFAs.

| define noise as a random fluctuation of a signal that an active compaddstto
the signal Other sources of apparent randomness, such as polarization mode dispersion
(PMD) or a pseudorandom data sequence, are not considered noise. When dealing with
electromagnetic signals, there are two principal sources of noise: (i) shot or quantization
noise and (ii) thermal noise. Shot noise is directly connected to the quanta of the electrical
field, the photons. Thermal noise is caused by the thermal fluctuations in a medium that

for instance manifests itself as Brownian motion. The relative strength of these two noise
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sources in an optical amplifier is given by the rdtio/ k5T, whereh is Plank’s constant,

v =c/\is the frequency of light; is the speed of light; 5 is Boltzmann’s constant, arid

is temperature [3]. AA ~ 1550nm and room temperature, this ratio is about 30, showing

that shot noise dominates, and | will therefore neglect thermal noise in the optical domain.

We may mathematically characterize the light evolution in the fiber as a point in the
phase space that consists of all Fourier amplitudes of the electric field. In principle, this
space is infinite-dimensional, but in practice we restrict it to a finite number of dimensions
by considering a finite time domain and a finite frequency bandwidth. Without noise, the
field evolves along a deterministic path in this phase space. Once we take into account
noise, however, this point becomes a cloud whose volume normalized to the signal in-
creases as the light propagates along the fiber. Quantum mechanics dictates the minimum
noise that an amplifier can add to the signal on average, and this value determines the

minimum increase in the phase space volume.

A single photon at a single frequency occupies a two-dimensional subspace of this
phase space. The minimum area that it can occupy, after an appropriate normaliza-
tion [24], has units of action, which is energy times time. This action can be written as
the product of two conjugate variables such as momentamd positionz, and Heisen-
berg’s uncertainty principle states that this area is quantized in multiplég2yfwhere
h = h/2w. The uncertainty principle is usually expressed in terms of the uncertaiyties
andAz asApAx > h/2. An equivalent way of writing this relation for an ensemble of
photons that propagate in the same direction at the same frequekhefjis> 1/2, where
n is the number of photons that arrive at a detector per time, 27wt is their phase, and
t is time. I now consider an amplifier with power gath Under the assumptions that the
input signal is shot noise limited withnAy = 1/2, that the amplifier contributes added

white Gaussian noise (AWGN) to the signal that increases &nljput notAyp, and that
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an optimized detector is used, Heffner [25] showed that the minimum added noise power

Py may be written,
Py = 3hvB(G-1), (2.2.1)

whereB represents the full width half maximum (FWHM) amplifier bandwidth. One way

to interpret (2.2.1) is to view it as a quantization erro.of 2 in the measurement of the

field intensity at the amplifier input at each frequency during an observation perdgdof
Detailed studies show that the noise in EDFAS is not Gaussian distributed but rather Bose-
Einstein distributed [26]; however, unless the number of photons in the system is small,
the distinction with the usual Gaussian approximation is negligible. That is always the
case in today’s communications systems.

Realistic optical amplifiers produce more noise than the quantum limit (2.2.1), al-
though modern devices do not exceed it by much. In laser amplifiers, the ratio of the true
noise power to the quantum limit is given by tegontaneous emission factog, De-
scribing the physics of EDFAs in detail would exceed the scope of this dissertation, and
| therefore just mention that quantum noise in laser amplifiers is causegddmntaneous
emission where electrons randomly lower their energy state by emitting noise photons.
The EDFA amplifies these photons, giving rise to amplified spontaneous emission (ASE)
noise. In a greatly simplified, two-state model of the erbium, the spontaneous emission
factor is related to the population densitiésand V, of the ground state and excited state
respectively in the erbium-doped fiber by [3]

N,

=—_. 2.2.2
N,— N, (2.2.2)

nsp

Typical values ofnsp are 1.2-2.5. Considering that current optical fibers have almost
reached the physical minimum of the light attenuation due to Rayleigh scattering, the

amplifier gains and, hence, the accumulated ASE noise cannot be reduced very much.



12
2.3 The Nonlinear Schrddinger Equation

In order to study the light evolution in optical fibers, we begin by writing the electric field

in the fiber as [27]

E(r,7) = \/WMe(zp,T)R(x,y) exp [z /()ZPﬁ(wo,zI',)dz;) —iwoer|, (2.3.1)
whereE is the electric field vector in MKS units, while= (x,y, z,) andr are position in
the fiber and physical timeyg ~ 10 Hz is the carrier frequencyy = 8.85x 10712 F/m

is the permittivity of the vacuum, = 2.99x 10® m/s is the speed of light in a vacuum, and
B(wo, zp) is the wavenumber at the carrier frequengy which may vary slowly relative

to the wavelength along the fiber. The coordingteneasures distance along the fiber.

The transverse modal field is normalized so that

/dm/dy Ryl =1 (2.3.2)

whereR | (.. ,) is @ vector obtained by projectirig onto the plane perpendicular to the
propagation direction. With this normalizatidn(z,,t)|? equals the local power. We note
that we are assuming that only one polarization is propagating. From equation (2.3.1) for
the electric field, it is possible to derive the modified nonlinear Schrdodinger equation in

the following form [8], [27],

Ou 1 %u 2 _ ~
ZEJrED(Z)WHu' u=1ig(z)u+F(z,t), (2.3.3)

whereu(z,t) = e(z,t)v/vLp, While v = nowo/(Aesic) is the nonlinear coefficient and
Lp is a characteristic length. The distancés normalized as = z,/Lp. We have
transformed from physical timeto retarded time = 7 — [ 3'(z’)dz’. The quantityn, =
2.6 x 10716 cm?/W is the Kerr coefficient, andle = 30-200um? is the effective fiber

core area. The quantit®(z) = —5"(z)/3; is the normalized dispersion parameter with
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the local dispersio”(z) and a scaling dispersiosfj. The dispersiors” is measured in
units of pg€/nm. The characteristic length, equals?/| 35|, whereTy is a characteristic
time scale. When modeling soliton systems, it is customary tégsetual to the FWHM
soliton duration ands; equal to the path average dispersion, in which dageis the

dispersive scale lengfl8]. The normalized field gain coefficieptz) is

gm(2), 2m <z < zm +Lamp/LD>
9(z) = (2.3.4)

- elsewhere

where g,,, represents the gain coefficient inside theth amplifier normalized by p,

which | assume to begin at= z,, and to be of lengtiLamp, andy; is the normalized fiber

loss coefficient. Since the typical length of an EDFA is only a few meters, the dispersion
and nonlinearity in the EDFA can be neglected and hence amplification and ASE noise

input can be considered as lumped. For later use, | definedhknear scale lengtf8]

L = 7 (2.3.5)

which is the distance over which the nonlinear phase rotation is approxin2ately
Summarizing the meaning of the terms that appear in (2.3.3), the second term on the
left-hand side describes chromatic dispersion, the third term describes the Kerr nonlinear-
ity, and the first term on the right-hand side describes fiber attenuation and gain within the
amplifiers. The last term islaangevinnoise term and the quanti@ represents the ASE

white noise contribution with zero mean
(F(z,t)) =0, (2.3.6)
and the autocorrelation

(F(z,t) F* (2 1)) = 205 (2 — 2 5 (t 1), (2.3.7)
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where

n = nspgmhwol py/To. (2.3.8)

In the test systems that | consider in this dissertatigg~= 1.4-2.0 inside the fiber am-

plifiers andnsp = 0 in the transmission fiber. The angular brackgjsdenote the noise
ensemble average, and the asterisk denotes complex conjugation. Equation (2.3.3) can
be extended to include effects such as higher-order dispersion, saturated absorption, and
Raman and Brillouin scattering [27]. However, saturable absorbers are not used in the test
systems that | study, while Raman and Brillouin scattering effects are small and can be
neglected. Muet al. [28], [29] showed that third-order dispersion does not have a strong
impact on the pulse propagation in the DMS system and the CRZ system that | simulate

in this dissertation. | solve (2.3.3) using a standard split-step approach [8].

2.4 From Solitons to Quasilinear Systems

When damping, noise, and thevariation of the dispersion relation can all be neglected,

the nonlinear Schrédinger equation (2.3.3) is integrable, and it possesses a set of closed-
form solutions calledsolitons[30]. Solitons were originally defined as solitary waves

that do not change shape in a collision, while their phases and temporal positions un-
dergo an offset. We note that solitary waves are wave packets that propagate without
changing shape except possibly in collisions with other entities. So, the original defini-
tion of solitons was highly restrictive. Over time, this definition has evolved in the optical
communications community so that now virtually any return-to-zero pulse is called a soli-
ton [29], [31]. In this section, we will use the original, restrictive definition.

The solution for a single soliton of peak pow@yeaxand duratioriy in a lossless fiber
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with a constant anomalous dispersioff & 0) of
3" = —Ppeay A2 (2.4.1)
is [20]
us(A,7,®,Q;t,2) = Asec At — 7(2)] } exp{i[®(z) — Q1] }, (2.4.2)

with the four parameters

A:  soliton amplitude and inverse duration,
Q: central (angular) frequency offset relative.ig,
®: soliton phase,

71 soliton center in time.

The quantitiesA and Q are arbitrary constants, while and ® depend onz and

satisfy the relations

7(2) = 710—Qz, (2.4.3a)
P(z) = Do+ 3(A%2—Q?)z, (2.4.3Db)
whererg = 7(0) and®g = ®(0). The soliton energy is proportional to
o0
B, = / |ug|?dt = 2A. (2.4.4)
—o0
Higher-order solutions called “breathers” exist whose shape oscillates in time.
Because the first-order soliton (2.4.2) is localized in time and space, it is analogous to
a particle that is described by the four parametelrs, ®,Q). The mechanism that keeps
the soliton stable is the balance between dispersion and nonlinearity: The dispersion tends
to spread the pulse in time, while the nonlinearity tends to compress it due to self-phase

modulation (SPM). These two forces neutralize each other if the pulse shape is given by
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(2.4.2), and the shape remains constant while propagating in a lossless waveguide. As
noted earlier, solitons pass through each other without changing their shape. They merely

shift their central times and phases.

Mollenaueret al. [32] demonstrated in 1980 that it is possible to transmit solitons
in optical fibers over large distances. The loss in optical fibers can be compensated by
optical amplifiers such as EDFAs or Raman fiber amplifiers. However, as mentioned in
Section 2.2, amplifiers also add noise to the signal and distort the pulse shapes. Both the
soliton shape and its four parameters are affected by noise, and I will outline a soliton
perturbation theory in the next chapter that describes these distortions in the case of small
noise. Of the four soliton parameters, the change in the centraktisméhe most severe
at the receiver and leads timing jitter, giving rise to bit errors. After passing through
an EDFA, the central time of a soliton will have shifted slightly. Moreover, the central
frequencyQ will have changed by a small amount. The latter effect, by means of (2.4.3a),
in turn induces a shift in the central time in the subsequent propagation. This effect was
described by Gordon and Haus in 1986 [17], [19]. The Gordon-Haus timing jitter is a
severe impairment in soliton systems. | note that a analogous discussion apphes¢o
jitter, which is enhanced by fluctuations in the soliton eneigyWhile phase jitter is
irrelevant in direct-detection receivers that | consider in this thesis, it is relevant in the

context of the covariance matrix method, and | will elaborate on this issue later.

Since ASE noise is additive rather than multiplicative, one can in principle try to in-
crease the soliton energy, but (2.4.2) shows that an increadeaiso leads to shorter
pulses. These pulses are harder to make, are more susceptible to modulation effects
like the Raman self-frequency shift, and require more bandwidth per wavelength channel.
Fortunately, a technique called dispersion management, in which the fiber with constant

anomalous dispersion is replaced by fiber spans that alternate between ngtmad)
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and anomalousX’ < 0) dispersion, can effectively reduce the nonlinearity of the soliton
and thereby reduce the impact of noise. This method permits one to increase the soliton
peak power by an amount known as #mergy enhancement fac{@3], [34]. In this case,
the pulse shape deviates from the soliton shape (2.4.2) and is closer to a Gaussian shape.
Moreover, the pulse shape is not constant, but it varies periodically with the period of the
dispersion map (periodically stationary) or even with the period of the entire propagation
distance. An additional advantage of dispersion management is that in a multi-channel
or wavelength-division multiplexed (WDM) system, pulses in neighboring channels pass
through each other rapidly, although repeatedly, which reduces and average the impair-

ment due to nonlinear channel crosstalk.

Using dispersion management, it is possible to reduce the path average dispersion. If
one reduces the peak power at the same time, one can approach the linear transmission
regime, where the fiber acts as a linear waveguide. In the limit where nonlinearity is negli-
gible, the accumulated dispersion at the receiver is zero, and noise is absent, one finds that
any pulse shape is preserved. Traditionally, the non-return to zero (NRZ) modulation for-
mat has been popular in the communications community because the pulses are relatively
easy to generate, and because it is spectrally efficient, which means that at a given data rate
it occupies less bandwidth that other easily produced modulation formats [31], [35]. How-
ever, in 1996, Berganet al. [36] showed that the transmission quality can be improved
by subjecting the NRZ signal to a bit-synchronous phase modulatiohigr. Applying
chirp reduces the spectral efficiency, but it was found that the error-free transmission dis-
tance could be increased in some cases. Another consequence is that the optical power
at the receiver appears in the form of separated return-to-zero (RZ) pulses. This develop-
ment led to the implementation of chirped RZ (CRZ) modulation, one of the modulation

formats that | will study in the simulations in this dissertation.
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All commercial and almost all academic optical transmission systems to date employ
pulse formats that fall somewhere in the middle between the classical soliton and the
linear regime. In fact, it is possible to go continuously from one limiting case to the
other, and it is hard to distinguish wavelength-division-multiplexed (WDM) dispersion-
managed soliton (DMS) systems, where the pulse shapes do not repeat periodically, from
CRZ systems [31]. Both operate at per-channel peak powers of a few mW and are called
“quasilinear.” Periodically stationary DMS systems [37] form a class by themselves as
they operate at higher peak powers of a few mW and above and are significantly nonlinear
in the sense that the solitons would spread dispersively in the absence of fiber nonlinearity.
As | will show in subsequent chapters, this significant nonlinearity is a challenge and

stringent test for the covariance matrix method that is described in this dissertation.



Chapter 3

Transmission Linearization

3.1 Introduction

The covariance matrix method that | describe in this dissertation can be divided into two

steps:

1. the computation of the covariance matrix that describes the accumulation of ASE
noise from the optical amplifiers and its evolution due to optical fiber nonlinearity,

and

2. the computation of the pdf of the electrical current in the receiver after a photodiode

and an electrical filter.

As | will show in the next chapters, the first step, in which we treat transmission through
an optical fiber with a series of erbium-doped fiber amplifiers along the path, is amenable
to a linearization approach that assumes that the nonlinear interaction of the optical noise
with itself in the fiber is negligible once phase jitter and, in some cases, timing jitter are

separated. By contrast, the noise interaction with itself in the receiver cannot be ignored.
19
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The aim of this chapter is to describe some of the previous work that was done on trans-
mission linearization and to outline the limitations of the linearization approach.

As | noted in the Introduction, most of the previous work on optical transmission lin-
earization falls into one of three categories: One is soliton perturbation theory, described
in Section 3.2, and the second may be cattedlinearization described in Section 3.3.

The two categories differ in the zero-order signal about which the noise fluctuates; in
the first case it is the standard soliton, and in the latter it is cw (continuous wave) ra-
diation, which is unmodulated light. In both cases, the simple form of the zeroth-order
signal makes it possible to use analytical approaches, which cannot be used with the mod-
ulation formats that are currently employed in communications systems. Nevertheless,
both cases yield important insights. The third category was recently pioneered by Grigo-
ryanet al.[23], who have shown that important scalar noise moments such as amplitude
and timing jitter can be derived by linearizing around an arbitrary signal, and | briefly re-
view the results in Section 3.4. Finally, | discuss the limits of linearization in Section 3.5.

The starting point of the linearization approach is the nonlinear Schréodinger equation
(2.3.3). One can decompose the noisy optical signal ug+ du as a sum of a noise-
free signal,up = (u), and accumulated transmitted noise, The accumulated noise
is the sum of all the individual contributions and experiences nonlinear interaction with
the signal, as well as dispersion, attenuation, and amplification. The angular bragkets
denote the noise ensemble average. The difference of (2.3.3) and the statistical average of

(2.3.3) then yields the evolution equation for

[00u Do
0z 2 0t?

where the terms that are quadratic and third ordérirdescribing the optical noise-noise

+ 2 |ug|? Su + ud(u)* = igdu+ F, (3.1.1)

interactions, are omitted. The third and fourth terms on the left-hand side stem from the

nonlinear termu|?u in (2.3.3) and describe the interactions of the noise-free siggal
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with the noiseyu. The term2|uo\26u leads to a phase rotation that can be regarded as a
cross-phase modulation (XPM) betweeyandiu. The termug(éu)* describes an energy
exchange betweeiy anddu. Sincelu(2)| > |du|?, energy mainly flows from the signal to
the noise and leads fmarametric growthof the noise, an effect that | will describe in
Chapters 5 and 6. Parametric gain can be viewed as a four-wave mixing (FWM) in which
the annihilation of two signal photons af create two noise photons @t andwg, SO
thatws = 2w1 — w3 [8]. The energy conversion process is most efficient if the frequency
mismatchlwi — w3| = w1 —wal is small. We note that the linearized NLS (3.1.1) depends
on bothju as well as on its complex conjugdte:)*. As a consequence, (3.1.1) is not self-
adjoint, which substantially complicates the solution, as | will show in the next section.

By contrast, the original nonlinear equation (2.3.3) is self-adjoint.

3.2 Soliton Perturbation Theory

Soliton perturbation theory describes the stability of a soliton in the presence of small
perturbations and was derived and frequently used between the 1970s and the 1990s. The
mathematical theory is beautiful, but somewhat complex, and even a summary of the re-
sults tends to be lengthy. However, soliton perturbation theory is the key to understanding
the jitter in optical systems, such as Gordon-Haus timing jitter [17], [19], and is a prereg-
uisite to subsequent chapters.

| quote results from the papers by Georges [20] and Kaup [18], but mainly follow
lannone [38]. The perturbed NLS is

— =—-—5+i P 3.2.1
0z 2 0t2 Filulu P, ( )
where P is a small perturbation. The exact solution of the unperturbed NS Q) is

known. | now setu = ug+ duexp(iA2z/2), whereug = u; = us(A,7,®,Q;t,2) is the
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soliton solution (2.4.2). The first-order perturbation expansion is then

ddu

— = P 2.2
o L[éu]+ P, (3.2.2)
where/ is a linear operator given by
L[ou] =i 3f+2| |2—}A2 ou + iud(ou)* (3.2.3)
u| = 5912 uQ 5 U+ U . 2.

Any perturbationP can now be expanded in the spectrunCothat is, decomposed into
a sum of multiples of the eigenfunctions 6f The expansion coefficients then yield the

perturbations of the soliton parametérs, 7, ®, Q} to first order. First, | define the scalar

product
(9.h) = Re /_ ¥ G(Oh*(#) dt = Re /_ Y g dt. (3.2.4)
and the adjoint operatal
(Llgl, f) = (9. LIf]), (3.2.5)
note thatL[if] = —iL[f]. Similar to the spectrum of the stationary eigensystem of a

hydrogen atom [24], the spectrum 6f consists of discrete (bound) modes and a con-
tinuous part. The discrete part has four modes, one each for the four soliton parameters
A, ®, Q, andr, in contrast to the hydrogen operator that has a countably infinite number
of bound states. However, there are two complications: Hirs, not a unitary operator

so thatLL +# 7, whereZ is the identity operator, implying that the eigenvectorsCado

not form a single orthonormal basis, but rather there are “left” and “right” eigenvectors.
Second /£ has a zero eigenvalue. | denote the four discrete generalized eigenfunctions of

L by fa, fo, fo, andf,, and analogously the generalized discrete eigenfunctiofidyf
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fa, fo, fo, andf,. These functions satisfy

Llfal = —iAfs=Afo, (3.2.6)
L[fo] = 0, (3.2.6b)
Llfa] = —iAfq=fr, (3.2.6¢)
Llf;] = 0. (3.2.6d)

The identitiesC[fo] = 0 and L[f;] = 0 are manifestations of the phase invariance and
translational invariance of the NLS respectivklne eigenfunctions satisfy the orthonor-

mality relations

(fi. fj) = dij, (3.2.7a)

wherei,j = A, ®, Q, 7. The remaining products até 4, f1) = (fo, fo) = (2/34)(1+

72/12), (fo, fo) = (Fa,fa) = 24, (fa, fa) = A%(f,,[,) = =%/ (6A), and (f, f-) =
A?%(fo, fa) = 243/3. The explicit form of the eigenfunctions dfis

f1 = —ifq,:%{1—A(t—T)tanh[A(t—T)]}us, (3.2.8a)
Jo = ifs=1us, (3.2.8b)
fa = —iAf,=—i(t—T)us, (3.2.8¢c)
fr = iAfq= AtanhA(t — 7)) us, (3.2.8d)

Lf u(z,t) is a solution of (3.2.1), theexp(iy)u(z,t) andu(z + 2/, t +t') are solutions as well.
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and the generalized eigenfunctionsére

fa = —ifo=us, (3.2.9a)
To = z’fA:%{1—A(t—r)tanh[A(t—T)]}us, (3.2.9b)
Fq = —%fT:—itanh[A(t—T)]us, (3.2.9¢)
fr = %fozt%us. (3.2.9d)

Any accumulated noiséu can be expanded as
ou= fa0A+ fod®+ (fo —7f0)0Q+ fro7 + 0uc, (3.2.10)

whered A, 0P, 6Q,andiT denote deviations in the four soliton parameters, @ands the
residual or continuous part of the noise that is orthogonal toffree that(f;, du.) = O.
The residual noise disperses out as the soliton propagates and does not interact with the
soliton to first order. With the help of the projections of the perturbaiiam thef;, one

can derive the following differential equations for the four parameters

% — (PT), (3.2.11a)
% _ (p,7¢)+A2;QZ+T%, (3.2.11b)
Z_f — (P.Fo), (3.2.11c)
% — (PF.)-Q (3.2.11d)

Let us now assume that the perturbatiéns due to ASE noiseP = F and consider

the projection
Ey=(f;,F). (3.2.12)
Since the noise components satisfy (2.3.7)
(F(z,t)) = 0, (3.2.13a)

(F(z,t) F* (2 t)) = 2pd(2—2")o(t—1), (3.2.13b)
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wheren = nspgmhwoL py/To as defined in (2.3.8), one can infer that

) = (Fi(F)=0, (3.2.14a)
(B Yy = ((Fu, YT B))y =n(fi. fy)- (3.2.14b)
Inspection of (3.2.7b) shows that the only non-zero correlations a(éfhk’-), and hence

the perturbations in the four soliton parameters are uncorrelated if they are driven by white

noise. The four variances of the projections are

(Fa)?) = 2nA, (3.2.152)
~ 2y 2nA

((Fo)%) = =5~ (3.2.15b)
) 2

(F)?) = & (3.2.15¢)

((Fp)?) = ﬁ(lﬁr—z) (3.2.15d)
®/ T 34 12)° e

With these expectation values, (3.2.11a)—(3.2.11d) can be solved to yield

(6A(2)%) = ((Fa)?)2, (3.2.16a)
(6Q(2)%) = ((Fa)?)=, (3.2.16b)
3
(60(2)%) = <(“¢)2>z+<(ﬁA)2>A2%, (3.2.16¢)
~ A 23
(07(2)%) = ((F)*)2+{(Fa)*) - (3.2.16d)

All four parameter variances contain a part that grows linearly over distance with a mag-
nitude that is determined by the projection of the noise on the adjoint eigenfunction. The
linear growth of the variances is the power law of a one-dimensional random walk [39].
However, phase jitter is also driven by amplitude jitter, and timing jitter is also driven by
frequency jitter. These indirect effects become stronger than the direct perturbations of
the phase and the central timezasecomes large. Equation (3.2.16d) states that the tim-

ing jitter of an unfiltered classical solitomf(z)2>l/2, grows proportionally ta:3/2 for
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large z, the well known result first derived by Gordon and Haus [17]. Besides the timing
jitter that is induced by frequency shifi®, there is a direct shift in the central time whose

standard deviation grows a&'2. The ratio of the two contributions to the variance is [38]

((F?)2* _ 4 5.4

3<(ﬁ7)2>z =3 (3.2.17)
If one requires that this ratio be larger than unity, one arrives at the conditisr2. 72 Ly,
where Z is transmission distance in meters abgl = 1/(vFpear iS @ nonlinear scale
length of the soliton (2.3.5). With typical valuesof= 2.1(W-km) ! and Pyeak= 8 mW,
one obtaingZ > 160km, which is small compared to the typical transmission distance in a
soliton system. This comparison shows that it is sensible to assume that timing jitter grows
like 23/2 in unfilteredoptical communications using solitons. This large timing jitter poses
a serious problem in soliton transmission systems. The phase(jittétz)2>l/2 grows in
an analogous way, except that the jitter is proportional taot A%/2 as in the case of the
timing jitter. These large growth rates are another manifestation of the phase and timing
invariances of the NLS. The distance at which the cubic and the linear contributions to
the phase jitter in (3.2.16c) equal each otheX' is 1.35L ~ 80 km.

| now revisit equations (3.2.11a)—(3.2.11b) and try to interpret their meaning in the
context of noise. They state that the deviation of the four soliton parameter contains the
projection of the noise onto the eigenfunctio(rf§>. All of the adjoint eigenfunctions
£, are proportional tau(t, z) multiplied by a bounded or a linear function. They are all
localized in time since se¢h decays rapidly toward infinity. According to Parseval's
theorem, the projection or scalar product between two functighsand i(t) can be
written as

(9.h) = / T mdi= = [ 5w () do, (3.2.18)

o 2r J_
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where the asterisk denotes the complex conjugate and the tilde denotes the Fourier trans-
form. Applying (3.2.18) to (3.2.11a)—(3.2.11d) shows that only the frequency components
of the noise that overlap with the spectrum of the eigenmodes are relevant. This result is
well known and can be applied to all signalg(t, z). As a consequence, it is sufficient
to focus on the range of the noise spectrum where the signal spectrum is nonzero. Other
noise components do not interact with the signal in the fiber to first order. Solitons with
short duration, corresponding to large valuesiphave a wider spectrum and hence in-
corporate more noise. (I note that this rule does not hold at the receiver, which includes a

square law detector.)

This reasoning leads to the natural question of how many modes are relevant in soliton
perturbation theory. | note that the following discussion is approximate and qualitative.
Suppose one samples the functies(t) so that it is represented hy samples in the
range+T;/2, whereTs = pTrwnm iS @ multiple of the full width soliton duration at half
the peak power. If one requires that a discrete Fourier transform yeddmples that lie
in the ranget B, /2, with B; = p Brywnm With the FWHM soliton bandwidttBewm, one
obtains the relatiodV = T, B, = p*TrwnmBrwhm = 0.63p2. If one choose§, and B,
so that the soliton power does not exceed 1% of its peak value outside the time interval of
—T,/2 <t <Ts/2and outside the frequency interval-e3, /2 < f < B,/2, one obtains
p~34andN =~ 7.3, where | take advantage of the fact that the Fourier transform of
the sech-function is again a sech-function. Thus, a small number of modes, only 7-8,
suffices to simulate a soliton in the presence of noise. The above Fourier decomposition
with a period ofTs corresponds to an infinite train of solitons and if this signal passes
an EDFA, it follows from (2.2.1) that the noise powgiv B, (G — 1)nsp will be added to
each soliton. If, on the other hand, one neglects the soliton overlap in the tails and applies

soliton perturbation theory to the solitonat 0, then the four soliton eigenmodégg,
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fo. fr, and fq will each receive an average energy%jtyBs(G— 1)nsp as well. The

rest of the noise energy that overlaps with the central soliton in both the time and the
frequency domains has approximatély— 4 times as much power as any of the discrete
modes receives. Hence, one can decompose the ASE noise into three parts: a first part
that perturbs the soliton parameters, a second part consisting of the portion of the noise
continuum that overlaps with the soliton in both frequency and time, and a third part that
neither perturbs the soliton parameters nor overlaps with the soliton. The first two parts

receive about equal energy.

To summarize the results of soliton perturbation analysis, one finds that a perturbation
to the soliton, such as ASE noise, causes the four soliton parameters amplitude, frequency,
central time and phase to fluctuate. The rest of the noise produces a radiation continuum
and disperses. Noise can be expanded into the four eigenfunctions and the continuum,
and the parameter perturbations are given by the projections of the noise on the adjoint
eigenfunctiong‘;. Although this dissertation does not deal with standard solitons, these
gualitative observations will be of importance in the remainder of this chapter and in the

next chapter.

3.3 CW Linearization

In addition to linearizing the NLS around a zeroth-order soliton solution, the NLS can
be linearized around a constant power solution. In this case, the theory is quite simple.

Starting with the lossless NLS,

Ou B 0%u

2
— - =0 3.31
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and linearizing around an unmodulated signal, or cw radiation of p&y¢8], [40], we

write,

ult,z) = [ Po+a(t,z)] exp(ionr), (3.3.2)

wherea(t, z) is the time-dependent perturbation. Equation (3.3.2) solves (3.3.1) with the
nonlinear phase rotatiopy;, = Pyz. Without going into the details of this calculation, |
will just state that one obtains a linearized NLS &t =) similar to (3.1.1). Upon making

a plane-wavansatzof the form
a(t,z) = apexpli(kz —wt)], (3.3.3)

whereag is a complex number, one obtains the dispersion relation

k= £3|8"|wy/w?+sgnB")w2, (3.3.4)

wherew. = 4/(|8"|Lnr) with Ly, = 1/(~Pp). Equation (3.3.4) shows that the stability

of the perturbed system depends on the sig’oflf the dispersion is normal3’ > 0),

then the wave numbér will be real for allw, resulting in a noise radiation (3.3.3) that

is stable in the presence of small perturbations. However, if the dispersion is anomalous
(3" < 0), thenk becomes imaginary far < w,., and the perturbation grows exponentially
with z. This instability is called thenodulational instabilityand implies that cw radiation

in an optical fiber with anomalous dispersion will eventually break up and form a periodic
pulse train, along with background radiation. The gain spectrum of the modulational
instability induced by a cw peak consists of two symmetric sidelobes with their maxima

offset bywmax= = (2vPo/|3") Y2

and the valugmax = 2vF [8].
The discussion above provides neither for amplification and attenuation, nor for vari-
able dispersion. Huet al. [12], [13] removed this limitation by dividing the simulated

transmission path into pieces and applying the cw linearization separately. The result
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for constant dispersion confirms the simple calculation in (3.3.1)—(3.3.4) by showing that
sidelobes are only produced in the presence of anomalous dispersion. The presence of
a strong signal leads to noise growth in the wavelength vicinity, and the additional gain
that the noise experiences is calfgrametric gain8]. The computational method starts
with the linearized NLS (3.1.1) and its complex conjugate. This system of equations is
then solved for each fiber span by multiplication with a transfer matrix, where the matrix
depends on the locally constant fiber parameters and signal power. In this work, the noise
is represented by a vector containing the values of the discrete noise spectrum. More-
over, Huiet al. [12], [13] considered dispersion-managed links and the optimization of
dispersion maps to reduce the total noise in a single-channel system.

Hui’'s analysis was extended by Bosebal. [21] and Carenat al. [22] to WDM
systems, who also computed the pdfs of the receiver current and the BER. They split the

noise into its in-phase and quadrature component(s, ) anda,(t, z)

ult,?) = [\/Fo Fap(t,2) +iag(t,2)| explion). (3.3.5)
Bosco and Carena implicitly assume thgtanda, are Gaussian distributed and consider
the autocorrelation&,a,) and(a,a,) and the crosscorrelation§,a,). They show that
the growth ratio ofz, anda, depends on the fiber dispersion. In normal dispersive fiber,
the quadrature component grows much faster than the in-phase component [41]. The in-
phase noise component distorts the signal power, while the quadrature noise component
leads to phase noise that is irrelevant in systems with square-law detectors that are used
in the vast majority of all experimental and commercial systems. The reduction of the
in-phase noise component at the expense of the quadrature noise component is called
noise squeezingt2] and can indeed improve the BER, but is very difficult to achieve in
long-haul WDM systems.

In conclusion, the cw linearization approach shows that the stability of noise growth
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depends critically on the fiber dispersion. However, linearizing around cw radiation im-
plies that the signal-noise interactions in the presence of a modulated signal cannot be
calculated. Pilipetskiet al.[14] report on a method in which they apply the noise statis-
tics computed in a cw linearization to the noise-free modulated signal, but this method
obviously does not properly take into account the nonlinear signal-noise interaction dur-

ing the transmission, and it is not well-validated.

3.4 Noise Moments

Considering a single pulse, the most important moments are the pulse énelgycen-

tral timet,, and the central frequendy,,, defined as

Thit

U = / lu|?dt, (3.4.1a)
0
1 [Thoit

t, = —/ tlul?dt, (3.4.1b)
U Jo
1 [ 1 Thit

Q, = —/ w[ﬂ(w)|2dw:—lm/ ujudt, (3.4.1c)
UJ_ s U 0

where Tyt is the inverse of the data raté(w) is the Fourier transform of. = u(t),
andu; = Ju(t)/0t. In the case of the soliton, = us(A,a,P,w;t,2), U =24, t, =T,
andQ, = Q.

As | discussed in the last two chapters, one would like to linearize around a com-
putationally determined solutiomy of the signal. Grigoryaret al. [23] generalized the
Gordon-Haus result in 1999 to arbitrary signal shapes and extended the analysis to differ-

ent kinds of jitter. They found that the deviation fandQ,, with distance is given by
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projections of the noise on the field

atp 7/ Tblt A* * 2

e DQ,+ ; (t—tp) (uF* —u*F) dt, (3.4.2)
dQ, iQ, Toit . 1 [Thoit . N

= = £ F*"—u*F)dt — = F*—uiF) dt 3.4.3
iy U Js (u U ) U/o (Ut Uy ) ) ( )

whereD is the local dispersion. Linearizing the propagation equation around an arbitrary

field u, one can now numerically compute the evolution of the timing jitter
1/2
2
o= ((2) - (tn)°) (3.4.4)
and the frequency jitterg = <((5Q)2>1/2. Grigoryanet al. [23] successfully applied this
method to DMS, RZ, and NRZ systems.

3.5 Limits of Linearization

What lies beyond linearization? Is it possible and is it even necessary to derive results
for transmission systems in which noise-noise interactions are relevant? Mecozzi [43] has
taken an interesting approach by neglecting the dispersion terms in the NLS and, using
It6’s formalism [44], derives exact expressions for arbitrary field averages of the form
(u(t,z)™ (u*(t,2))™). | note that neglecting the dispersion is a very strong simplification,
and hence the resulting equation describes a system which is significantly different from a
realistic optical communications system. Mecozzi is able to define characteristic distances
that define two regimes of propagation, a linear regime where the noise is additive, and
a nonlinear one where significant signal-noise interactions occur. Moreover, he shows
that the signal spectrum broadens due to SPM and the signal-noise interactions add a
noise background to the signal spectrum. However, the results are strongly limited by the

constraint that the dispersion equals zero.
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A traditional method for obtaining the full pdf of the optical noise at the receiver is
to run Monte Carlo simulations that pick random noise realizations and hence sample the
noise ensemble. From this noise distribution, one can then calculate the distribution of the
receiver current. This method is robust and works in principle in all settings, including sit-
uations with strong amplifier gain saturation, frequency-dependent dispersion, and strong
nonlinearity. This method can handle arbitrarily strong pulse distortion, including com-
plete pulse breakdown. In addition, it is easy to program. If a system is to be investigated
in a significantly nonlinear regime, then Monte Carlo simulations might be one of the few
possible options. However, | will show in the following chapters that the linearization
assumption is valid in a soliton system, whose error-free (BER <) transmission dis-
tance is hundreds of times larger than the nonlinear scale length, once phase and timing
jitter are properly treated. Consequently, | claim that linearization is capable of describ-
ing the noise evolution in a wide range of transmission systems—probably any practical

system.



Chapter 4

Statistics of the Noise Evolution

4.1 Theoretical Foundation

In this chapter, | describe a covariance matrix method that yields a complete and accurate
statistical description of the optical noise at the end of the transmission line. In Sec-
tion 4.6, | develop exact equations to compute the pdf of the received current from this
information. The only limitation of the procedure is that the noise-noise interadtidhe

fiber are neglected in an appropriate basis set in which phase and in some cases timing jit-
ter are separated. The receiver contains a square law detector and hence it is substantially

nonlinear. Hence, we retain noise-noise terms in the receiver.

The utility of the linearization assumption stems from two key mathematical results.
The first is the Karhunen-Loeve theorem [45], which states that a combination of signal
and noise over any finite time can be expanded in an orthonormal basis whose coeffi-
cients are independent random variables. When the noise is white, any orthonormal basis
will satisfy the Karhunen-Loéve theorem. In optical fiber communications systems, the
ASE noise is effectively white when it is contributed by the amplifiers, but it only re-

mains white for short distances over which the nonlinear interactions between the signal
34
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and the noise can be neglected. Over longer distances, the noise becomes correlated, and
the Karhunen-Loéve basis becomes unique and distance-dependent. The second mathe-
matical result is Doob’s theorem [46], which states that when the system is linearizable
and driven by Gaussian-distributed noise, each of these independent random variables is
Gaussian. Thus, it suffices in principle to determine the Karhunen-Loéve modes, as well
as the mean and variance of its coefficients, to calculate the effective noise pdf! | em-
phasize that this powerful result allows the signal to interact nonlinearly with itself and
with the noise; it only requires that the noise not interact with itself. In practice, one must
use an approximate static basis from which to compute the Karhunen-Loéve modes. The
choice of this basis set is important. The linearization assumption may hold in one basis
set and not in another. As we will see, it is necessary to use a basis set in which the phase
jitter, and in some systems also the timing jitter, are explicitly separated. Otherwise, the

linearization assumption only holds for short distances.

The study of the dispersion-managed soliton (DMS) system that | introduce in the
next chapter and in [47] shows that it is possible to use the linearization assumption to
calculate the effects of accumulated noise. However, this assumption breaks down after a
short propagation distance, unless the phase and timing jitter are handled separately from
the other noise components, as | show in Section 4.3. This separation is necessary be-
cause the nonlinear equation that governs the fiber transmission (2.3.3) implies that small
amounts of amplitude and frequency noise can lead to large amounts of phase and timing
jitter respectively, which invalidates the linearization assumption. | have discussed the
relationship between the parameter perturbations in Section 3.2 for a standard soliton, but
the qualitative behavior remains the same for arbitrary pulse shapes. As stated previously,
the nonlinear propagation equation is also phase and time invariant, which implies that

phase and timing jitter can be separated from the standard Fourier basis without affecting
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the subsequent evolution. We will find that it is necessary to separate the phase and timing
jitter separately for each pulse, in which case the phase invariance no longer strictly holds.
However, it holds sufficiently well for the linearization to remain valid over the distances
of interest. Once phase and in some cases timing jitter are separated, the coefficients of
the modified Fourier basis, along with the phase and timing jitter, remain multivariate-
Gaussian distributed far longer than the original Fourier coefficients [47]. | note that the
phase is only Gaussian distributed if one tracks the phase change on the infinite line. If one
only tracks it in the rang@, 27|, then it is Jacob® function distributed. This function is
the periodic analogue of a Gaussian distribution. Therefore, soliton perturbation theory is
a special case where the expansion of optical noise into discrete modes and a continuum
is appropriate, rather than an expansion in the usual Fourier basis [18]-[20], as shown in
Section 3.2. | validate this assumption using extensive Monte Carlo simulations.

| note again that the approach assumes that noise-noise interactions in an appropriate
basis set are negligible during the transmission, but | take them into account in the receiver,
which | also assume has a realistic, narrow-band electrical Bessel filter. Thus, the work
presented in this dissertation is a generalization of [48], in that the noise that enters the
receiver is not white, but is determined by the actual transmission, and | apply realistic
electrical filtering.

The optical noise in a wide range of optical transmission systems is multivariate-
Gaussian distributed with zero mean, after the phase and timing jitter are separated. This
pdf only depends on the covariance matrix of the noise. | present two ways to compute

the covariance matrix:

1. First, itis possible to run Monte Carlo simulations and average the results to approx-
imate the covariance matrix. In essence, one fits a multivariate-Gaussian distribu-

tion to the optical noise immediately prior to the receiver using a Monte Carlo simu-
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lation, after separating the phase and timing jitter. This procedure is self-validating
and relatively simple to program, but requires on the order of 2000 noise realiza-
tions, as | will show in Chapter 5. However, this approach makes better use of
the simulation data and yields more accurate results than traditional Monte Carlo

simulations with the same number of noise realizations.

2. In Section 4.4, | derive an ordinary differential equation (ODE) that allows me
to propagate the covariance matrix deterministically from amplifier to amplifier,
a much more computationally efficient method than running Monte Carlo simu-
lations. | refer to this approach as the covariance matrix method, and | use it in

Chapter 6.

The entire discussion in this dissertation applies to one optical polarization only, which
is appropriate for the example transmission systems that | am using [28]. Moreover, this
choice somewhat simplifies the theoretical development. There is no reason to doubt that

the covariance matrix method can be extended to take polarization effects into account.

The remainder of this chapter is organized as follows: | derive the theory of the lin-
earization approach and define the covariance matrix in Section 4.2. The separation of
phase and timing jitter and the computation of the covariance matrix from Monte Carlo
simulations are described in Section 4.3. A deterministic computation based on the ODE
is described in Section 4.4. Section 4.5 is devoted to saturated amplifiers in the context of
noise linearization. In Section 4.6, | describe how the pdfs of the receiver current and the
accurate BERs are computed. Finally, in Section 4.7, | consider the computation of the

BER in systems with multiple bits.
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4.2 Noise Covariance Matrix

The starting point is the system of equationsidfganddu as shown in the previous chapter

Oug  D(2) %ug

2 :
= 4.2.1
Y. o o Tlwoluo = ig(z)uo, (4.2.1a)
adu D(Z) 825u 2 2 * ~
It + 2|uo|“du+ug(ou)* = ig(z)du+F, (4.2.1b)

where (4.2.1a) describes the evolution of the noise-free solug@amd (4.2.1b) describes

the accumulated noise éfu < ug. The signak,g must be known when solving (4.2.1b)
and in practice it is most convenient to solve both equations in parallel. Note that | neglect
any influence obu onug. Considering all the terms in the Kerr nonlinearity of the NLS

with u = ug + du,
|u|2u = |uo|2u8+2|u0|25u+u%5u* +ud (6u)? + 2ug |5u|2+ |5u|25u, (4.2.2)

one finds the second and third terms on the right-hand side of (4.2.2) that appear in
(4.2.1b). The fourth and fifth terms on the right-hand side are lineafiand repre-

sent the next order beyond noise linearization. The dém‘?éu is cubic indu and can

be expected to contribute least. The tez@(éu)z describes the depletion af due to

the four-wave mixing with the noise, and the te2my |c5u|2 describes a cross-phase mod-
ulation of the signal due to the noise. These two terms can in principle be included into

(4.2.1a), which is the statistical average of (2.3.3)fef ug — du, yielding

Oug  D(z2) 0%ug
9. T2 o

+ Juo|?ug = ig(2)up — 2ug <\5u|2> — ug <((5u)2> : (4.2.3)

The averageg|éu|®) and ((5u)?) could be obtained by solving 4.2.1b, in which case
the equations (4.2.3) and (4.2.1b) would form a mutually dependent equation system.
However, if second-order terms become relevant, the linearization assumption is invalid

and optical noise will not be Gaussian distributed anymore. | neglect the influedee of
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onug by solving the system (4.2.1a), (4.2.1b), and | show that the linearization assumption
holds in an appropriate basis set for highly nonlinear optical fiber transmission systems.

One can expandy(t) andéu(t) as Fourier serie$,

Negr/2-1

uo(t) = Z Ap(2) expliwnt), (4.2.4a)
n=—NFFT1/2
Nepr/2-1

su(t) = Y an(z) expliwnt), (4.2.4b)

n=—NgF1/2
whereT is the period Neget is the number of sample points in the Fourier transform, and
wn, = 2mnTo/T. Typical values ofVget are powers of 2 such as 1024, 2048, and 4096.
The values ofl” and Nggt are chosen so that the simulation result does not change when

either one is increased. After substituting (4.2.4a) and (4.2.4b) into (4.2.1b), one finds that

dak D 2
- (g_lfu)k>ak
Nrrr/2-1

+1i Z |:2An A}k am 5n—l,l€—m+An A a:n 6n+l,k+m _Zrk(20425)
n,l,m=—Ngpt1/2

where thd ;. are the Fourier coefficients of the white noise inﬁUtandé Is Kronecker's
delta. Using (2.3.7), the correlation of theis (M (2) [}, (2')) = (2nTo/T) 6(z —2') 6k m.»
wheren = nspgmhwoL py/To is again zero outside of the amplifiers.

| now introduce a frequency cutoff and will only consid&r= 2T fmax frequencies
with |f] < fmax= (N/2)Afrer = N/(2T) in the following. | choose the frequency range
[— fmax fmax SO that the signal power outside of this range is smaller than 1% of its total
value. Hence, | neglect frequencies from the linearization at which the signal power is

small, as justified by the discussion in Section 3.2. Typical value¥ 6é in the range

Note that by choosing this sign convention in the exponential functions, the optical frequency that

corresponds tw,, lies atwipa = wo — wy, Wherewy is the carrier frequency.
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50-150. The large ratio aVper/N 2 10 demonstrates the advantage of working in the
frequency domain: The relevant modes are all concentrated at low frequencies, and high
frequency modes can be neglected. The covariance matrix can be expressed in any basis,
for example in the time domain, but then reducing the number of modes might not be as
simple.

| define the complex column vectoree = (a_p/o,... ,aN/Z_l)T and o* =
(@ nj2s- - ,a}‘\,/z_l)T, as well asl” = (T_y/2,..., [ n/2-1)", where the superscrit

indicates the transpose operation. Then | can rewrite (4.2.5) in matrix form as

do

— = Ba+Ea™—il, (4.2.6)
dz

where the complex matric&andE are defined &s

D , )

Bem = (g_sz’i>5km+2ZZIAnAz On—1k—m (4.2.7a)
n7

Ekm = iZAnAl(Sn+l,k+m- (427b)

n,l
The matrixE is symmetric E,,, = E,,,x), and, ifg is zero, the matriB is anti-self-adjoint
(B%,, = —Bmi). The matrixB is circulant and thus corresponds to a convolution in the
time domain, whileE can be termed anti-circulant. (A matri is circulant if there is
a vectorx with My, = x_,,). The number of operations required to evaluatendE
grows like N3. Equation (4.2.5) depends on bath anda}, since the linearized noise
propagation is not self-adjoint [12], [13].

The probability space of the optical noise in the frequency domain is spanned

by the 2N real variablesa;, rp and a; ;. It is therefore convenient to split (4.2.5)

2In the rest of this dissertation, | will use a sans serif font to denote complexV matrices likeB, a
script font for reaRN x 2N matrices likeR, and a bold face font for re@N-vectors such ag. The only

exception will bea, which is a complexV-vector.
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into its real and imaginary parts and consider the resulting system of equations. |
define the real partitioned vecter = (ar,ar) = (a_n/2,R:A—N/241R - sAN/2—1,R>
A_N/2,1) - N/241,] - - - aaN/2—1,[)T of length 2V, consisting of the real and imaginary
parts ofa at the N lowest frequencies-N/2,—N/2+1,... N/2—1. Similarly, | de-

finew = (I';,—Tz)”. | can express (4.2.6) as

da

- = R(z)a+w(z), (4.2.83)

Br+Er —B/+E
R o L (4.2.8b)

Br+E; Br—Egr

whereR is areal2N x 2N block matrix, and | have used the notatiBr= By +iB; and

E = Er +iE;. One may formally write the solution to (4.2.8b) as [49]

a(z) = W(z,zo)a(zo)—i—/zq—’(z,z/)w(z')dz/, (4.2.9)

20

whereW(z, () is a propagator matrix that obeys the equation

d%LIJ(z,C) =R(2)W(z,(), WY, 0)=Z Vz(, (4.2.10)

andZ is the identity matrix. Equation (4.2.8b) describes the spatial evolution of the noise
Fourier modes. | now assume that #g:) satisfy a multivariate-Gaussian distribution,
which is completely described by its first two moments. Making this assumption is equiv-
alent to assuming that the linearization assumption holds in a Fourier basis set. For the
system that | consider in this dissertation, this assumption only remains valid for short dis-
tances. However, it is a useful starting point for our subsequent discussion. From (2.3.6),

it follows that the mean o&(z) is zero, while the second moments are given by the co-

variance matri¥C(z). The pdfp, of @ may be written as [50]

Pa(@,z) = (27)"N /detc-1(2) exp[—% a’K"1(2)al, (4.2.11)
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where the real symmetri@/N x 2N covariance matriXxC is defined by,

K = <(a — <a)) (aT - <a>T)>

aral a,al RR RI
_ < RTRTRTL > , (4.2.12)

T T
ajap o;a; IR |l

where RR, RI, IR and Il are four redl x N block matrices. In (4.2.12) all vector products
above are outer products. This definitionkoEmbodies the full covariance information in
4N? real numbers of whiclV (2N + 1) are independent. The alternative compléx N
matrix (a,a7) = (aal),, , where the denotes the conjugate transpose, contains only
2N? real numbers of whictN? are independent, and th{s, a; ) does not contain com-
plete information. From (4.2.8b) and (4.2.9), one now finds thawolves over distance

according to

d T
K :R/C+/CRT+%I, (4.2.13)

wheren is defined after (2.3.7). Equation (4.2.13) is a Lyapunov equation [49] and is the
linear evolution equation for the covariance matrix. The right-hand side of (4.2.13) is sym-
metric sincg RK)” = KTRT = KRT, so thatkC remains symmetric as it evolves over
Initially, K is zero since the launched signal is assumed to be noise-free. The Ratrix
is distance-dependent and includes amplification/attenuation as well as the nonlinear in-
teractions of the signal with the noise. The last term describes the white noise input and
is only nonzero inside the optical amplifiers. Newly-added noise only contributes to the
diagonal elementk;;.. In addition to being symmetrid; is also positive definite, so that
its determinant is positive.

| note that the direct derivation of (4.2.13) from (4.2.8b) is only one possible way of

obtaining (4.2.13). One can show that the pdf in (4.2.11), where the covariance matrix
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K(z) is described by (4.2.13), represents the exact solution of the Fokker-Planck equa-
tion [51] corresponding to the Langevin equation (4.2.8b). Yet another approach to derive

(4.2.13) uses Itd’'s method [44]. All of these methods are, of course, equivalent.

4.3 Separation of Phase and Timing Jitter

Soliton perturbation theory is based on the fact that standard solitons remain constant as
a function of the propagation distance, except for a constant phase rotation. Moreover,
solitons are uniquely characterized by the four parameters ®, andQ as defined in
(2.4.2). Kodama [52] proved that a realistic fiber system with gain, loss, and variable
dispersion does not generally support constant or strictly periodic pulse shapes; instead,
pulses decay over extremely long distances. One can nevertheless generalize some results
of soliton perturbation theory.

As shown by equations (3.2.8b) and (3.2.8d), the part of the noise that is responsible
for a phase perturbation of a soliton is to first order proportiongite-= iug, while the
part of the noise that shifts its central time is proportionafte= Atanh[A(t — )] us =
(dus/dt)|o-o- Although these results were derived for a classical soliton, they also hold
for any other pulse shape: The expansigexp(i¢) = ug[l+ip + O(¢?)] shows that
the phase ofi is rotated byy when addingpug. Analogously, considedug(t)/ot ~
[ug(t +7) —uo(t)] /7 for small 7, implying uo(t) + Tug(t) = uo(t + 7). It is possible to

integrate arbitrarily large perturbations: Consider the initial value problem

ou , ou
5 - WMH—QE’ (4.3.1a)
u(t,z=0) = wp(t), (4.3.1b)

which is exactly solved by (¢, z) = ug(t + zq) exp(ivz). Equation (4.3.1a) describes the

optical field in an idealized transmission line without nonlinearity, dispersion, or loss,
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driven by noise that produces phase and timing jitter. Moreover, the functions

fo(t) = iuo(t), (4.3.2a)
) = 8u§;t)- (4.3.2b)

are solutions of the linearized NLS (4.2.1b), showing that both perturbations are stable to
first order when propagating with an arbitrary signgl

Based on these observations, | define pése energyl/, the average phase, the
central timer, and thecentral frequency of a pulseu(t, z) that is confined to the bit slot

[to, to+ Thit] as

to+Thit
U = / |u|?dt (4.3.3a)
to
1 [tot+Thit
2
T = — t|ul=dt, (4.3.3b)
U to
1 [totThit
== arg(u) |u|2dt, (4.3.3c)
to
1 to+Thit
Q = —Im/ ujudt, (4.3.3d)
U to

respectively, wherarg(x) = arctar{im(z) /Re(x)]. In the case of a soliton, the parameter
setU/2, T, ¢, Q agrees with the soliton parameters det-, ®, Q. Moreover, | argue that
the setl//2, T, ¢, Q is the appropriate perturbation expansion parameter set for arbitrary
pulse shapes because perturbations i, 7, ¢, Q are independent of each other to first
order at the point in the fiber where the perturbation occurs. The pulse energy can be
varied without influencing the other parameters by scalifig, the central time can be
shifted in isolation, and so forth.

In (3.2.16c) and (3.2.16d), | showed that phase and timing jitter grow proportionally
to 23/2. In order for the linearization assumption to remain valid over large propagation

distances, one must separate the phase and timing jitter from the covariance matrix, while
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Figure 4.1 Distortion of the marginal noise distributions due to phase jitter. The vectors are
shown in the complex plane,: noise-free vectorg;: accumulated noise vector at frequency
component.

keeping track of their magnitude. If these contributions are not separated, they distort the
distribution functions so that the noigeis no longer Gaussian distributed. Physically,
(3.2.16c¢) and (3.2.16d) imply that small amounts of amplitude and frequency noise can
lead to large amounts of phase and timing jitter respectively, which can invalidate the lin-
earization. The nonlinear propagation equation is phase and time invariant, which implies
that phase and timing jitter can be removed from the accumulated noise surrounding a
pulse without affecting the pulse’s subsequent evolution. While this statement is strictly
valid only for isolated pulses, not for systems with multiple pulses and/or multiple chan-
nels, we have found it works well enough in practice for the linearization assumption to
hold, once phase and timing jitter are properly separated from the individual pulses.

Fig. 4.1 shows the distortion of the marginal distributions due to phase jitter. The
impact of timing jitter on a system is similar in concept but not as easy to depict. In the
left diagram, | show the vectors of one Fourier coefficidptof the noise-free signalg

in the complex plane and one of the Fourier coefficientsf the accumulated nois®:.
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The contour of constant noise probability density arouhdin the presence of weak
phase jitter is in general an ellipse and the projection of the pdf onto the axes yields the
marginal pdfs. If the accumulated noi&e is multivariate-Gaussian distributed, then all

the marginals must be one-dimensional Gaussian pdfs [45]. However, if the phase jitter
becomes large and the linearization breaks down, the jitter tends to rotate the signal around
the origin. The contour of constant probability density spreads out along a circle around
the origin, and it is slightly skewed since noise realizations with large phase deviations are
usually caused by large amplitude deviations, resulting in a tilted, banana-shaped contour
as shown in the right diagram. The projections of this contour are not Gaussian. A similar

discussion applies to timing jitter.

In the dispersion-managed soliton system that | consider in the next chapter, the timing
jitter grows only linearly with distance, rather than proportionally:¥?, due to inline
filtering in the loop [23]. Nevertheless, timing jitter can become on the order of the pulse
duration once it reaches the receiver so that it is not a small perturbation anymore. Phase
jitter is mainly driven by amplitude jitter, as shown in (3.2.16c), so that it is not reduced
by the inline filter. | find that phase jitter has to be separated in the DMS system that |
introduce in the next chapter, as well as in the much less nonlinear CRZ system that | will

introduce in Section 6.2. Timing jitter only has to be separated in the DMS system.

In the following, | show how to separate large phase and timing jitter from the cal-
culation of the covariance matrix by using Monte Carlo simulations. | will deal with the
deterministic covariance matrix method and the incremental separation of small phase and

timing jitter in the next section.

In Monte Carlo simulations, one focuses on the received optical sighg: uo(t) +
du(t), whereup = (u) is the signal averaged over all noise realizations, &nds one

particular realization of the accumulated noise at the receiver. The Fourier expangion of
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N/2—1

isu(t) = ke N2

By exp(iwit), whereBy, = Ay, + aj, andwy, = 21kTp/T', conforming

to (4.2.4a) and (4.2.4b). The phase and timing offgeasdr cannot be considered small
anymore at the receiver, corresponding to the situation depicted in Fig. 4.1(b). In fact, the
jitter can become so strong that the marginal pdfs become Gaussians around zero and then

the averages!;, = (By) tend to zero!

The approach that my colleagues and | use is to apply the nonlinear transformation

from By, to B,
By, = Brexg—i(o+wpt)] = Ap + 14, (4.3.4)

where A, = (By) is the new signal average aiid,) = 0 is a residual noise. For single
pulse transmission and for each noise realization, we determisuwed 7 by fitting the
linear functiona + Swy, to the phase of th&;. using the least-squares criterion
N/2—1
H=min ) | By,|? [argBk — (a-l-ﬁwk)]z, (4.3.5)
G k=—N/2
where By, = By, g + 1B, 1, and then setting = o and™ = 3. We have found that the
linear phase assumption of (4.3.5) in the DMS system is good as long as the receiver is
placed at the chirp-free maximum pulse compression point of the dispersion map. This
renormalization separates the large phase and timing fluctuations from the total signal
and hence the new average powsy,|? > |A;|? is larger than without the separation.
Conversely, the average power of the residual ngjsg |r|?) < (>} |ax|?) is reduced.
| show in Appendix A.1 that (4.3.5) and (4.3.3c) are consistent for arbitrary pulse shapes.
One can compute the pdfs gfandr by averaging over all Monte Carlo noise re-
alizations. Moreover, with the real partition@-vectorr = (r_y 2 g,--- s 7n/2-1,R

r_N/2.05---5 Tnj2—1,1)" and, analogouslyB = (B_y/r,---)", one may define a re-
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Figure 4.2: (a) Simulation results in the DMS system introduced in the next chapter with ASE
noise. The dots show 750 Monte Carlo realizations of the 10 GHz noisy Fourier Byddens, =

1.2. (a)—(c): Bg without jitter separation, (d)—(fBg with jitter separation. (g)—(h)/e’¢ for the
same 750 noise realizations, using (4.3.3a) and (4.3.3c).



49

duced covariance matri(")as

K" =(BB" )~ (B)(B) = (rr"). (4.3.6)
| will use (4.3.6) in the next chapter. The quantitypbeys a multivariate-Gaussian distri-
bution, and one may replaeeby r andk by £(") in (4.2.11).

Fig. 4.2 shows simulation results of the dispersion-managed soliton (DMS) system that
| will treat in the next chapter. | transmit a single soliton with a peak power of 7.9 mW
and a FWHM duration of 9 ps. The dots show 750 Monte Carlo noise realizations of the
10 GHz Fourier modeBg for ngp = 1.2 in the complex plane. Fig. 4.2(a)—(c) shdvy
without jitter separation, while Fig. 4.2(d)—(f) shaWg after employing phase and timing
jitter separation. The solid curve is a probability density contour under the assumption
that the magnitude and the angles of the dots are independently Gaussian distributed. The
radius of the dash-dotted circle equé|Bsg|) ~ | Asg|, the average magnitude of the dots.
Next, | consider the set of the anglgarg( Bs) }. The quantity- is the ratio of the standard
deviation of these angles over the standard deviation of the magnitude of the samples.
Whenr is large, the contour assumes a banana-like or even doughnut-like shape and
wraps around the unit circle. The upper row of figures showsstlgaows quickly with
the transmission distance, indicating strong phase jitter. Howewam be kept close to
unity if we separate the phase and timing jitter. | note also thaj,ibr the degree of fiber
nonlinearity is reduced, the value otonverges toward unity.

Fig. 4.2(g)—(i) showUe? for the same 750 noise realizations, using (4.3.3a) and
(4.3.3c). The quantity: here is the ratio of the standard deviationyoto that of U.

Again, the solid sickle-shaped contours are drawn at a constant probability density. The
contours are visibly skewed, indicating a coupling betwEesind © that is analogous to
a similar coupling that occurs in soliton perturbation theory, expressed in (3.2.11b) and

(3.2.16¢). This skew is not visible in the upper six subfigures, sinc&thanly represent
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a small fraction of the signal energy, and hence their individual fluctuations overwhelm

the skew.

After the jitter separation, the coefficients of the Fourier basis remain multivariate-
Gaussian distributed far longer than the original Fourier coefficients. In principle, one
should take into account the off-diagonal matrix elements of the covariance matrix that
result from the interactions of the modified Fourier coefficightsand the phase and tim-
ing jitter. However, these elements can be ignored for reasons that | will explain later. If
one assumes that soliton perturbation theory can be approximately generalized to arbitrary
pulse shapes, then the noise in the Fourier basis after the phase and timing jitter separation
is a representation of the energy jittdr and central frequency jittexQQ, plus the noise
continuum. Energy and frequency jitter can be expected to grow much slower than phase
and timing jitter due to (3.2.16a)—(3.2.16d), and the simulations presented here show that

it is not necessary to separate them from the continuum.

4.4 Deterministic calculation of the covariance matrix

In this section, we obtain the covariance matrix by solving the linearized evolution equa-
tion directly, without the use of Monte Carlo simulations. The basic approach that | follow
is to propagate the covariance matrix from amplifier to amplifier, while projecting out and
separating the contribution to the phase and timing jitter, before the fluctuations have had

the opportunity to accumulate significantly.

The propagation of the accumulated noise is governed by (4.2.1b), which is a linear
equation and is homogeneous everywhere except at the amplifiersﬁsm(‘)én the fiber.

Its Fourier transform must be linear and homogeneous as well, and | can write it in terms
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of a asin (4.2.8b),

@ - R(a (4.4.0)
where | set the ASE termw(z) to zero. | write the solution of (4.4.1) agz) = W(z)a(0),
consistent with (4.2.9). The evolution of the noise covariance mﬂtﬂx(aaﬂ over one
fiber leg fromz = 0to z = L, in which no noise is added, followed by an EDFA with the

power gainG, is given by
v, To
K(L)=GWYK(O)W +n?I, (4.4.2)

whereW is a propagator matrix] is the identity matrix, anad is defined in (2.3.8). By
successive application of (4.4.2), one can propagate the covariance matrix from amplifier
to amplifier.

We choose a perturbative method to compHtéd_etug(¢,0) andug(t, L) be the noise-
free optical field at the beginning and end of the fiber span respectively. Then we perturb

up(t,0) in a single frequency mode by a small amourt and launch the perturbed signal
u™(t,0) = uo(t,0) + cexpliwmt). (4.4.3)

At z = L, we obtainu(™) (¢, L) by solving the nonlinear transmission equation (4.2.1a)
and calculate the deviatioh." (t) = u(™(t, L) — ug(t, L) and its Fourier space vector
a!™) . The elements o¥ are given by

(m)

a
W = 2 (4.4.4)

This perturbative approach corresponds to the Lyapunov method described by Ben-
netinet al. [53]. Note thate must be a positive real numberlif< k£ < N and a purely
imaginary positive number iV +1 < k < 2N, sinceW is defined in th& N-dimensional

space of partitioned vectors. The real and imaginary perturbations must be computed
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separately since the operatfrdefined in (3.2.3) is not linear when is scaled by an
imaginary numberL[idu] # iL[0u], due to the non-self-adjoint FWM terng(du)*

When carrying out Monte Carlo simulations as described in the previous section, the
phase and timing jitter are large by the time they reach the receiver. By contrast, when
propagating/C, one can separate the jitter incrementally, on a scale that is small com-
pared to the nonlinear scale length of the system. We do that at every amplifier. Fol-
lowing the discussion of the previous section, | consider the functigftg = iuo(t) and
f+(t) = dup(t)/0t, defined in (4.3.2a) and (4.3.2b). Each pulse in the signal has a differ-
ent average phase (4.3.3c) and central time (4.3.3b). In a system in which pulses do
not overlap, such as a soliton systemand r evolve independently for each pulse and
must be removed separately from each other. To deal with non-overlapping pulses, we de-
compose the functiong, (¢), f-(t), andsu(™ (t) into sums of mutually orthogonal pulse
functions,i.e. h(t) = >, hi(t), whereh(t) = h(t) for (I —1)Tpit < t < [Tir, andhy(t) =0
otherwise for an arbitrary functiof. | later discuss how to generalize this decomposition
to the case where pulses overlap during the transmission.

The next step is to orthogonalize the functional bagis(t), f-:(t), 5ul )( t)] analo-

gously to [23]. The goal is to obtain a new set of basis vedtrs(t), fﬂl (1), 5ul(m) ()]
) = 0 with the real scalar product (3.2.4).

~ ~ —~(m) —~(m)
sothat(f,, fr1) = (fri,0u ) = (fo1, 0y

We apply the Gram-Schmidt orthogonalization procedure [54]

rs (leafcpl)
o= fr— SR, 4.4.5a
fr fr (fw,fw)fw ( )
—~(m 5 i 5
bu” = ou™ - O™ ) 7 Fra- (@™ fon) foi- (4.4.5b)
(le?le) (f%l’f%)
The Fourier decomposition vectef™ of the reduced n0|séu = Zz5uz then re-

placesa™ in (4.4.4), and the covariance matrin (4.4.2) is reduced t&(") analo-

gously to (4.3.6). Note that the functioifg; and f,; are not orthogonal for asymmetric
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pulses; therefore, (4.4.5a) is not redundant in general. Even though and%l(m) are
orthogonal, the quantities andC(") are not statistically independent becaysgepends

on the pulse power due to the nonlinear phase rotation. A noise realization in which the
noise increases the pulse power will tend to have both I)ftzg(g)] and larg€p|, leading

to a correlation. However, these correlations, like the phase jitter itself, have no effect on
a receiver with a square law detector and can be neglected. There is a similar correlation
betweenr and|%(m)|, and, in contrast to the phase jitter, the timing jitter cannot simply

be ignored. However, | will show in Section 6.1 that the correlations betwesard the
modified Fourier components has a negligible effect on the receiver current, so that these

correlations do not influence the pdf of the receiver current.

| briefly return to the problem of overlapping pulses. In most modern transmis-
sion systems, optical pulses overlap during the transmission even though they are well-
separated when they are launched and detected. In the CRZ system introduced in Chap-
ter 6.2, the maximum FWHM pulse duration is 210 ps, leading to a significant over-
lap of adjacent pulses. In this case, the phase jitter can still be removed separately for
each pulse after applying artificial dispersion compensation. One passes the functions
{foa(t), fra(2), 5ul(m) (t)} through an ideal linear and lossless fiber whose total disper-
sion is—D(L), where D(L) is the total accumulated dispersion at the pdinin the
transmission system. This procedure separates the pulses, Since it is linear, it is fully
reversible [55]. Then, one applies the orthogonalization (4.4.5a) and (4.4.5b) to the sep-
arated pulses and sends the signal correspondi@ﬁg back to the point. through
an ideal fiber with total dispersionD(L). One might argue that the phases of the over-
lapped pulses will not evolve independently and hence might become correlated; however,
we find by comparison to Monte Carlo simulations that the procedure just described leads

to accurate BERs in the CRZ system, indicating that the coupling of the signal in one
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pulse to the phase jitter in an overlapping pulse is negligible.

| will summarize the algorithm for propagatirig in Appendix A.4. Propagating the
covariance matrix requires the propagationgf plus the2N perturbed fields. The total
computational cost of this algorithm is thus rougBly + 1 times that of a single Monte
Carlo noise realization, plus the time required for the matrix multiplications in (4.4.2).
Since matrix multiplications scale with the cube of the dimensichthere is a practical
limit to the size of N. | will demonstrate in Chapter 6.2 that the solution of a problem
with V = 140is computationally feasible on a Pentium P4 workstation.

| have also attempted a direct solution of (4.2.13) using the matrix ODE solver package
CVODE [56], but the solution was numerically inefficient. | find that the perturbation
method is numerically stable and its result is independent of the vala@wdr several

orders of magnitude.

4.5 Gain Saturation

In the dispersion-managed soliton system, | must include gain saturation in order to obtain

good agreement with the experimentally-observed evolution [28]. The basic assumption

of the linearization approach is thag = (u), namely that the average of the received sig-

nal including the noise equals the noise-free transmission. However, one must be careful
in the presence of saturable amplifiers, since the noise power that the amplifiers add to the

signal increases the total powerft) = uo(t) + du(t), according to

(Ilull®) = uoll®+ ( loull?) (45.1)

Where||f\|2 = (1/7) fg ]f(t)|2dt for any functionf(¢). The term<||5u||2> is always

finite and positive. Saturable amplifiers tend to keep the power of signal pIus|hQ|i§e
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constant, hence when more noise is added to the signal, the noise-free signal power de-
creases. If one attempts to computeby simply switching off the ASE noise input in
the simulation of the saturated EDFAs, the gains and hence the magnitude of the result-
ing field will be too large. Fortunately, EDFA saturation is a slow process that happens
on a time scale of 1 ms, corresponding to 10—40 million bit periods in modern systems.
Consequently, the amplifier gains adapt to the constant average étﬁwﬁﬁ> and can-
not follow variations in the noise. Hence, the effect of amplifier saturation is a mere gain
renormalization. Setting the amplifiers to match these reduced gains in a static gain model
(static gain corresponds to infinite saturation power), one can obtain the correct zero-order
solutionug. In practice, my colleagues and | run about 100 Monte Carlo simulations and
record the effective amplifier gains. We use these gains in the propagation of the noise-free

signalug, while setting the saturation power to infinity.

4.6 Derivation of the Eye Diagram

In this section, | derive the pdf of the filtered output current of a square law detector. Sim-
ilar pdfs have already been derived by Marcuse [48], étesd. [57], Boscoet al.[21], and
Forestieri [58]. One can use this pdf to compute an electrical eye diagram that displays a
continuous probability density rather than, as is traditional in simulations, overlaying a fi-
nite number of traces of marks and spaces with different noise realizations. The following
derivation is valid for both the Monte Carlo method of Section 4.3 and the ODE method
of Section 4.4. The inputs are the pdf of the timing jitter the Fourier mode&;T;€ of

the renormalized noise-free signal, and the reduced covariance i4tt>8elow, | will

drop the superscript and just writefor convenience.

The photodetector in the receiver converts the optical input signal plus noise to an
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electrical current/(¢). One may assume that the photodetector is an ideal square law
detector withl = x|u|?, wherex is the receiver responsivity. | apply the transformation
(4.3.4) and hence start by describih@) in the absence of timing jitter. The electrical

current is

I(t) = & |uo(t)+6u(t)]?
N/2-1 N/2-1

= K Z Z Ak —f-T’k; Al —1—7‘1) exp[zt(wl wk)]
k_—N/2 I=—N/2

ka(n)
= K Z exp(itwy,) Z (Zk—f—rk)* (Zn+k —l—?”n_,_k), (4.6.1)
—N+1 k=ki(n)

where the r;, r; are the residual noise coefficientsp = [ — k, ki(n) =
max—N/2, —N/2—n), andky(n) =min(N/2—1, N/2—1—n). The current/(¢) then
passes through a low-pass electrical filter. The last line in (4.6.1) represents the Fourier
decomposition off (¢) in the electrical domain, whos@N — 1 coefficients are given by

the sum overk. Optical and electrical filtering can be introduced by multiplying the re-
spective Fourier components by filter functiati8”t and H¢', respectively. The combined

filtering operation yields the filtered voltagét)

N/2—-1 N/2-1

y(t) = k Z Z H]gpt* (Zk -+ T‘k)* HZOpt(Zl —l—?”l) Hle_lk explit(w; — wg)]
k=—N/2 I=—N/2

N-1 ka(n)
= kY Hlexp(itw,) > HPY (A +ry)" HP (Apik + 704 40-6.2)
—N+1 k—k1(n)

The frequency term and all three filter terms can be combined into a complexV

matrix

Wkl( )_ liHOpL*HOptHl kexp(@twl k) (463)
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One can write the filtered curreptt) more compactly as

N/2-1

y(t) = Y (Ap+rr) We(t) (A +1). (4.6.4)
ki=N/2

Sincey is a real quantityVV must be self-adjoint. | introduce the real partitioned vector

A=(A_Nj2R - ANj—rms Anj2rs - Anje—r,)T to rewritey(t) as

y(t) = (A+r)" W(t)(A+7), (4.6.5a)
wo— | Ve W (4.6.5b)
W, Wg

The minus sign in the matrix in (4.6.5b) appears becaVises anti-symmetric. The right-
hand side of (4.6.5a) is a symmetric bilinear form, but, due to filtering, it is not necessarily

positive. The receiver currepgs(t) in the absence of noise at timés

nt(t) = A W(t)A. (4.6.6)

In order to obtain an eye diagram, | must derjygy,t), the pdf of the curreny
at timet. The derivation ofp, is a generalization of Marcuse’s [48] in that | consider
all noise correlations and allow for arbitrary optical and electrical filtering. By contrast,
Marcuse assumes optical white noise at the receiver and an integrate-and-dump circuit.
The procedure of computing, starts with computing the Karhunen-Loéve modes, the
basis in which (4.6.5a) can be decomposed into a sum of independent random variables.
In a second step, | calculate the pgf.-—o(y,t), where the subscript = 0 means the
exclusion of the effect of the timing jitter, as the convolution of the individual pdfs of
these random variables. | solve the convolution by multiplying characteristic functions.
In a third step, | add the effect of the timing jitter by convolving,_o with the pdf of the

timing jitter p.
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One must first find the functional basis that diagonalizes both the square law detection
followed by the filtering )V (), and the inverse covariance matkix 1. Since bothV(t)
and K~ are symmetric matrices and in additiéit! is positive definite, one can apply
the theorem of simultaneous diagonalization [59] which states that there is a real square

matrix C satisfying

Kt = c¢'c, and (4.6.73)

w = CIAC. (4.6.7b)

One procedure to obtaif(¢) andC(t) is to solve the generalized eigenproblgvc ! =
K~1Cc—IA. The solution can be performed on the computer, using a generalized eigen-
value routine such as the routiegég() in Matlab, or the procedure outlined in Ap-
pendix A.3. The matri¥\(¢) is diagonal, and | write it a# = diag(\1, ... A\2n7), Where
the A\, () are real [59]. Note that if the impulse response of the filter can become negative,
as in the case of a Bessel filter, some of lyeare negative. The transformatiGryields

the Karhunen-Loéve modes @fwhich are the noise-free signal modes(t) = Cy; () A;

and the independent noise modg&t) = Cy;(t)r;. | simplify (4.6.5a) to

y(t) = (A+r) CTAC(A+7)

= (Q+9)'NQ+4q)
2N 2N

- Z)‘k(Qi +2Qngr+4f) = ng, (4.6.8)
k=1 k=1

where thegy (qx,t) = )\k(Q% + 2Q1qk +q,§) represent a new set of independent random

variables.

The noise pdp, (4.2.11), where | replaced by r, can be factored into independent



59

Gaussian pdfs, using (4.6.7a)

pe(r) = (27)"Ny/detkc-1) exp[—%rTCTCr}
(2m) N

det( K1) exp[—% Zifl q,ﬂ

2N
= \/detX1) [ far (aw): (4.6.9)
k=1

where the marginal pdfs,, (¢x) = exp(—q¢?/2)/+v/2r are Gaussians with zero mean and
unit variance. The factox/det (1) = detC does not appear in the definition of the
pq, SincedetC dr = dg;,. Equation (4.6.8) is a sum &N random variables. The pdf
py,~—o(y,t) therefore equals th@N — 1)-dimensional convolution [45]

o0
pyr=0(y,t) = / Pg(Yy—g2—93—...— gon, 1)

—00

X Pgo (92a t)pgs (93a t) -+ DPgon (92]\77 t) dg2dgs...dgon, (4.6.10)

but this convolution can be transformed into simple multiplications using character-
istic functions, taking advantage of the convolution theorem [60]. The characteris-
tic function ®,(¢) of a random variableh is defined as the expectatioh,(() =
Elexp(i¢h)] = [~ exp(iCh)py, dh [45]. With the help of the derived distribution iden-
tity pg, dgr = pq, dqi. [45], one can write
Dy, (¢) = / Zexp[iégk(qk)]qud%
= i/oo exp[—q—i+iC>\k(Q%+2Qka+Q£)] dqy,
V271 oo 2

iINeQZC )

1
- 4.6.11
VI- 200 ex'o( 1-2iMC (4.6.11)

Again, note that the integration variables are all real, and that the entire analysis so far

neglects the timing jitter. The characteristic functi®y ,—o(¢,t) of p; r—o(y,t) equals
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the product of theb,,

®yr—0 = H‘ng

_ Q2
— (l}‘[lm> ex p<zgzl 2B C) (4.6.12)

Note the identityyns = z;ﬁl Ak (t) Q2(t). Additive noise sources such as electrical noise
can in principle be accounted for by multiplyidy, .o with the appropriate characteristic

functions [57]. Fron®, ,_g one obtaing, ,—o [45]

Py—0(y,t) = i/ ®, ~—0(¢,t) exp(—iy() dc. (4.6.13)

21 | _
Due to the complicated dependenceddf.—o(¢,t) on ¢, it is not possible to evaluate
the Fourier transform in (4.6.13) analytically. Howevey,,—o(y,t) can be computed
numerically using a discrete Fourier transform.
If one sets all\;, to the same positive valug, = o2, then®, .o equals the charac-
teristic function of a noncentral chi-square distribution [48, Eq. (20)], [50, Eq. (2-1-117)],

and its inverse Fourier transform, the corresponding pdf, is

1 2 + VY Yni
Pey) =55 <ﬁ) exp(—yzaz”f) ]n/z_l( 02” ) ., y>0, (4.6.14)

202 Ynf

where]; is thel-th order modified Bessel function of the first kind [61]. This function
depends on three parameters: the noncentrality paramgtef, and the degree of free-
domn = 2N. The pdfp,2(y) is the pdf of the squared sugnof n independent Gaussian-
distributed random variables with the meang = ¢Q,, and identical variances? = \y.

In this sense, (4.6.12) is the characteristic function of a chi-square distribution generalized
to unequal and possibly negative “variancag. The reason that thi, also appear in the
meansn;, = 0Qi, = /A Q% is due to my choice of diagonalizing—* and)V according

to (4.6.7a) and (4.6.7b). An alternative would be the diagonalizatioh= CTAC and
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W = c’C, but this choice requires a matfi¥ that is positive definite, implying electrical
filters whose impulse response is positive.

| note that the mean of 2(y) is (y) = ynf+ no?, where the termo? is the expected
current from the noise-noise terms in the receiver, its varian@-?y' is 402yt + 2no?,
where the terms are due to signal-noise and noise-noise beating in the receiver respec-
tively [50], and the third-order central momeffty — (y))®) equals24o4yns + 8no®. The
limit of (4.6.14) fory,; — 0O'is the central chi-square pdf [50, Eq. (2-1-110)]

1
- =  .(n/2-1) Y
Yni=0 022”/2r(n/2)y eXp( 202> ' (4.6.15)

Py2(y)
The relationship of the final pdf, that includes timing jitter wittp, g is
00
Pl = [ purmolint = )pe( (4.6.16)
wherep; is the pdf of the timing jitter. | will show examples pf andp, (y,t) in the next
two chapters. Becauseis phase-independent, the phase variation does not contribute to
®, -—o. Note that the integral in (4.6.16) is a convolution with respeect émd could be
expressed in terms of characteristic functions; howebgr,_g is a characteristic function
with respect toy, and one cannot use it to simplify (4.6.16). Since the timing jitter is
Gaussian distributed, we use a numerical Gauss-Hermite integration [61] to solve (4.6.16)
as | will show in Appendix A.2. Although the; are not identical in the simulations,
py(y) can sometimes be approximated by the chi-squarepdf/) with the parameters
0% = 02/2({y) +ynt) andn = 2((y)* — yZ) /2.
Equation (4.6.16) is only valid if andr are uncorrelated. For example, if the average
pulse shape in a transmission system depends timlen+ would be correlated with the
residual noise, andr would have to be incorporated into an extended covariance matrix

and undergo the diagonalization procedure in order to decouple it from the noise contin-
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uum. | discuss this issue further in Section 6.1. We have found that these correlations can

be safely neglected in optical transmission systems.

4.7 Pattern Dependences

So far, the entire treatment of noise linearization in this dissertation has dealt with the
signal-noise interactions in the optical fiber. The previous sections show how an accurate
pdf can be computed for a given bit sequence. The fungtidn, ¢) yields the probabil-
ity density of receiving the filtered curreptat timet in the presence of the noise-free
signalug(t). However, there are other physical effects in optical fiber systems besides
ASE noise that lead to fluctuations in the currgntOne example is polarization mode
dispersion (PMD), which | do not discuss in this dissertation. A second example is phase
noise that is introduced by the transmitter. Another example is the interaction of neigh-
boring bits. In single-channel systems, neighboring pulses can overlap and interact non-
linearly [62], [63]. This interaction leads to a distortion of the pulse chirp, which in turn
causes the pulses to walk off, inducing timing jitter and amplitude jitter [64]. | will show
an example of signal distortion in a quasilinear CRZ system in Chapter 6. Signal-signal
interactions are deterministic and can easily be computed for a given signal using a numer-
ical simulation. The bit pattern afy(¢) has an important influence on the signal-signal
interactions and | elaborate on this issue in the following. | restrict my discussion to
single-channel systems. In WDM systems, all channels interact, leading to more compli-
cated interactions. However, these interactions are independent of ASE noise and can in
principle be treated separately.

The existence of pattern dependences affects the noise distributions. There is no longer

a single pdf for the marks and a single pdf for the spaces. Instead, there is a different con-
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ditional pdf for each possible mark and each possible space in the system. The total pdfs
for the marks and the spaces are determined by summing the conditional probabilities. As
the number of channel in a WDM system grows, the number of possible patterns grows
explosively, making a calculation of the complete pdfs impractical. A complete resolution
of this problem is beyond the scope of this dissertation. However, work to date indicates
that it is sufficient to focus on some number of the worst patterns.

A computational eye diagram is traditionally produced by overlaying the signal traces
in all the bit slots in a given channel. | introduce theerage pdi, eye(y, teye) for the
currenty in the eye diagram in the time ran@e< teye < Thit. This pdf depends ong(¢)
and onp, (y,t) at all points in timet;, = teye+ kThit that are overlaid in the eye diagram.

One then obtains

1 n
Py,eyely: teye) = n Zpy(?/a teyet+ KThit), (4.7.1)
k=1

wheren = T'/Ty is the number of bits in the eye diagram. | will call thg(y, teye+
kTbit) partial pdfs Equation (4.7.1) can be refined by dividipg eye(y, teye) into two
PAfS py eye(y, teye) = [p%eyeo(y,teye) + py,eyel(y,teye)} /2, one containing all the spaces
(0’s) and the other containing the marks (1's). Each of the pgfseo(v,teye) and
Py.eyel(V;leye) atteye= Thit/2 near the center of the eye usually consist of very similar
partial pdfs. In other wordsy,(y,t) for a givenug(t) mainly depends on the noise-free
currentyys at timet, defined in (4.6.6). To make this more concrete, | conjecture that
if a = yni(t2)/yni(t1) is the ratio of the noise-free currents at the timesndi,, the

approximation

py(y,t2) = apy(ay,t1) (4.7.2)

holds in the case of ~ 1. Note that/”"_p, (v, t2)dy’ = [ apy(ay’,t1)dy = 1.
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Pattern dependences are important in single-channel systems, just like in WDM sys-
tems. However, each bit only interacts with a limited number of neighboring bits, thus
limiting the number of relevant bit patterns. Hence, pattern dependences are simpler in
single-channel systems than in WDM systems, and it is reasonable to begin the study of
pattern dependences by focusing on single-channel systems.

How many relevant bit patterns are there in a single-channel system? Each bit is
directly influenced by neighboring bits that overlap with it in time at any point during the
optical transmission. The neighbors are in turn influenced by their neighbors and so forth;
so, the interaction time is theoretically unlimited. However, the coupling between bits
decays rapidly with time and one can define a minimum influential bit pattern lehgth

First, | define a minimum noise-free eye opening for patterns of lehgth

Dynt(1,t) = (rpli[g]] [ynt(t)] — rgoff}?[ynf(t)] 7 (4.7.3)

where(C1]l] is the set of all bit patterns of lengthsurrounded by infinitely many zero
bits whose central bit is a mark,g.C4[3] = {...00100..., ...01100..., ...00110...,
...01110...}, and the time lies within this central bit slot. The sets|/] are defined
analogously with a space in the central position instead of a mark. Not&gkét, ¢) can
become negative. | defimynt max(t) = liMy,—o0 Aynt(l, ) for 0 < ¢ < Tyt for a single-
channel system. A maximum relevant pattern lengtban then be defined to be the

smallest with

mtaxmynf,max(t) _Aynf(lat)‘ < Yo, (4.7.4)

whereyg is a current that is small compared to the average current induced by noise.

Anderson and Lyle studied a system where only nearest-neighbor optical pulse-to-
pulse interactions occur and fourdd= 3 [65]. In the CRZ system that | study in Sec-
tion 6.2,d ~ 5.
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For anyd, there is a set of cyclic bit strings of length= 2¢ that contain all2? bit
patterns of lengtll, calleddeBruijn sequencd$6]. DeBruijn sequences are not unique
in general. The well-known pseudorandom bit sequences (PRBS) of Igfigth are
derived from the deBruijn sequences by removing one zero bit from the substring that
consists of/ consecutive zeros. For example, a deBruijn sequencé+08 is the cyclic
string 11101000 which contains all eight patterns 000, 001, 010, 100, 011, 110, 101, and
111, and a PRBS sequence of lengfh- 1 = 7 is 1110100. DeBruijn sequences are
important because they allow one to study a signal that contains all bit patterns of length
d while requiring the minimum bit string length= 2°.

As noted earlier, it is useful ib, eye(y, teye) in (4.7.1) can be approximated by just
computing a few partial pdfs, since that would reduce the computational work. | call a

partial pdfdominantif

n

py(yopb leyet+ mThit) > Z py(yopta leyet kThit), (4.7.5)
k=1 k+4m

where yop, defined in the next chapter, is near the optimum decision level at which
Py.evely, teye) @assumes its minimum. If one of the partial pdfs becomes dominant, the

other partial pdfs can be neglected.



Chapter 5

Monte Carlo Simulations

5.1 Dispersion-Managed Soliton System Design

In this section, | describe Monte Carlo simulations that my colleagues and | carried out to
compute the covariance matri&”). We simulated a dispersion-managed soliton (DMS)
system with a transmission distance of 24,000 km. This system is very well characterized
both in simulation and in experiment [28], [67]-[69]. The system does not operate in the
guasilinear DMS regime [70], but at an optical peak power of about 8 mW, which makes
the transmission significantly nonlinear. The evolution of the pulse shape is approximately
periodic with the period given by the dispersion map. We verified that the phase jitter
obeys a Jacol® distribution, which is the periodic analogue of a Gaussian distribution,
and we also verified that the timing jitter is Gaussian distributed. Finally, we verified that
the real and imaginary parts of the residual noise Fourier coefficients, after the jitter is

separated, are Gaussian distributed.

The simulated transmission line is shown in Fig. 5.1 and consists of 225 periods of
a dispersion map of length 106.7 km [28]. Each map contains a fiber span of length

4x 25 km long with a normal dispersion ef1.03 ps/nm-km and a span of length 6.7 km
66
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Figure 5.1: Cartoon of the DMS system. PC denotes the manual polarization controller, BERT the
bit error ratio tester, ClockRec the clock recovery circuit, and OBF the optical bandpass filter.
with an anomalous dispersion of 16.7 ps/nm-km, denoted by the circles labeled N and
A respectively. The path average dispersion equals 0.08 ps/nm-km, which is larger than
in [28]. Third-order dispersion is not relevant in this system [28] and is set to zero. The
carrier wavelength is 1551.49 nm, matching the experimental value. The fiber loss is
compensated by five EDFAs. One EDFA follows each of the four 25-km segments of
normal-dispersion fiber, and the fifth follows the segment of anomalous-dispersion fiber.
There is a 2.8 nm (350 GHz) optical bandpass filter (OBF) in each map period to reduce
the amount of noise.

As described in Section 4.5, | model the amplifiers as EDFAs with static gain, as

opposed to explicitly including gain saturation. | carefully adjust the static gains so that
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Figure 5.2: Phase space portraits for the DMS system at the beginning of each fiber span. (a) First
map period; (b) Last map period, arrows: middle of the anomalous span; (c) All 225 periods;
(d) Same as (b), but with added ASE noise.

they equal the effective gains one would obtain using EDFAs with a saturation time of
1 ms and a saturation power of 10 mW, similar to [28]. The spontaneous emission factor
is nsp = 1.4. In each amplifier, | add a random amount of lumped noise separately to
the real and imaginary parts of the signal in the Fourier domain. This noise input by
each amplifier is Gaussian-distributed with zero means and variafo@s wherep?, =

(G —1)n, andG,, is the power gain associated with theth amplifier [28]. All other
parameters are defined in Section 4.2. | choose a Box-Mueller generator [71] to obtain the
Gaussian-distributed random variables; the generator takes its inputs from a 48-bit random

number generator. The launched pulses have a Gaussian shape with a FWHM duration of
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Figure 5.3: (a) Histogram of the phase offseaind (b) histogram of the time offsetfor two
different simulations with signal peak powePseak= 5 MW andFpeak= 13 mW. (c) Histogram
of the two real Fourier coefficient8y r and Bs r atwg = 0 andws = 27 x 25 GHz, respectively,
after the phase and time offsets are removgd4= 5 mW). The solid lines are fits of the Jacabi-
function in (a) and Gaussians in (b) and (c).
9 ps, and the signal is injected and received at the chirp-free midpoint of the anomalous
span. The transmission distance of 24,000 km is 400 times larger than nonlinear scale
length Ly (2.3.5). | transmit thd-bit sequence 1000 in a total simulation time window of
T = 400 ps; hence, there are no optical interpulse interactions. The receiver is modeled
as in Fig. 2.1 as an ideal square law detector followed by an electrical low-pass 5th-order
Bessel filter with a one-sided 3-dB bandwidth of 4.3 GHz. This bandwidth is much smaller
than the commonly used bandwidth of 70-80% of the data rate, but it was shown to be
advantageous in this experiment to suppress the effects of timing jitter [28].

| use the split-step Fourier method to solve the scalar nonlinear Schrédinger equation,
which only takes into account one optical polarization. In the recirculating loop that | am
modeling, the polarization dependent loss (PDL) is large and the polarization controllers
are optimized to pass the signal with minimum loss. Consequently, the signal is dominated
by one polarization, and the orthogonal polarization can be neglected. The nonlinear
propagation equation in all simulations in this dissertation is solved using a third-order
split-step algorithm [72].

| present a phase space portrait of the DMS system with the purpose of demonstrat-
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ing some characteristic properties of a periodically stationary DMS system and for later
comparison with the CRZ system. Phase space portraits contain more information than
time- or frequency domain plots; for instance they are a good way of visualizing chirp.
Fig. 5.2 shows four different phase portraits, by which | mean trajectories in the space of
local frequency versus time. Related plots have been produced experimentally for various
systems, using a technique called Frequency Resolved Optical Gating (FROG) [73]. The
following discussion applies to noise-free signals. The local frequency of an optical signal

u(t) is defined as the derivative of the local phase with respect to time

1 dargu(t)

fioc(t) = TR (5.1.1)

whereargu(t)] = arctanimu(t) /Reu(t)] = ¢(t) is the local phase ai(¢). To produce

the graphs, | transmit a single pulse centeretl-atO in a 400 ps time window without
adding ASE noise. Six times during each dispersion map, at the beginning of each fiber
span and in the middle of the anomalous span, | iterate over each sample point in time and
save the pairét, fioc) if the local pulse poweju(t)|? is larger than 0.5% of the peak pulse
powermax(|u(t)|?).

Fig. 5.2(a) shows the six phase portraits during the first period of the dispersion map.
The straight horizontal line represents the launched signal, which is an unchirped Gaus-
sian. Chirp is defined as the second time derivative of the local ptidayu(t)]/dt? =
2r dfioc/dt. Consequently, the portrait of a chirped pulse will have a nonzero slope. The
oblique lines show the pulse at later points in the dispersion map. Fig. 5.2(b) shows the
same portrait as Fig. 5.2(a), but for the final map period (period 225). The difference
between Figs. 5.2(a) and (b) demonstrates that the pulse chirp of the dispersion-managed
soliton evolves. The curve that is marked by the arrows shows the pulse portrait at the
middle of the anomalous span. The chirp is small4&ps< t < +5ps; however, the

pulse tails are strongly chirped because the chirp-free point in a map is only located in the
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middle of the anomalous span if the fiber is assumed to be lossless, but it moves closer to
the beginning of the anomalous span in a lossy system [74].

Fig. 5.2(c) shows the pulse portrait at the beginning of each fiber span for the entire
transmission over 225 map periods, and Fig. 5.2(d) shows the same, but with added ASE
noise and a power cutoff of 3%. In all four graphs, one can see that the solitons never
extend beyond-40ps< ¢t < +40ps with a significant pulse power, and hence the overlap
of the pulse tails is negligible. Note that phase portraits are not directly related to the
least-squares phase fit of (4.3.5) since the phase portraits show phase in the time domain,

not in the frequency domain.

5.2 Jitter Separation

Using the least-squares method outlined in Section 4.3, | now show that the central time
offsets of the pulses are individually Gaussian-distributed. The same holds fofhe,
andB,, ; , whereB,, = B,, p+i B, 1, and theB,, are the transformed Fourier coefficients
defined in (4.3.4). Furthermore, | show that the distribution of the phase offseta

Jacobi© function, which is the periodic analogue of a Gaussian [61], defined by

oo
@(,uw,agzp,Zﬂ): Z N(Mp—}-ZWk,cré), (5.2.1)

k=—00
whereN (y,0?) is a Gaussian (normal) distribution of mearand variancer?. The ©-
function is the natural choice for the phase fit sincat the receiver is only determined
modulo2r unless one tracks its evolution.

Figs. 5.3(a) and (b) show histograms fand r for the two different signal peak
powers Fpeak Of 5 MW and 13 mW. The two histograms are approximationg,a)

andp(7), respectively. The simulation consists of 10,000 Monte Carlo runs. The phase
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distributionp,, () converges to the Jacofifunction, andv,(7) converges to a Gaussian
distribution. The number of samples per bin in each histogram in Fig. 5.3(a) never falls
below 200, and hence the phase wrapping is relevant here. However, one could in principle
track the evolution of the phases and retain the full information, yielding a phase in the
range—oo < ¢ < co. The corresponding pgf,, () would be Gaussian.

Fig. 5.3(c) shows histograms &% r and Bs j at the angular frequencieg = 0 and
ws = 21 x 25 GHz respectively. The simulated data agree very well with the Gaussian fit.
The algorithm for removing the linear part of the signal phase causes the imaginary parts
of the B}, to be close to zero; so, they are not shown here. Using a chi-square statistical
test [45], | verified that all thé_Bk,R in the simulation are Gaussian distributed .

Adding the effect of timing jitter when the electrical pdfs are computed by employing
the convolution in (4.6.16) relies on the independence of the residual noeat least
the electrical curreng, on the timing jitterr. | compute the normalized cross-correlations

_ {uw) = () (v)
Clu,v] = W, (5.2.2)

whereu andv are random variables and §td = 1/ (22) — (z)2 is the standard devia-
tion of a quantityz. My simulations show that bott'[ By, g, ] andC[By, 1, ], as well
asC[By r,7] andC[By. 1, 7] are significantly nonzero, whete, = By, r + By ; are the
Fourier coefficients of the noisy signal after the separation of phase and timing jitter, and
 andr are the phase and timing offsets of a given noise realization respectively, accord-
ing to (4.3.5). These correlations seem to pose a problem in the computatignfafot
accounted for.

The physical reason for these correlations is that noise realizations that increase the

pulse power cause a faster phase rotation which tends to lead to extreme phase excursions.

Analogously, noise realizations with extreme frequency offsets tend to produce extreme
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Figure 5.4: (a) Two-dimensional plot of the RR block/6ffor wy, in the rangek = [—15,15].

(b) Same for the RI block off. (c) Cartoon of a square matrix with three slices. Open cir-
cles: principal diagonal; hatch marks: first parallel to the principal diagonal; triangles: secondary
diagonal. (d) The values of the RR block along these slices.

timing offsets, the Gordon-Haus effect [17], [19]. However, I find tﬁﬁﬁk,R,y] and
C[Ew,y] are zero to the limit of the numerical precision, implying that the correlations

of theEk with ¢ and7 have no effect on the receiver currgntThis paradox is explained

by the nature of the square law detector that both neglects the optical phase and works as

a demodulator, removing shifts in the central frequency.
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5.3 Computation of the Covariance Matrix

My colleagues and | employed Monte Carlo simulations to compute the reduced covari-
ance matri¥C(") from (4.3.6). | drop the superscrifit) in the following. In this section, |
show/C for the dispersion-managed soliton system that we study, and | compare the result-
ing pdfs for the marks and the spaces in the following section. The point of characterizing
KC is to reveal the significant difference between Marcuse’s approach of assuming optical
white noise at the receiver [48] and the covariance matrix method. Marcuse’s method sets

the principal diagonal elements to a constant value and sets all other elements to zero.

According to (4.2.12) is a block matrix consisting of 4 blocks of si2éx N each.
| label the four blocks RR, RI, IR and II, where RR is the bldek, al), Rlis (o, aT),
and so on. Sinck is symmetric(RI)” = IR. In the following, the elements of the matrix
IC are indexed by the frequencies whose covariance is located at each element, so that the
upper left matrix element i&_y /> _ /2, the lower right one i$Cyy/2_1 /21, and the

center element i£g o.

Fig. 5.4(a) displays the block RR in a two-dimensional form. The ridge along the
principal diagonal represents the variankg and all other elements correspond to cross-
covariances. The cw entry lies/at= 0. Fig. 5.4(b) shows the block Rl whose maximum
is about one order of magnitude smaller than that in RR and Il. The Rl and IR blocks
are point-symmetric around their central elements, (R RI_;, _;), while RR and I
blocks are symmetric (R} = RR; ). Fig. 5.4(c) shows a cartoon of a square matrix with
the principal diagonal (solid line), a parallel to the principal diagonal (crosses), and the
secondary diagonal (circles), starting from the indice&5, 15) and ending at15, —15).

Fig. 5.4(d) shows the values of the RR block along the slices in (c). The shape of the graph

of Ky is a consequence of the optical inline filtering in the recirculating loop, as well as
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Figure 5.5: (a) Probability density function of the filtered currgafter square-law detection and a

4.3 GHz narrow-band filter. The solid lines are the pdfs calculated using linearization at the center
of the bit window of the marksdNES) and the spaceZE€R0Y9); the dashed lines are Gaussian fits.
Note the bump on the left tail of the pdf of the marks. The circles are direct results from the Monte
Carlo simulation. Particularly for the spaces, the agreement with the pdf obtained by linearization
is much better than with the Gaussian fit. (b) The functigp(y) is shown as a solid line, and
Po1(y) is shown dashed. The BER is defined as their mean. The optimum decision level lies at
y = 0.55 near the intersection of the graphs, shown as the vertical dash-dotted line in (a), and it
yields a BER of5 x 10713, From the Gaussian fits, one obtain§dactor of 13.5 which would

imply an optimal BER ofL0~*1,

optical signal-noise interactions. Because of the inline fikgy, vanishes fork| > 15.

In the absence of inline filter&;;; would converge for largg| to a finite value. At small
frequenciegk| < 15, the signal-noise interactions lead to parametric gain and emerge as
a peak whose shape is similar to the signal power spequrﬁ. The slices along the
circles and crosses reveal that the valuels of ; at small| k| and|/| are actually negative,

leading to two elongated troughs along both sides of the principal diagonal.

5.4 Calculating the BER

We calculated the BER as a function of the decision threshold, and we determined its
value at the optimum decision point. Fig. 5.5(a) shows thefpadif the filtered current

y(t) defined in (4.6.5a) that corresponds to the output of the electrical receiver. The current
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Figure 5.6: (a) Eye diagram, generated from the Monte Carlo simulation of the dispersion-
managed soliton. The probability density of the currgistdisplayed as a contour plot. The dashed

line att = 50 ps shows the location of the pdfin Fig. 5.5. The logarithm of the pdf is displayed as
different shades of gray. (b) Accurate eye diagram produced by the linearization approach. To ob-
tain a more readable diagram, | only plot probability densities in the ré@gé, 10']. However,

the approach allows me to find the probability density at any point, thereby enabling me to
accurately calculate BERs.

y(t) is normalized to the mean of the pdf in the marks. The calculation is performed as
explained in the previous chapter in two different bit slots, corresponding to the 1 and
the central 0 in the 1000 bit pattern that we simulated, so that we obtained the pdfs for
the marks and the spaces separately. The effect of the timing jitter is included in the
calculation of the pdfs, using (4.6.16). The Gaussian fit is a good approximation over
about two orders of magnitude, but it deviates strongly at low probability densities. At
small values ofy, the pdf of the marks is dominated by the timing jitter, leading to a
visible bump. This bump exists because the curgestthe center of the eye is lower for

a strongly jittered pulse. Without this bump, the left tail of the accurate pdf for the marks
would cross the Gaussian fit, and then run inside, so that the error probability density
would be lower there than for a Gaussian pdf, in agreement with [48]. | conclude that
strong timing jitter can lead to an increased eye penalty that must be taken into account.
Note that the path average dispersion0di8 ps/nm-km enhances the timing jitter and

differs from the value that was used in Section 6.1.
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Figure 5.7: (a) Convergence of optimal BER values, resulting kgt and 4;, obtained from a
Monte Carlo simulation, as a function of the number of noise realizations. The sy(dbplée),
and(o) pertain to three simulations that were started with different random seeds. (b) Convergence

of the optimal decision levejont. Both BER andyp: converge after about 2,000 Monte Carlo
realizations.

The knowledge of the separate pdfs of the marks and spaces allows one to calculate

the bit error probabilities. | define the two probabilities
Puo) = [ K.t (5.4.1a)
Y

Y
Poaly) = /Ofy(y',to)dy’- (5.4.1b)

The quantityPy(y) is the probability of detecting a mark when a space was transmitted,
using the decision level, and analogously’ 1 (y) is the probability of detecting a space
when a mark was sent. The functigp(y,¢1) is the pdf ofy, taken at the central time in

a bit windowt; when a mark is received, arfg(y, to) is taken at the central time in a bit
window when a space is receiveg, | define the bit error probability at the decision level

y as [48]

BER(y) = 5[ Pyo(y) + Pon(v)]. (5.4.2)

| define the optimum decision levghpt to be the decision threshold at which the BER

becomes minimal. Fig. 5.5(b) shows(y) andFyj1(y), as well as the BER as a function
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of y. In the DMS system, we find that gtp: = 0.55 the BER is5 x 10713, From the
Gaussian fit, we obtain @-factor of13.5 implying an optimal BER ofLl0~#L. This large

difference in the BERs is again a consequence of the large timing jitter.

Fig. 5.6 shows the corresponding eye diagram, whegenormalized the same way
as in Fig. 5.5. Itis a contour plot of the pdf fg(t) at each time. This way of plotting
the eye diagram is closer to what is measured experimentally than the common practice
of simply superimposing discrete tracesydf) in the different bit windows. The optimal
decision point for the system lies close @%. Gaussian extrapolations usually yield

optimal decision levels that are much smaller tBamin normalized units [48].

| now consider the off-diagonal elementsiin Although K is diagonally dominant,
we find that the off-diagonal elements have a large impact on the BER. We compared
the optimal BER to a computation in which we set the off-diagonal elements to zero. It
turns out that the spread in the pdf of the spaces is reduced, as one might expect, while the
spread in the pdf of the marks is increased, leading to a Igygand an optimal BER
that deviates from the true value by orders of magnitude. | therefore conclude that the
nonlinearity can lead to a substantial cross-correlatiokl end it is in fact necessary to

take account of off-diagonal elements.

| next turn to the question of the accuracy of the BER and the decision level that |
obtain by employing a Monte Carlo simulation to compkiteFig. 5.7 shows the conver-
gence of the BER and the optimal decision leyg}k as the simulation proceeds. Bdth
andyopt COnverge as we average over more noise realizations. The convergence requires

on the order of a few thousand realizations.
| note that the values for the optimal BER and the decision level both drop as the

averaging proceeds. The statistical fluctuations jnvhich vanish as the number of real-

izations increases, tend to decrease the BER, irrespective of their signs. Thus, the square
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law detector with its dependence ff(y) on K corresponds to a biased estimator [75].

In conclusion, the computation of the covariance matrix by averaging over Monte
Carlo simulations is robust, but it requires a large humber of noise realizations in or-
der for the BER to converge. Computing the pdfs and the BER using the covariance
matrix in essence applies a multivariate-Gaussian fit to the optical noise, instead of a one-
dimensional Gaussian fit to the receiver current histogram. In traditional Monte Carlo
simulations, the only result of each noise realization that is used in the calculation of the
electrical BER is the narrow-band filtered currefit), a scalar variable for each point
in time. By contrast, the covariance matrix contains much more information and makes

much better use of the available information.



Chapter 6

Covariance Matrix Method: Results

In this chapter, | apply the deterministic method described in Section 4.4 to propagate
the noise covariance matrix, rather than running Monte Carlo simulations. | consider
two different systems: the DMS system introduced in Chapter 5 with the reduced path
average dispersion of 0.02 ps/nm-km and a chirped return to zero (CRZ) system with a
total transmission distance of 6,100 km. In the following, | refer to the reduced covariance

matrix (") ask, dropping the superscript.

6.1 The Dispersion-Managed Soliton System

The calculation that | present here is completely deterministic in contrast to Chapter 5,
where | reported on the calculation Kfbased on Monte Carlo simulations [76]. This de-
terministic approach requires substantially less CPU time while producing a much higher
degree of accuracy. For the 4-bit sequence considered in the previous chapter, the approx-
imation of the covariance matrix with 5,000 Monte Carlo realizations required 72 hours
of CPU time, while the deterministic covariance matrix method required only 5 hours of

CPU time on a 400 MHz Pentium Il PC. As in the last chapter, the nonlinear propa-
80
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Figure 6.1: DMS system. (a) Noise-free optical power in the time domain, L)|? of the noise-

free 8-bit signal at the end of the transmission. (b) Circles: optical power spettiifof the
signal in logarithmic scale. The 10 GHz tones and their harmonics are clearly visible. Dots:
average power spectrum of the noise frimThe OSNR i88.44dB andN = 120

gation equation is solved by a third-order split-step algorithm [72]. | transmit the 8-bit
deBruijn sequence 11010001 in a time window of 800 ps in a single channel; all pulses

are co-polarized. The Fourier vector lengthrr is 2048.

Fig. 6.1(a) shows the optical powry(t, L)|? of the noise-free 8-bit signal at the end
of the transmission in the time domain. The tic marks indicate the boundaries of the bit
slots. Fig. 6.1(b) shows the optical power spectrum at the end of the transmission as the
circles. The 10 GHz tones and their harmonics are clearly visible. The dots show the av-
erage power spectrum of the noise as obtained froii + |aj. n|? = Kk + Kis Npin
. The number of modes iK is N = 120 The optical signal-to-noise ratio (OSNR), which

| define as the ratio of total signal power to total noise power in the shown bandwidth, is



(0]
N

s 8 o = o~
()

(@]
Q4| ] 5
< e
i T
(@] o)
= |l 2

-80 -40 0 40 80 %% 60 120 180 240
Frequency (GHz) Modes

Figure 6.2: DMS system. (a) Three slices through the RR part of the reduced covariance matrix

K, indicated by the inset cartoon; (b) Eigenvalue spectrui.oT he eigenvalues are ordered by
magnitude.

6.98, or 8.44 dB. The bandwidth of 160 GHz in this definition of the OSNR seems very
large, but the OSNR would not change very much by reducing the bandwidth because of

the inline filter that attenuates both the signal and the noise at high frequencies.

Fig. 6.2(a) shows three slices through the RR part of the reduced covariance matrix
IC, where the inset gives a pictorial representation of a matrix whose elements are located
at the grid points. The diagonal lines show the location of the three slices. The solid line
hence runs along the principal diagonal, the circles run on the secondary diagonal, and the
asterisks show elements on the nearest parallel to the principal diagonal. The large ratio
of the noise power at frequengy= 0 to the power aif = 75 GHz is primarily due to the
inline optical filter in the recirculating loop and only secondarily to parametric Hain.

Fig. 6.2(b) shows the eigenvalue spectrunkpfwhere the the eigenvalues are sorted
by decreasing magnitude. The eigenfunctions connected to the spectrum are related to
the optical Karhunen-Loéve modes, namely the modes in which the accumulated noise

can be expanded as independent Gaussian noise neglecting the receiver. If most of the

1See Section 3.1 for a discussion of parametric gain.
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Figure 6.3: DMS system. (a) Histogram from a traditional Monte Carlo simulation (dots) with
Gaussian fits of the data points in the marks and spaces based on their mean and variance (dashed
lines) and the result of the covariance matrix method (solid line). (b) Eye diagram as a contour
plot of the logarithm of the pdf as a function of time. The pdfs in (a) are computed-&0 ps
(dashed line).
eigenvalues were very small, one could make the matrix propagation more efficient by
transforming the noise into the optical Karhunen-Loéve basis and focusing on the modes
with the largest noise power, but as Fig. 6.2(b) shows, the magnitude of the eigenvalues
does not fall off very steeply.

Fig. 6.3 compares the average pdf in the marks and spaces, as defined in (4.7.1), of the
narrow-band filtered receiver current from the linearization method with the histogram of

a standard Monte Carlo simulation. Fig. 6.3(b) shows the corresponding eye diagram as a

contour plot of the logarithm of the pdf as a function of time, analogous to Fig. 5.6(b).

6.2 Submarine CRZ System

6.2.1 System Setup

The simulated transmission line of the chirped return-to-zero (CRZ) system is shown in
Fig. 6.4. It consists of 34 dispersion map periods each of length 180 km, for a total

distance of 6,120 km. Each map period contains a 160 km span of normal dispersion fiber
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Figure 6.4: CRZ system, schematic illustration.

with —2.5 ps/nm-km, indicated by the circles labeled N, preceded and followed by two
10 km spans of anomalous dispersion fiber with 16.5 ps/nm-km, labeled A. Third-order
dispersion is of minor importance and | neglect it in this simulation, as | did in the DMS
system. The fibers have an attenuation of 0.2 dB/km and an effective afiggef50um.

The loss is compensated every 45 km by an erbium-doped fiber amplifier (EDFA) with a
spontaneous emission factoraf, = 2.0. | use pre- and post-compensating fiber spans,
labeled C, each of which has a total dispersion of 916 ps/nm. The signal pulses are co-
polarized and have a FWHM duration of 45 ps with a bit-synchronously chirped raised-

cosine shape of the form

u(t) = (szeak{ 1+ cos{w sin (%)] }) v exp(iAmrcosQt) (6.2.1)

whereu(t) is the envelope of the optical field at timeQ = 2r /Th;; with the bit spacing

Thit = 100 ps, and the chirp parameterds= —0.6 [77]. The initial optical peak power
is Ppeak= 1 mW before entering the pre-compensating fiber. | transmit 32 bits, corre-

sponding to a pseudorandom bit sequencé@®# 1 = 31 bits, plus an additional zero
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Figure 6.5: Phase space portraits for the CRZ system at the beginning of each fiber span. (a) Arrow:
pre-compensation portrait, oblique lines: portrait during the first map period; (b) Same as (a),
but five portraits are superimposed with time offsets of 100 ps; (c) Portraits of the maps 16-19;
(d) Same as (b), but for the last map. Arrows: post-compensation portrait.

bit, thereby exhausting all possible bit patterns of length 5, with a Fourier vector length
Nept equals to 4096. At the receiver, | model an ideal square law detector followed by a
5-th order Bessel filter with a one-sided 3-dB bandwidth of 4.3 GHz. Fig. 6.8 shows the

narrow-band filtered noise-free receiver current after 6,100 km of transmission.

6.2.2 Results and Discussion

Fig. 6.5 shows the phase-space portraits of the CRZ system analogous to Fig. 5.2, shown
in Section 5.1 on p. 66. All graphs are produced by a simulation of a single CRZ pulse

centered at = 0in an 800 ps time window. Fig. 6.5(a) shows the six lines of the pulse
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Figure 6.6: CRZ system. (a) Optical powet|? of the noise-free 32-bit signal at the end of
the transmission in the time domain. (b) Dots: optical power spectrum on a logarithmic scale.
Asterisks: average power spectrum of the noise ffonThe ratio of the noise power gt= 0 to

the power atf =22GHz is2.1. The OSNR isL1.7 dB.

portraits at the beginning of each fiber span in the first dispersion map period. It also shows
the phase portrait of the pre-compensation. The latter is strongly chirped and has an S-
shape, indicated by the arrow. Fig. 6.5(b) is the same as (a), except that | have added four
copies of the lines in (a), each offset in time by a multiple of 100 ps. The copies correspond
to pulses centered at 100 ps, 200 ps and so on. Note that the phase-space portrait of a signal
consisting of five adjacent pulses would look completely different from Fig. 6.5(b), since
the phase of the sum of two signals does not equal the sum of the phases. The point of
showing multiple copies of the portraits in one graph is to demonstrate that the individual
portraits of different pulses at a given transmission distance never overlap. Although

pulses overlap in the time domain, they are still separated in phase space. Therefore, the
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Figure 6.7: CRZ system. (a) Three slices through the RR part of the reduced covariance matrix
KC, indicated by the inset cartoon; (b) Eigenvalue spectrurk.ofThe eigenvalues are sorted by
magnitude.

phase space picture contains more information. A vertical lime=a200 ps cuts through

the portraits of five pulses, and the portraits of adjacent pulses in the same fiber span are
separated by about 10 GHz. As the pulses evolve, their portraits rotate counter-clockwise
and contract, as shown in Fig. 6.5(c) for the maps 16-19. In the middle of the total
transmission distance near map 17, the pulses are maximally compressed and separated in
time, but strongly chirped. After map 17, they expand again and the final state at map 34 in
Fig. 6.5(d) has a mirror symmetry with Fig. 6.5(b). The almost vertical curves, indicated

by the arrows, correspond to the pulse after post-compensation which is slightly narrower

than the launched pulse.

Fig. 6.6(a) shows the optical powgr|? of the noise-free 32-bit signal at the end of
the transmission in the time domain. The tic marks indicate the boundaries of the bit slots.
Fig. 6.6(b) shows the optical power spectrum at the end of the transmission as the circles.
The 10 GHz tones and their harmonics are clearly visible. The dots show the average
power spectrum of the noise as obtained frkam2 + |ak+N|2 = K+ Krtnitn; the

number of modes il is N = 140. The ratio of the noise power at frequenty-= 0 to the
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Figure 6.8: CRZ system. Narrow-band filtered noise-free cungft) of the signal after trans-
mitting 6,120 km. The 32 partial pdfs are computed at the points in time indicated by the dots.
power atf =22GHz is2.1 and is due to parametric gain. The OSNR, defined as the ratio
of total signal power over total noise power in the shown bandwidtt4.&3, or 11.7 dB.

Fig. 6.7(a) shows three slices through the RR part of the covariance ritasiixilar
to Fig. 6.2(a), where the inset gives a pictorial representation of a matrix whose elements
are located at the grid points. The oblique lines show the location of the three slices. The
solid line runs along the principal diagonal, the circles run on the secondary diagonal,
and the asterisks show elements that lie on a parallel to the principal diagonal where the
cross-correlations are particularly large. As in the DMS system, most cross-correlations
are negative.

Fig. 6.7(b) shows the eigenvalue spectrumkgfanalogous to Fig. 6.2(b). Due to
numerical imprecisions a few eigenvalues are vanishingly small and must be increased
before the pdfs are computed, as described in Appendix A.4.

Fig. 6.8 shows the narrow-band filtered noise free receiver current after transmission
over 6,120 km. The 32 partial pdfs are computed at the points in time indicated by the
dots. The variation in the peak power is due to nonlinear pulse-to-pulse interactions during
the transmission, highlighting the importance of bit patterns.

Fig. 6.9(a) shows the average pdfs as defined in (4.7.1) of the receiver current that re-

sult from the covariance matrix method as solid lines in comparison with a histogram from
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Figure 6.9: CRZ system. (a) Solid lines: average pdfs from the covariance matrix method;

dots: histogram from a Monte Carlo simulation; dashed lines: Gaussian fit to the dots using their
mean and variance; dash-dotted line: average pdf from the covariance matrix method without
phase jitter separation. (b) Solid lines: error probabilifigg and Py, corresponding to the solid

lines in (a); dashed lines?; o and Py, for the worst noise-free mark and space only.

a traditional Monte Carlo simulation, consisting of 86,000 noise realizations represented
by the dots. The current is normalized to the mean of the pdf of the marks. The dashed
lines show a Gaussian fit to the Monte Carlo data, using the mean and variance. The large
deviation between the solid and dashed curves is obvious, especially in the spaces. On the
other hand, the agreement between the covariance matrix method and the Monte Carlo
results is excellent. By integrating the pdfs, one obtains optimal BERs7of 1012

from the covariance matrix method a@® x 1012 from the Gaussian fit of the Monte
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Figure 6.10: CRZ system. A contour plot of the logarithm of the pdf as a function of time showing
the eye diagram. The pdfs in Fig. 6.9 were takeh-at50 ps (dashed line).

Carlo data. The latter corresponds t@)gactor of 6.71. Note that the relatively small
difference between these two BERs occurs because the Gaussian fit overestimates the pdf
of the marks and underestimates it in the spaces, and hen@eftietor method relies on

the accidental partial cancellation of two errors. The dash-dotted line shows the pdf of the

marks that one obtains if the phase jitter is not separated, which is clearly wrong.

The left solid curve in Fig. 6.9(b) shows the error probability, of detecting a “1”
when a “0” was sent, using a given decision level as defined in (5.4.1a). This curve
corresponds to the left pdf in Fig. 6.9(a). The right solid curve is the probalijtyof
detecting a “0” when a “1” was sent. The dashed lines show the same, except that only the
mark with the lowest currermi the noise-free signand the space with the highest current
are taken into accounthe bit errors near the optimum decision level are dominated by
the worst mark and space. This result indicates that in the CRZ system it is sufficient to
apply the linearization method only to the patterns that exhibit the worst behavior in the

absence of noise to obtain a good approximation of the average pdfs and the BER.

Fig. 6.10 shows the corresponding eye diagram of all 32 bits. The probability density
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Figure 6.11: CRZ DWDM system with 5 channels. Noise-free optical power specttyfh at

the end of the transmission line. The channel spacing is 50 GHz, and the channels are indicated by
numbers.

is displayed as a contour plot. The pdf is only plotted over a range of about four orders of
magnitude to make it look like an eye diagram, although | am able to accurately compute

the probability density at any point in the diagram. The pdfs in Fig. 6.9 are taken at
t =50 ps, indicated by the dashed line.

6.2.3 WDM System

| now discuss the application of the covariance matrix method to a WDM CRZ system.
This system is an extension of the single-channel CRZ system that | described in the pre-
vious section. We launch identical bit sequences in 5 channels, spaced 50 GHz apart. This
channel spacing is narrow, compared to the channel bandwidth of at23,6Hz, and

hence corresponds to a dense wavelength-division multiplexed (DWDM) system. While
real transmission systems have many more channels [78], work bgt él,[79] shows

that it is possible to simulate a dense WDM system with a limited number of channels.

Fig. 6.11 shows the optical power spectrum at the end of the transmission line. The
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Figure 6.12: CRZ DWDM system. Solid lines: average pdfs from the linearization approach; dots:
histogram from a Monte Carlo simulation; dashed lines: Gaussian fit to the dots using the mean
and variance.

channel spacing is 50 GHz and the channels are indicated by indices running &tm

+2.

In the following, | focus on the central channel (channel 0). The system parameters
Nrpr=4096 N = 140, andT = 3200ps, as well as all pulse parameters are identical to
the single-channel system. The propagation algorithm of the covariance matrix, as shown
in Appendix A.4, is identical to the single-channel case, except that after step 1, | apply
an artificial optical bandpass filter with a square shape and a bandwidd2®»GHz
that only passes channel 0. The artificial filtering is necessary because the neighboring
channels would otherwise disturb the phase jitter separation. However, | simulate the
transmission ofug with all 5 channels. Thus, | model the signal-noise interactions of
the signal in any channel with the noise in the central channel, but | negleattére
channelnoise-noise correlations. In other words, | neglect off-diagonal matrix blocks
in an extended covariance matrix that spans multiple channels. This simplification is
physically reasonable, since the noise-noise correlations decay with frequency separation,

and it is validated by Monte Carlo simulations.
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As in the single-channel case, | ran a Monte Carlo simulation to validate my results.
Since | expected that the neighboring channels might distort the pdf slightly and the lin-
earization method might yield inaccurate results, | ran 100,000 noise realizations in a
simulation that took 51 days to complete.

Fig. 6.12 shows the average pdfs of the receiver current that result from the covariance
matrix method as solid lines in comparison with a histogram from a traditional Monte
Carlo simulation represented by the dots. The voltage is normalized to the mean of the
pdf of the marks. The dashed lines show a Gaussian fit to the Monte Carlo data, using
the mean and variance. The agreement between the linearization approach and the Monte
Carlo results is excellent. By integrating the pdfs | obtain an optimal BER7o% 1012
from the linearization approach as compared.tbox 10~ from the Gaussian fit of the
Monte Carlo data; the latter corresponds tQ-#actor of 6.50.

As an additional test, | record theter-channelregions of the extended covariance
matrix, i.e., in addition to averaging over the noise realizations to obt&in = IC[%") N

’Oj|
"o — k" andk”) wherek!"). refers to the inter-channel

also compute the matricés, 0 =Ko 11 [6,7]

covariance matrix defined by a generalization of (4.3.6)
(r) _ T
K = <rmrm>, (6.2.2)
wherer ) = (r_n/2in,Rs - "Nj2—Lin,R» T—Nj2+nD>--- » "Nj2—1+n,1) " - HEre, the offset
n = k|Afen|/AfreT is the number of frequency modes between the center of charamel

channel0 with the channel spacin@ fcn| = 50 GHz, andAferr = 1/T is the frequency

resolution of the Fourier transform. | find thléfg)o] = IC[(I)H

o K0

is the matrix maximum norm. Inter-channel noise-noise correlations are of little

to within the computational

= 0.076, where

max

accuracy set by the split-step algorithm a‘rﬁdg)o}

I/l max

relevance since only the noise in the central channel contributes to the eye diagram.

In summary, the generalization of the covariance matrix to WDM does not seem to
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pose major difficulties. The simulation time increases relative to a single-channel system,
and the size of this increase depends exclusively on the step size in the split-step algorithm

when simulating multiple channels.



Chapter 7

Conclusions

Accurately modeling bit error rates is crucial when planning, designing, or upgrading
optical transmission systems. Bit errors are primarily caused by ASE noise from the
optical amplifiers. This noise is white at the point where it is contributed. However, this
ASE noise accumulates along the transmission and interacts nonlinearly with the signal,
which influences the statistical distribution of the noise in a complicated way. On the other
hand, bit errors are very rare events. This combination of circumstances is the reason why
neither simple assumptions about the pdf of the optical noise at the receiver and the pdf of
the electrical receiver current, nor traditional Monte Carlo simulations can yield accurate
results. | show in this dissertation that the commonly u@e@dctor method, based on a
Gaussian extrapolation of the receiver current, is an unreliable approach and depends on

the fortuitous partial cancellation of two errors.

| present a covariance matrix method that yields the pdf of the optical noise at any
transmission distance, which is based on linearization. From the pdf of the optical noise,
the accurate pdf of the narrow-band filtered receiver voltage can be computed, yielding
the accurate BER and eye diagrams. | developed two different approaches to compute

the key statistical quantity, which is the covariance matrix of the optical noise, and |
95
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show that both lead to a significant efficiency enhancement over traditional Monte Carlo

simulations.

To my knowledge, a complete linearization of the optical transmission in a realistic
transmission system has never been carried out before, as discussed in Chapter 3. My
colleagues and | started our investigations in the fall of 1998 by checking the distribution
of the optical noise at the receiver of a Monte Carlo simulation of a 10 Gb/s DMS system
over 24,000 km. This system was very well characterized both in simulation and in exper-
iment [28], [67]-[69]. We focused on the real and imaginary coefficients of the Fourier
components of the noise, and we found their pdfs. Doob’s theorem [46] states that the
noise pdfs of a linear system that is driven by Gaussian noise will remain multivariate-
Gaussian distributed. If one expands the noise in a specific basis, for example the Fourier
basis, then each Fourier coefficient obeys a marginal distribution of the total noise distri-
bution, and should be Gaussian distributed. Indeed, that proved to be the case for short
transmission distances. However, over distances greater than about 2,000 km, we found
that these components were no longer Gaussian distributed, indicating the breakdown of
the linearization assumption for the Fourier basis. This breakdown is due to the phase and
timing jitter in this highly nonlinear system. we find, however, that if we use a new basis
set in which the phase and timing jitter are separated from the other noise components,
then the linearization assumption remains valid over the entire propagation distance of

24,000 km.

| describe two approaches for calculating the covariance matrix. First, it is possible to
run Monte Carlo simulations and average the results to approximate the covariance ma-
trix. In essence, one fits a multivariate-Gaussian to the Monte Carlo simulation result,
after separating the phase and timing jitter. This procedure is self-validating and rela-

tively simple to program, but requires on the order of 2000 noise realizations, as shown
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in Chapter 5. However, this approach makes better use of the simulation data and yields
more accurate results than traditional Monte Carlo simulations with the same number of

noise realizations.

The second method, referred to in this dissertation as the covariance matrix method,
propagates the covariance matrix from transmitter to receiver in a deterministic way. The
propagation is accomplished by multiplying the covariance matrix with a propagator ma-
trix W that describes the evolution of a noise vector over a fiber span according to (4.4.2).
In Chapter 4, | described a method for numerically computing the métrbased on
the split-step algorithm. My colleagues and | applied the deterministic approach to both
the DMS system and a 10 Gb/s single-channel CRZ system. In both cases, the result is
efficient and accurate to the degree it can be compared to traditional Monte Carlo simula-
tions, as demonstrated in Chapter 6. The computational cost is roRghtimes that of
a single Monte Carlo noise realization, whé¥as the number of complex Fourier modes
stored in the matrix. In a simulation of eight bits in the DMS system, | uged 120and
in the CRZ system with 32 bits | used = 140, and hence this method solves the covari-
ance matrix in a fraction of the time required by the Monte Carlo simulation, discussed
in Chapter 5. Moreover, it is intrinsically far more accurate, since the Monte Carlo meth-
ods have an intrinsic statistical inaccuracy, while the covariance matrix method, being

deterministic, is only limited by the accuracy of the numerical solver.

Modern propagation formats such as CRZ exhibit large pulse overlap, leading to non-
linear interactions of the signal with itself. The phase and timing jitter separation becomes
more complicated in this case, but it can still be carried out after applying artificial disper-
sion compensation [80] as discussed in Section 4.4. Another important result is that the
worst bit patterns in the noise-free signal can dominate the BER and hence it is sufficient

to apply the linearization approach to these patterns.
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In addition to single-channel DMS and CRZ systems, my colleagues and | studied
WDM systems. We focused on a WDM system with five channels and a channel spacing
of 50 GHz. While five channels is small compared to the number of channels in com-
mercial systems, earlier work shows that it is possible to accurately model WDM systems
with a limited number of channels [79]. The question was not if the method worked in
principle for a WDM system, but rather what was the scaling behavior of the computa-
tional time with the number of channels. | found for the 5-channel system that computing
the pdf of a single channel still only requir8/ times as much CPU time as one noise
realization in a traditional Monte Carlo simulation. This result, combined with the de-
composition mentioned in the previous paragraph, bodes well for the application of the
noise linearization approach to massive WDM systems with a lot of pulse overlap, such

as are currently used in commercial systems.

Itis well known that noise-noise beating cannot be neglected in the receiver, in contrast
to the transmission. The implementation of accurate receiver models that take this beating
into account is critical when calculating the eye diagrams and bit error rates. We have
implemented an accurate receiver model for a receiver with a square law photodetector,
followed by an electrical filter. In this case, the current obeys a generalized chi-square
distribution when phase and timing jitter can be neglected. The phase jitter has no effect
on the received current because of the square law detector. By contrast, the timing jitter
does affect the distribution, which no longer obeys a generalized chi-square distribution.
We found an integral expression for the new distribution, and, in this dissertation, | show

how to calculate it.

In conclusion, my colleagues and | achieved the goals 1-4 that | described in the
Introduction: We derived a covariance matrix approach that works in two very different

transmission systems, one of which is highly nonlinear. We computed the pdf of the
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optical noise and the narrow-band filtered receiver current, and we obtained an efficient

implementation of the algorithm.

What are the limits of the noise linearization approach? Highly nonlinear formats with
optical pulse-to-pulse interactions such as 40 Gb/s DMS systems [64] are challenging to
a linearization approach. It has been found that the timing jitter in some soliton systems
with strong pulse-to-pulse interactions is not Gaussian distributed anymore [81]. If noise-
induced jitter and nonlinear pulse-to-pulse interactions are not independent of each other,
then the linearization assumption breaks down, although it is still an important starting
point for a more complete theory. Another possible challenge is strong ASE noise. In
the two systems that we have studied, the optimum BER is b&w, but in many
commercial systems, raw BERs @2 or higher are acceptable with the use of forward
error correction (FEC) [1], [6]. However, it is only tigrobability of noise realizations
leading to raw bit errors that is increased in systems with FEC, not the current threshold at
which these errors occur. Since the covariance matrix method can accurately compute the
electrical pdf anywhere in the eye diagram, | do not anticipate problems in dealing with

higher raw bit errors.

In the future, the covariance matrix method should be generalized and refined. It might
be possible to improve the numerical efficiency of the algorithm by further reducing the
number of frequency modes in the covariance matrix or using some interpolation scheme.
The agreement between the pdfs from the covariance matrix method should be compared
to Monte Carlo simulations all the way down to the intersection point of the marks and
the spaces pdfs. The range of the pdfs from Monte Carlo simulations might be extended
using the importance sampling technique [10], [11]. Moreover, | have not applied the
covariance matrix method to systems in which two optical polarizations and hence PMD

are relevant, systems that use Raman amplification, or modulation formats such as non-
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return-to-zero (NRZ) or differential phase shift keying (DPSK). Finally, a determination of
the bit patterns that lead to the smallest eye openings should be investigated, in particular

for WDM systems.



Appendix A

Appendix

A.1 Average Phase Definition

If the phase and timing jitter are small, then the averages of the noisy sigraaid of the
renormalized signafl;, defined after (4.3.4) will be approximately identicadl = (B) ~

(B) = A. In this case, one can decompose the renormalized ngiey—i(y + wy7)]

as
agexp—i(p+wpT)] = Ap— Apexp—i(e+wpT)] + 71y
~ Zk{l—exp[—i(ap—{—wkTﬂ}—i—rk
~ @cp+Tdp+ry, (A.1.2)
where
. = 1Ay, (A.1.2a)

The termpcy, is responsible to first order for a phase shift) = uo(t) exp(iy), while the

componentdy, produces the time shift(t) = uo(t +7) and thus leads to timing jitter. The
101
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residual noise, is orthogonal to the;, andd,, with the scalar product R, v} = 0,
whereuv, = ¢, or v, = di. The vectors;, andd; will only be orthogonal to each other if
the signal is an even function in time. | note that the decomposition (A.1.1) is similar to
(3.2.10).

At the chirp-free maximum pulse compression point in the loop, one may define the

average signal phase by (4.3.3c), which can be written in the frequency domain as

N/2-1 B N/2-1
2 kI 2
cave= Y |Byl arctan(%)/ > [Bil*, (A.1.3)
k=—N/2 ) k=—N/2

where By, = By, r + 1By, 1 = Aj, + a;, are the Fourier modes of(t). First, one would
like to determine the relationship afyein (A.1.3) anda in (4.3.5) toy in (A.1.1), and
analogously the relationship ofto r, for small noise. The Taylor expansion of the signal

phase at frequency modg using the identitylarctan: /dz = (1+22)71, is

B T a [A —a A T
arcta Bk, — o+ k,Ik, R k,RAE,

+0(a?), A.l.4
kR |Ak|2 ( k) ( )

whereag = arctar{A, 1 /A r). Using (A.1.4), one may linearize the least-squares crite-
rion (4.3.5) to obtain
N/2—-1
. 1

H =min

2
N AN

2
|0k 1Ak — ar Ak — G+ o) 4P|, (A1)

whereda = a — ag. The stationary points of the sum in (A.1.5) with respectrtand 3

are given by
0H
Y |01 A = kAR — (Gt Bur)|AK] =0, (A162)
oH 2
5 —2) “wy [ak,IAk,R — ag, R A1 — (dor+ Bwy ) |Ag| } =0. (A.1.6b)
K

One may express the orthogonality relationsc,7) = (d,7) = 0 as
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Zk [TkJAIgR — Tk,RAk,I} =0 andzk Wi [Tk,IAk,R — TijAkJ} = 0. We infer

Z lak, 1Ak R — ak RART] = Z (p+Twr) |Arl?, (A.1.7a)
% k

> wpaksArr—arrArs] = > wile+Tw) Ay 2. (A.1.7b)
P P

Comparing the last two identities with (A.1.6a) and (A.1.6b), one concludes that the sums
in (A.1.6a) and (A.1.6b) vanish with the choiée = ¢ and3 = 7. This result shows
that the definition of an average phase (A.1.3) is reasonable and consistent with the least-

squares fit (4.3.5).

A.2 (Gauss-Hermite Integration

We chose a Gauss-Hermite integration technique as described by Abramowitz and Ste-

gun [61] to solve the convolution (4.6.16). This technique approximates the integral

/OO g(z)exp(—z?) dx ~ zn:wig(xi)7 (A.2.1)
=1

—00
whereg(x) is any function with which the integral in (A.2.1) exists; are weights, and
thex; are (unevenly spaced) abscissas. Botlandx; depend only om. The values are
tabulated and can be determined using numerical routines [82]. One must approximate

the integral

fyy:t) = /_ fyr=o(y.t =7) fr(7") dr’

1 oo 7_/2
= —o(y,t—7")e —— | d7’

= %/Z fy,7=0 <y, t— \/éaTx> exp(—xz) dx

Q

> wigi (A.2.2)
i=1
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where

G - %fy,7_0<y,ti> (A.2.3a)

t;, = t—tGH’i:t—\/éO‘TIi. (A.2.3b)

We choser =5. If f,(y,t) must be computed for many evenly spaced timésr instance
for the use in an eye diagram with a high temporal resolution, it might be faster to solve
the convolution (4.6.16) by Fourier transformirfg and f- with respect tot and take
advantage of the convolution theorem. The abscissas and weights=f@rare given in

the following table:

7 z; wW;

1| —2.020 | 0.01995

—0.9586| 0.3936

0 0.9453

0.9586 | 0.3936

o | AW DN

2.020 | 0.01995

A.3 Simultaneous Diagonalization

The theorem of simultaneous diagonalization (see [59, p. 106]) hold§ fé(real sym-

metric and positive definite) and’ (symmetric) and states that in this case there is a real
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2N x 2N matrix C with detC # 0 and

cH'k1lct = 7 and (A.3.1a)
CcHIwet = A=diag\,..., \on), (A.3.1b)
¢t = upy  with (A.3.1c)
UTK™ U = diages,...,con), UTU=I, (A.3.1d)

D = diage; "% .. 09, (A.3.1e)

VIny = A, Viy=1, (A.3.1f)

H = D'u"wunp, (A.3.19)

where all the); are real numbers. This diagonalization is equivalent to solving the gen-
eralized real eigenvalue problemC—* = K~1C~1A. Note that there is no need to ever
compute the matrig explicitly from C~1. We found that the implementation of (A.3.1a)—
(A.3.19) is preferable to using a general-purpose generalized eigensystem solver because
the matrix/D only depends o/ and has only to be calculated once, while the matfix
depends onV and hence on the time In particular when calculating eye diagrams that

require many pdfs, this approach yields a computational gain.

A.4 Algorithms

The computation of the electrical pdfs can be broken down into the optical transmission
part, yielding the covariance matri, the computation of the electrical pdf frokh, and
additional post-processing such as drawing eye diagrams and computing the optimum
BER. Without going into the details of the programming, | just state that the transmission
part is implemented as a stand-alone C++ program, and the computation of the BER and

any post-processing is implemented as Matlab code. | will now describe three parts of the
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algorithm, namely

1. The main loop of the transmission simulation routine,
2. the propagation of the covariance matrix, and

3. the computation of the electrical pdf.

The nonlinear propagation equation (4.2.1a) in all simulations in this dissertation is solved

with a third-order split-step algorithm [72].

A.4.1 The Main Loop of the Transmission Simulation

The transmission program can be operated in four different modes:

1. Noise-free propagation, yielding(t),

2. Traditional Monte Carlo simulation, yielding noise signal realizatiaiig) with

options to generate traditional eye diagrams and compute jitter averages,

3. Extended Monte Carlo: same as in mode 2., but with the additional computation of

KC by averaging over noise realizations according to (4.3.6),

4. Deterministic simulation: computeg(t) and IC, using the method described in

Section (4.4).

The goal in setting up the simulation this way was to facilitate the comparison of the
different pdfs resulting from modes 2—4. The algorithm in the main loop of the simulation

can be itemized as follows:
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1. Setup: Read in a parameter file that contains all physical and technical parameters,
such as the number of bits, the pulse durations, the peak power, the random gener-
ator seed, etc. Check the consistency of the parameters. Allocate and initialize all

arrays.

2. In Monte Carlo modes 2 and 3, start a loop over different noise realizations:

(a) Launch the optical signaly(t,0).

(b) In all modes, start a loop over the dispersion map periods, possibly preceded

by a pre-compensating fiber span:

i. Compute the signal evolutions element by element of the dispersion map
such as fiber spans, amplifiers, optical filters. Add ASE noise in amplifiers
in the Monte Carlo modes 2 and 3. In mode 4, propagatarough all

dispersion map elements.

ii. At regular intervals during the transmission, for instance every five dis-
persion maps, draw eye diagrams, compute various fluctuations such as

timing jitter, and accumulate data to compiiéz) at the local point.

(c) Write all data to the disk every 30 minutes.

3. Write the final fieldug(t), the matrix/C, and all eye diagrams and statistics to the

disk.

A.4.2 Deterministic Propagation of the Covariance Matrix

The deterministic propagation of the covariance mdfis described in Section (4.4) and

is implemented in the C++ routingopagator() . At every amplifier, Gaussian white
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noise power is added to the principal diagonakofThe action of an optical filter ok is
given by Koyt 11 = K H. H;, whereH; is the real filter function at frequency mode

| now summarize the algorithm for propagatiigover one fiber span from= 0 to
z = L, followed by an EDFA. First, propagate the fielg(¢,0) using a standard Fourier
split-step algorithm, yieldingo(¢, L). Saveup(t, L), return toz = 0 and repeat the fol-

lowing for eachk:

1. Computeu® (¢, L) by perturbingug(t, 0) in the k-th frequency mode and propagat-

ingittoz = L.

2. Separate the pulses in the signal by pasai(r’igaL) through a linear and lossless

fiber with total dispersior-D(L).

3. Compute the perturbation vectaf*) and apply the phase jitter separation (4.4.5a),
(4.4.5b) individually to each pulse, yielding the vecidf) of the dispersion com-

pensated signal.

4. Invert step 2 to comput’é(k) at point L. Evaluate the propagator matrix elements

W, forall ;.

Finally, computefC( L) according to (4.4.2).

A.4.3 Computation of the Electrical pdf from the Covariance Matrix

The computation of the electrical pdf from the covariance matrix is implemented in the

Matlab routinenoise.m.

1. Read inA, the noise-free optical field vector in frequency domain, &ihdhe co-

variance matrix at the receiver.
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2. To increase the numerical accuracy, scdlandK so that the maximum element of

K becomes 1.

3. As Figs. 6.2(b) and 6.7(b) show, some of the eigenvaluels cn become very
small or even negative during the propagation, due to numerical inaccuracies. These
small eigenvalues would inhibit the inversion &f If there are any eigenvalues
of K that are smaller than= 1/300times the maximum eigenvalue, diagonalize
MTKM = A whereAg is the diagonal matrix of the eigenvalues, increase the
small eigenvalues to the threshold value, and compute a corrected covariance matrix
K = MA}CMT. | verified that the resulting pdf is independentcobver a wide

range.

4. InvertK'.

5. Compute the matrik/D by applying (A.3.1d) and (A.3.1e).
6. Compute the self-adjoint matri®/;,; as described in (4.6.3).

7. Start a loop over all points in time= ¢, for which the pdf must be computed:

(a) If timing jitter was separated and must be added again by applying (A.2.1),
start a loop over the: Gauss-Hermite sample timeg; = t;, — tgm,; With
1<i:<n:

i. ComputeW(t ;) fromF.
ii. Compute the matrig{ by evaluating (A.3.1g), then computeandA.
ii. Compute the valuess;(tr;) = NQ? = >, AWin(tri) A, and
ynf(tk,i) = D2 81-

Iv. Invert step 2.
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Vi.

Vil.

viii.

Evaluate the characteristic functidn_o(¢, ¢ ;) for zero timing jitter ac-
cording to (4.6.12), using.

Prepare the discrete Fourier transform to compfjte_o(y,tz;) : If

i = 1, optimize the grid incremen(;. to yield the best resolution in
fyr=0(y,tk.i) ThisAg is then used for all.

Compute f, -—o(y,tx;) by taking the discrete Fourier transform of
Dr—o(C, tk.i)-

Verify that f, -—o(y, tx,;) is normalized and, ,—o(0,x;) = O, then save

it.

(b) Computef,(y,ti) from the f, -—o(y.tx ;) by applying (A.2.2).

(c) Saveynt(t), AC, , and fy (y,tx).

8. Write all ynt(ty), AC, , and fy (y,t) to the disk.

It turns out that that the steps 2, 3, and 7(a)vi significantly improve the numerical accuracy

of the resulting pdf. The computation can fail altogether if step 3 is omitted. Both steps 2

and 7(a)vi improvef, (y,t) by lowering the roundoff floor. According to my experience,

fy(y,t) will never span more than about 16 orders of magnitude when ukingle

floating point arithmetic (64 bits). | use a Fourier transform vector length of 1024 in

step 7(a)vi.

A.5 Split-Step Accuracy

All simulation in this dissertation are based on the third-order split-step algorithm [72]. In

order to compare traditional Monte Carlo simulations to the deterministic method, one has

to verify that the numerical accuracy is sufficient. We propagate one single Monte Carlo
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Figure A.1: Simulated values of global versus local relative etf@®r shown by the circles for the

(a) DMS system and (b) CRZ system. The lines are fits to a power law.

noise realization in both the 8-bit DMS system over 24,000 km as described in Section 6.1
and in the 32-bit CRZ system over 6,100 km as described in Section 6.2, while varying
the local relative error boundl= ||u. —uy|| /||uy||, whereu. anduy are the coarse and

the fine solutions respectively [72]. The noise is only added inNhewest frequency
modes and the random generator’s seed is the same in all simulations.

In Fig. A.11show the global relative errer= ||u s — ul| / ||u|| versus the local relative
error ¢ in double-logarithmic scale, wherg) is the optical field at the receiver that
was obtained using the error boutidandw is the solution fors = 1012, The circles
in Fig. A.1(a) show simulation values efé) for the DMS system, and the line is a fit
with the functiongé™, whereq = 1.737x 10* andm = 1.594 Fig. A.1(b) displays the
same for the CRZ system, whege= 33.19 andm = 1.258 For a global error goal of
e < 10~° that | used in the Monte Carlo simulations, the fit yields the local relative errors
of 6 = 1.6 x 107 % andé = 6.6 x 106 for the DMS and CRZ systems, respectively. For
e=10"% one findsy = 6.8 x 107 % andé = 4.0 x 10°°.
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