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Abstract

Title of Thesis: Comparative study of receiver models for
optical communications systems

Anshul Kalra, Master of Science, 2006

Thesis directed by: Professor Curtis R. Menyuk
Computer Science and Electrical Engineering

The design and performance evaluation of optical fiber communications sys-
tems relies critically on receiver modeling. In this thesis, we compare two
receiver models — the integrate-and-dump receiver and a realistic receiver
using two current distributions to obtain the bit-error ratio (BER) from the
two receiver models. The current distribution models used are the Gaussian
approximation of the pdfs of the receiver current and the generalized x? dis-
tribution of the pdfs of the receiver current.

Our results show that the BER obtained from the integrate-and-dump
receiver model does not differ significantly from the BER obtained from the

realistic receiver model.
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Chapter 1

Introduction

The invention of the laser and the development of optical fibers that are able
to carry light signals over long distances have resulted in the development
of high-speed optical telecommunications systems. The laying of undersea
long-haul fiber cables connecting the different continents in the 1980’s and
90’s resulted in cheaper long distance communications. The “Internet Revo-
lution” that we are experiencing today would not have been possible without
the extensive deployment of high-data-rate optical fiber transmission systems
during the last two decades. The growing use of optical fibers has also meant
that larger bandwidths are available for communications applications, thus
providing an impetus for the development and implementation of better tech-
nologies in networking, signal processing, and communications software and
hardware [1].

Optical fibers offer several advantages over other signal transmission me-

dia like radio, satellites, coaxial cable, or the traditional copper wire. Fiber

optic cables can support much higher data rates, and they are less lossy,



so that they have the ability to carry information signals over much longer

distances.

The pressing demand for more bandwidth in today’s world, primarily
due to the evolution of the internet and high speed computer networks, has
resulted in a requirement for the design of better optical communications

systems that can support even higher data rates and are more reliable.

As optical communications systems have become faster and more complex,
computational modeling has become an important tool in the evaluation and
design of these systems and their components. The necessity for fast modeling
tools, coupled with the complexity of optical transmission systems, makes it
necessary to use a number of approximations and assumptions in modeling.

Often, engineers and physicists are only interested in understanding is-
sues related to the transmission of signals. Alternatively, they may only be
interested in understanding issues related to the receiver. Hence, a general
practice is to separate the transmission modeling from the receiver modeling.
Highly simplified models are often used for the transmission or the receiver
or both. It is rare that both the transmission and the receiver are accurately

modeled in a simulation.

However, one must carefully analyze and understand the limitations of
making simplifying assumptions and approximations by comparison with
more rigorous and detailed models. For example, a commonly used sim-
plification in receiver modeling is to assume a Gaussian distribution for the
probability density functions (pdfs) of the current in the receiver. The degree
of validity of this assumption has been discussed in papers written by Lee and

Shim [2] and Forestieri [3] who demonstrated that the current distribution of



the marks and of the spaces in the receiver is a generalized x? distribution
and that the Gaussian approximation overestimates the minimum bit-error

ratio (BER) by one to two orders of magnitude.

Another common simplification for the receiver is to model the electri-
cal filtering as an integrate-and-dump operation. This approximation makes
calculating the distribution of the current in the receiver easier than when
using an accurate filter model, and in certain cases yields analytical expres-
sions for the BER and @Q-factor [4], [5]. In a previously published work, my
colleagues and I compared receiver models with integrate-and-dump and re-
alistic electric filters using the GGaussian approximation of the voltage pdfs.
We showed that the BERs are comparable, but the decision thresholds differ
significantly [6].

This thesis addresses the issue of the validity of the integrate-and-dump
receiver approximation. My colleagues and I made an in-depth comparison
between the integrate-and-dump receiver model — which consists of a pass-
band optical filter, a square-law detector, and an integrate-and-dump elec-
trical filter — with a realistic receiver model that has practically realizable
optical and electrical filters. The performance of the two receiver models is

quantified by comparing the calculated BERs.

When comparing the receiver models, we used two current distributions
for each of them when computing the BER. The first current distribution
is the commonly-used Gaussian approximation of the pdfs of the receiver
current. The second current distribution uses the real pdfs of the receiver
current. These pdfs obey a generalized x? distribution. We then computed

the BER from these pdfs. We compared the BERs and the corresponding



decision thresholds for the two receiver models, using these two current dis-
tributions. Please refer to Figure 1.1 on page 5 for a schematic elaboration
of the work proposed in this thesis.

Although I show results for all four combinations, the following compar-

isons are the most relevant and I will focus on these.

1. The comparison between the integrate-and-dump receiver model with a
current distribution employing the Gaussian approximation of the pdfs
and the realistic receiver model with a current distribution using the

generalized x? pdfs.

2. A comparison between the integrate-and-dump receiver model and the
realistic receiver model with a current distribution using the generalized

x? pdfs.

A thorough comparison between the two receiver models is made by look-
ing at how closely the BERs and decision thresholds match for various signal
modulation formats, filter bandwidths, noise power levels, and extinction
ratios. The signal modulation formats used are return-to-zero (RZ) and non-
return-to-zero (NRZ). The impact of changing the pulse duration for RZ
pulses and the rise time for NRZ pulses is also studied.

The outline of the thesis is as follows: Chapter 2 briefly describes optical
fiber communications systems and in particular discusses receivers for these
systems. I also discuss in detail the design of the integrate-and-dump receiver
model and the realistic receiver model. Chapter 3 contains the theory of the
two current distributions that we used — the Gaussian approximation of the

pdfs and the generalized x? pdfs. The generalized x? pdfs are exact, assum-



ing square-law detection and linear electrical filtering. The C++ algorithm
used to simulate and compare the two receiver models with the two assumed
current distributions is also illustrated in this chapter. The simulation results
are presented in Chapter 4. I summarize the results of my thesis and draw

my main conclusions in Chapter 5.

Receiver model

Integrate-and-dump receiver model Realistic receiver model

Flat Square- Integrate- Fabry- Square-

top |, law || and-dump i Perot | »| law || Besself

optical photo- electrical | | 1 || optical photo- filter i

filter detector filter H filter detector !
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Figure 1.1: Schematic illustration of the receiver models and assumed cur-
rent distributions. We investigate all four combinations. The receiver models
differ in their treatment of the optical and electrical filters. The assumed
current distribution applies at the detection point at the end of the receiver
models. The Gaussian probability distribution is a commonly used approx-
imation while the generalized y? probability distribution model is exact for
the receiver models that we are considering.



Chapter 2

Receliver — An overview

This chapter provides a description of the receivers in modern optical fiber
communications systems. I start with a brief description of a simplified opti-
cal communications system in Section 2.1. Section 2.2 provides a schematic
description of a basic receiver design and describes in detail the integrate-
and-dump receiver model and the realistic receiver model with practical fil-
ters. Section 2.3 deals with noise — optical noise that is generated during
transmission and both optical and electrical noise that is generated in the
receivers. In Section 2.4, I review some of the commonly-used measures of

system performance in optical fiber communications systems.

2.1 Optical communication systems

An optical fiber communications system consists of a transmitter, a transmis-
sion line, and a receiver. Typically, the transmitter consists of a laser diode

and a modulator, the transmission line consists of a chain of cascaded optical



fibers and optical amplifiers, and the receiver consists of a photodetector,

optical and electrical filters, amplifiers, and a decision circuit.

Optical signal transmission in fibers is impaired by signal distortion, signal
loss, and noise. The impairments can be attributed to effects such as chro-
matic dispersion and the Kerr nonlinearity, which cause temporal broadening
and spectral broadening of the optical pulse, respectively. The combined ef-
fects of these two phenomena on pulse evolution are in general complicated.
Signal distortion is also introduced by the interaction between neighboring
signal pulses in the same wavelength channel and crosstalk between adja-
cent channels. Random fluctuations in the fiber birefringence give rise to
polarization-mode dispersion (PMD), which causes further degradation by
broadening the pulse. Optical amplifiers are used to overcome the signal loss
along the fiber. Their drawback is that they introduce amplified spontaneous
emission (ASE) noise [7].

Due in part to the large number of complex components making up an
optical transmission system and the various transmission impairments just
described, modeling optical transmission systems is complicated. One way
to gain insight into system performance in the presence of noise or other
statistical impairments is by using Monte-Carlo techniques [8]. However,
Monte-Carlo techniques are computationally expensive, and the accuracy of
the results grows typically only as the square root of the number of system
realizations. The computational time required for these simulations may be
prohibitively large. Thus, it is often useful to make simplification that will
allow the modeler to calculate the pdf of the noise or some other fluctuation

analytically or through a simple computation. For example, it is very common



to assume that the noise is unaffected by the transmission and is determined
by the gain profiles and the spontaneous emission factors of the amplifiers in
the transmission line. In this case, the noise pdf can be found analytically [4].

Transmission modeling can often be separated from receiver modeling,
especially when one is solely interested in analyzing transmission problems.
The same is true for modeling receivers. The performance and design of
receivers can be understood without considering transmission effects. In order
to compare the two receiver models — the integrate-and-dump receiver model
and the realistic receiver model — my colleagues and I have neglected all
transmission effects. The inputs to the receiver model are the noise-free signal
and noise that is additive, white, and Gaussian. The additive white Gaussian
noise (AWGN) assumption for the input to the optical receiver often works

well in practice [9].

2.2 Basic receiver design

In this thesis, we are concerned with the design of receivers for the amplitude-

shift keyed (ASK) modulation format only. The basic receiver design that will

Clock
Pre - | Optical . _| Electrical recovery
amplifier[ ] Filter | ] T notodetector—= i ™ and decision

circuit

Figure 2.1: Schematic illustration of a basic receiver

be studied in this thesis is shown in Fig. 2.1. Modern commercial receivers are



more complicated than the design in Fig. 2.1, and the details of their designs
are usually proprietary and thus not generally available. However, the simple
receiver design illustrated in Fig. 2.1 is adequate to describe the essential
signal processing that occurs in the receiver. This design is often studied
in the scientific literature [1]. Moreover, this receiver approximates well the

receiver design for the experiments that are carried out at UMBC [10].

A pre-amplifier is first used to boost the received signal power to a level at
which the optical noise will dominate over the electrical noise in the receiver.
Previous studies have shown that optical pre-amplification increases receiver
sensitivity [11]. The pre-amplifier also adds noise to the signal, which can be

approximated as AWGN.

The optical filters generally used in optical communication systems are
either Fabry-Perot interferometers, Bragg gratings or array waveguide grat-
ings (AWG). The function of the optical filter is to demultiplex channels and
to limit the amount of noise entering the photodetector. In this thesis, I have
computationally implemented a passband filter and a three-mirror Fabry-
Perot filter for modeling the optical filter in the integrate-and-dump receiver

model and the realistic receiver model, respectively.

The photodetector converts the optical signal into an electrical signal. A
simple model of the photodetector that neglects shot noise and dark current
can be described by the equation I,y = s|FEip,|[>. The input to the photode-
tector is Ej,, which is the sum of the electrical field envelopes of the optical
signal and noise, and I, is the output current. The parameter x is the
responsivity of the photodetector. The photodetector squares the combined

signal and noise, which results in noise-noise beating and signal-noise beating
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contributions to the photodetector current, so that

Iout — "‘5|€in+5€noise|2

= H[|ein|2 + |‘5‘3noise|2 + €ind€poise T €imdenoise], (2.1)

where e;, is the noise-free electrical field envelope and deyyise is the noise
contribution to the electrical field envelope entering the photodetector.

I emphasise that photodetection is a nonlinear process. This operation is
the only nonlinear operation in our receiver model and is the reason that the
exact current pdf does not obey a multivariate Gaussian distribution.

After photodetection, electrical filtering is done to remove noise. The
design of the electrical filter crucially affects the receiver performance. The
BER increases significantly if one chooses a bandwidth that is too large or
too small. We define the bandwidth of the electrical filter as the frequency
separation between the 3-dB points of the filter, which are the points cor-
responding to a reduction of signal power by 50% relative to the peak. In
the realistic receiver model, I model the electrical filter as a Bessel filter. All
optical and electrical filters discussed in this thesis have been modeled as loss-
less devices at the peak, i.e., H(w = 0) = 1.0, where H(w) is the frequency

response of the filter.

2.2.1 Integrate-and-dump receiver model

The integrate-and-dump receiver model consists of a preamplifier, a passband
optical filter, a square-law detector, and an integrate-and-dump electrical fil-

ter. The chief advantage of this model is that it simplifies the mathematics
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of the receiver model. Neglecting transmission effects and assuming that the
optical noise entering the receiver is AWGN, Marcuse [4] and Humblet and
Azizoglu [5] have shown that the pdf of the current in the receiver for both
the marks (1’s) and the spaces (0’s) can be expressed in terms of elementary

functions and Bessel functions.

Integrate-and-dump filter

The integrate-and-dump filter processes an input signal just as the name
suggests; it finds the total current in a bit period and at the end of the bit

period, it “dumps” out the average current in the bit period:

Lo (t) = /t tT L (1), (2.2)

S| =

where T’ is the bit period.

This filter is close to ideal for digital optical communication systems,
since it integrates all the current inside a bit slot and none of the current
outside, thus minimizing interference between neighboring bits. However, it

is physically unrealizable.

Since filters are generally described in the frequency domain, we will next
use equation (2.2) to calculate the frequency response of an integrate-and-
dump filter. Filtering in the time domain is equivalent to a convolution
between the signal and the filter function. Hence, we can write y(t) =
[Z h(T)z(t — T)dT, where z(t) is the input signal, h(t) is the filter func-

tion in the time domain, and y(¢) is the filtered current. In the time domain,
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the integrate-and-dump operation is a gating function,

1
h(t) = T 0<t<T (2.3)
0, otherwise

The filter function in the frequency domain can then be found by taking the

Fourier transform:

H(w) = / " h(texpiwt)dt = ‘m’(z#

o0

(2.4)

2.2.2 Realistic receiver model with practical filters

In the realistic receiver model that my colleagues and I have used to make
a performance comparison with the integrate-and-dump receiver model, the
optical filter is a three-mirror Fabry-Perot filter and the electrical filter is a

fifth-order Bessel filter.

Fabry-Perot filter

A single-cavity, two-mirror Fabry-Perot interferometer makes use of mul-
tiple reflections between two closely spaced, partially-silvered surfaces. The
frequency response of the filter can be changed by changing the air pressure
between the two mirrors, or by changing the spacing between the two mirrors,
or by varying the tilt of the mirrors. A three-mirror Fabry-Perot filter per-
forms better than a two-mirror Fabry-Perot filter [12]. Figure 2.2 compares

the performance of a three-mirror Fabry-Perot filter with that of a two-mirror
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Transmittance
(@}
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0 25 50 75 100
Frequency (GHz)

Figure 2.2: Comparison of the power transfer function for a three-mirror
Fabry Perot(—) and a two-mirror Fabry Perot(- - -)filter.

Fabry-Perot filter, both having the same half-width half maximum (HWHM)
bandwidth of 25 GHz. Since the three-mirror Fabry-Perot response is more
flat-topped and then it dies more quickly, it gives a superior performance
compared to the two-mirror Fabry Perot filter. Assuming that there are no

losses, the frequency response of a three-mirror Fabry-Perot filter [13] is given

by
VITy

_ : 2.5
1 -2V RyRyexp(iw/FSR) + Riexp(2iw/FSR) (2:5)

H(w)

where Ry and R; are the reflectances, while Ty and T} are the transmittances
of the center and the outer mirrors respectively. The factor FSR is the free

spectral range of the cavity. The frequency response of the filter is of the
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second-order Butterworth type [12] if one sets the value of R, to

4R,

Ry=————.
0 (1—|—R1)2

(2.6)

My colleagues and I have set I equal to 0.8. This value is typical in prac-
tice [12]. The power spectral width By is a useful measure of the optical filter

bandwidth, which we define as

By — / T H()PY, (2.7)

—0o0

where H(f) is normalized so that H(0) =1 and H(f) is unitless.

Bessel filter

The Bessel filter’s distinguishing characteristic is the near-constant group
delay throughout the pass band of the low-pass filter [14]. The phase response
of a Bessel filter has a slower rate of change than in the case of a Butterworth
or a Chebyshev filter. Hence, if a waveform with high harmonic content is
filtered, such as a square wave, the delay in the harmonics relative to the fun-
damental frequency is smaller for a Bessel filter than it is for a Butterworth
or a Chebyshev filter, so that there is less overshoot and ringing of the signal.
Its disadvantage is that it has a slower initial rate of attenuation beyond the
passband than does a Butterworth filter. It takes a higher-order Bessel filter
to give a magnitude response similar to a given Butterworth filter, but the
pulse fidelity of the Bessel filter makes the added complexity worthwhile in

practice. The Bessel filter can be implemented as a ladder of capacitors and
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inductors. The frequency response of a fifth-order Bessel filter is given as

945
§° 4+ 15s* + 10583 + 42052 + 9455 + 945’

H(s) =

(2.8)

where s = —iaf/ fsan, where fsqp is the 3 dB filter bandwidth and « is a

scaling factor. For a fifth-order Bessel filter o equals 2.4274.

2.3 Noise in optical communication systems

Noise in optical fiber communication systems is added in both the optical fiber
transmission line and in the receiver. The noise added during transmission is
due to ASE noise from the amplifiers. The receiver adds noise in the optical
domain from the pre-amplifier prior to photodetection and in the electrical
domain after photodetection. Receiver sensitivity is highest when optical

noise from the pre-amplifier is greater than the receiver’s electrical noise [11].

2.3.1 Optical noise

Both thermal noise and amplified spontaneous emission (ASE) noise con-
tribute in principle to optical noise during transmission; however, thermal
noise power is completely negligible. ASE noise from erbium-doped fiber
amplifiers (EDFAs) is due to spontaneous transitions in which erbium ions
randomly make a transition to a lower energy state and emit a photon. As a
consequence of the noise, there is a minimum threshold for the transmitted
signal power below which a mark cannot be distinguished from a space by the

decision circuitry with an acceptable BER. ASE noise is also responsible for
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partial saturation of the optical amplifiers located further down the fiber link,
which may result in reduced signal gain from the amplifier [7]. Heffner [15]

showed that the minimum added noise power Py is equal to
Py = hvB(G - 1), (2.9)

where G is the amplifier gain, B is the full width half maximum (FWHM)
bandwidth, h is Planck’s constant, and v is the frequency of light correspond-
ing to the center wavelength of the light signal. Equation (2.9) represents the
quantum limit. Modern amplifiers exceed this limit by a factor referred to as

the spontaneous emission factor ng,, which is usually less than two.

Each amplifier adds noise to the signal independently. To determine the
noise at the receiver when the nonlinear interaction between the signal and
the noise can be neglected, one may simply sum the noise from all the in-line
amplifiers. T quantify the noise power using the noise spectral density, Nasg,
which is defined as

Py
Nasg = 42[ total (2.10)
0SA

where Pp_iota1 1S the total noise power due to all the in-line amplifiers in
the transmission line and the pre-amplifier of the receiver, Boga is the power
equivalent spectral width of the optical spectrum analyzer (OSA) and is given
by Bosa = [~ |hosa(7)|?dr, where hoga(7) is the impulse response of the
OSA. The OSA is placed at the receiver and its frequency window is set equal
to 25 GHz. The OSA is used by experimentalists to find the optical signal
to noise ratio (OSNR) in a frequency window. Neglecting all transmission

effects implies that the optical signal power remains unchanged and that the
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noise power can be calculated from the SNR value determined from the OSA.

By modeling the noise entering the receiver as AWGN, I have neglected
signal-noise interactions and noise-noise interactions during transmission.
Considering signal-noise interaction during transmission would result in multi-
variate-Gaussian-distributed noise at the input to the receiver. We make the

AWGN assumption for the following reasons:

1. For a number of optical communication systems, nonlinearity is quan-
titatively a small effect and the resulting signal-noise interactions are
weak. For such systems, AWGN noise at the input of the receiver is

sufficient to describe the noise characteristics of the system.

2. Since the goal of this thesis is to compare different receiver models, it
is both sensible and standard to take the simplest possible model for

transmission noise.

2.3.2 Electronic noise

Any part of the receiver containing a resistive element can give rise to thermal
or Johnson noise [1], [9]. This noise is associated with the random thermal
motion of charge carriers in the dissipative element. In the case of an optical
communication system receiver, this noise is primarily added by the load
resistor in the receiver input circuit. Thermal noise can be considered white
noise for all practical purposes.

Shot noise is noise caused by current fluctuations, which are due to the
discreteness of charge carriers [9]. The noise spectral density of shot noise

is independent of frequency and hence is white. Dark current noise and
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quantum noise are two types of noise that manifest themselves as shot noise.
Dark current noise results from dark current that continues to flow in the
photodiode when there is no incident light. Dark current noise is independent
of the optical signal. In addition, the discrete nature of the photodetection
process creates a signal-dependent shot noise called quantum noise. Quantum
noise results from the random generation of electrons by the incident optical

radiation.

In modern optical communication systems, the contributions of electrical
noise are negligible when compared to optical ASE noise, and hence we neglect

the electronic noise sources.

2.3.3 Noise covariance matrix

To describe the statistics of noise evolution in an optical fiber transmission
system, we expand the noise signal as a Fourier series. The noise evolution in
an optical fiber transmission line can be described by utilizing a covariance
matrix. An individual element of the covariance matrix K;; = cov(x;, ;) is

given by,

cov(zi, j) = (v — ) (x5 — 1)) = (@iwy) — (i) (). (2.11)

The two variates, z; and x; are the Fourier coefficients of the noise signal and
pi = (z;) and p; = (x;) are the means of z; and z; respectively. When i = j,
we obtain

cov(zi, x;) = (x2) — (2;)* = 0. (2.12)

2
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With no transmission effects, the noise signal remains white. In this case,
the Fourier coefficients of the noise signal are independent and identically-
distributed Gaussian variables with zero mean and with a variance o2 that
is equal to the noise power in the frequency band occupied by one Fourier
component. Since the covariance of two independent variables is zero, the
noise covariance matrix at the input of the receiver is a diagonal matrix and

each diagonal element equals o2.

The power of the noise signal, Py, can be written as
PN :NASEAfN, (213)

where Nqg is the noise spectral density, A f is the frequency window occupied
by one Fourier component, and NV is the number of frequencies in the discrete-
time Fourier transform (DTFT) of the signal. The relation between the noise
spectral density and the diagonal element K;; of the covariance matrix is

Nasg = 0?/Af.

2.4 System performance metrics

The most fundamental measure of system performance is the bit error ratio
(BER). Tt is defined as the ratio of the total number of received bits in error
to the total number of bits transmitted. Assuming that the likelihood of
transmission of a mark is the same as that of a space, the BER can be

expressed as

BER(ya) = 5(Pon(00) + Pro(ya)l (2.14)
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where Py (yq) is the probability of receiving a space when a mark is transmit-
ted when yq is the decision threshold. Analogously Pyjo(ya) is the probability
of detecting a mark when a space is transmitted, where y; is the decision

level. These two probabilities are defined as

Pon(va) = / )y, (2.15)
Palw) = [ " foly)dy, (2.16)

where f,; and f,o are the pdfs of the received low-pass filtered electrical
current in the marks and in the spaces, respectively. These pdfs are dependent

on the sampling time at the receiver.

Accurate computation of the BER for even approximate system models
can be difficult. A commonly used approach to obtain an estimate of this
quantity is to approximate the pdfs of the current at the decision point in
the receiver by assuming that they are Gaussian-distributed. With Gaussian

pdfs for the marks and spaces, one finds that [16]

BER () = % [erfc (“ :/;a?d> + erfe (yd\/;g’:‘) )] , (2.17)

where g, i1 are the mean values, 0y, o, are the standard deviations of the
current in the spaces and the marks respectively, and erfc is the complement
of the error function. The decision level corresponding to the minimum BER
can be obtained by setting the derivative of Equation (2.17) with respect to

yq equal to zero.

Another widely-used performance measure is the @-factor. It can be
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obtained from Equation (2.17) by setting the probability of error in the marks

and the spaces equal, so that

M1 —Yd  Ya — Ho
Q: pu—
01 (o)
_ M1~ to
0'1—|—0'0'

(2.18)

In the Gaussian approximation of the pdfs of the current in the marks and

spaces, the relationship between the BER and the ()-factor is

BER = %erfc (%) . (2.19)

Although the value of BER obtained from @ is not the minimum BER that
can be obtained from equation (2.17), it becomes equal to it when @ is large
and is close to it for practical ¢ values [16].

Another important figure of merit that is even easier to measure is the
OSNR (optical signal-to-noise ratio). It measures the ratio of optical sig-
nal power to noise power for a specified optical bandwidth. It is generally
measured before the receiver by using an optical spectrum analyzer (OSA).

From the definition of OSNR, we have OSNR = Pg/Py, where Ps is the
signal power and Py is the noise power, at the input of the receiver. We use
the results from Subsection 2.3.3 to show that the OSNR is related to the

variance 02 = Kj; by
Pg

NR —
OSNR (Ki)N

(2.20)

In our simulations, the OSNR is used to characterize the statistics of the

noise signal.



Chapter 3

Assumed current distributions

Section 3.1 discusses the assumed current distribution that uses the Gaussian
approximation of pdfs of the marks and the spaces at the decision point in the
receiver. Section 3.2 discusses the assumed current distribution that uses the
generalized x? pdfs of the currents, which are exact for the receiver models
that we are using. Section 3.3 describes the C++ algorithm to calculate the

pdfs using these two current distribution models.

3.1 Gaussian current distribution

For an arbitrary optical field and additive white Gaussian noise (AWGN) at
the input of the receiver with arbitrary optical and electrical filter shapes,
Winzer [11] derived the first two central moments of the filtered electric cur-
rent in the marks and spaces. I will now describe the mathematical procedure.

The notation and discussion follows Lima [17].

Let us designate the optical field incorporating all propagation influences

22
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at the input of the receiver as e;,(t). We assume that the optical noise from
the in-line EDFAs in the transmission line is the dominant source of noise in
the system and that this noise n(t) at the input of the receiver is AWGN. Let
Nasg be the noise power spectral density. The receiver consists of an optical
filter with a transfer function H,(w) and with an impulse response h,(t), a
photodetector that is mathematically modeled as a square-law device having
responsivity «, and an electric filter with a transfer function H,(w) and with
an impulse response he(t). The filters are modeled as lossless devices, i.e., the
area of the impulse response functions is unity, so that H(0) = ffooo h(t)dt =

1. The filtered current at the output of the electric filter is given by

i:l{{ 2*he}, (3.1)

where the convolution of two functions A and B of time t is defined by

[ein + n] * N

(A= B)(t) = [~ A(r)B(t — T)dr. The noiseless current at clock recovery
time t is given by i(tqx). The clock recovery time is found numerically by

using the 10 GHz tone of the optical signal.

The noise current is given by

in:I{[

The mean current due to noise is a constant and given by (i,)(t) = (i,) =

nx hy,

2* he] . (3.2)

NaseB, , where B, is the power spectral bandwidth of the optical filter. The
mean current at clock recovery time is the sum of the noiseless electric current

at the clock recovery time i(¢.x) and the mean noise current (i,).
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The variance of the electric filtered current is given by

o*(t) = (#)(t) = (i)"(t) = oRsp-ase + 0&as(); (3-3)

where 03¢p asp 1S the variance in current due to noise-noise beating in the
receiver and o2 ,qp is the variance in the current due to signal-noise beating.

The value of 03¢y zgp 18 given by

Fswse = Nser® [ Iro(n)Pr(rir, 3.9
where 7,(7) = [*_ho(T')hi(T + 7)dr" and r(t) = [7 he(r)hi(T + T')dr’

are the autocorrelation functions of the optical and the electrical filters, re-
spectively.

The variance due to signal-noise beating can be written as

o (o.9]

€Out(7')he(t—7')d7'></ er (T he(t—7")ro(t—7")d7',

Ug—ASE(t) = N§SE“2/
(3.5)

oo

where e,y = €, * h,. The variance of the current is also computed at the

clock recovery time.

Hence, the first two central moments of the current in the marks and
spaces can be computed. Since the Gaussian distribution is completely spec-
ified by the first two central moments, there is now sufficient information to
approximate the pdfs of the current in each bit by Gaussian functions. The
pdfs of the currents in all the transmitted marks is averaged to yield the aver-
age pdf of the current in the marks. A similar procedure is used to obtain the

average pdf of the current in the spaces. The BER as a function of decision
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voltage can then be computed using Equation (2.14). The minimum BER

and the corresponding value of decision threshold are thus obtained.

3.2 x? current distribution

In this section, I describe the current distribution model that provides the
generalized x? pdfs of the electric current in the receiver. This model is based
on the work of Holzlohner, et al. [18]-[19].

Let u,(t) and du(t) represent the noiseless optical field and the total ac-
cumulated noise field at the input of the receiver, respectively. We express
uo(t) and du(t) as a Fourier series,

N/2—1

up(t) = > Ajexp(—iwyt), (3.6a)
I=—N/2
N/2—1

du(t) = > rexp(—iwt), (3.6b)
I=—N/2

where w; = 27l/T and T is the time period of the signal. A real signal is not
periodic, but we may take T' to be very large. We use this periodic analysis

for computational convenience.
The effect of optical filtering is to multiply the Fourier components of
the input noisy signal by the filter function H°P*(w) in the frequency do-
main. Assuming that the photodetector is an ideal square law detector with

responsivity k, we obtain

N/2—1 N/2—1

I(t) =k Z Z (Ag + ) HPP (A + ) H exp [ — it(w, — wi)], (3.7)
k=—N/21=—N/2
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where z* denotes the complex conjugate of z. The filtered current y(t) after

passing the current I(¢) through a low pass electrical filter is given by

N/2—1 N/2-1

y(t) =k Z Z (Ap + 7)) HyP (A + ) HP exp | — it(w; — wi) | HiL,.
k=—N/2l=—N/2
(3.8)

We define a complex matrix W of size N x N,
Wkl(t) = IiH](c)pt*HlOptHlelkeXp(—Z'twl_k), (39)

that takes into account the combined effect of the optical filter, the photode-
tector, and the electrical filter. We may now write y(t) as

N/2—1
y(t)=r > (Ap+re) Wi(t) (A + ). (3.10)

kJl=—N/2
Since y is real for all £, W must be a Hermitian matrix, so that Wy,(t) =
Wi, (t). I next express the complex Fourier coefficients Ay, of the signal ug(t) as
areal vector, A = (A_njo.r, -+ s Anjo—1,m, A-njor, -+« Anjo—1,1)T, where the
subscripts R and I refer to the real and imaginary parts of each component.
We similarly express the components 7, of the noise du(t) as a real vector
r= (T—N/2,R, * 5 TN/2—-1,Ry T—N/2,I, " ** ,TN/2—1,1)T-

We may now re-express y(t) and W,

y(t) = (A +1)"W(H)(A +1), (3.11a)

Wrp —W
w=| " = (3.11b)
W, Wy
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where Wg is the real part of W and W; is the imaginary part of W.

To derive the pdf of the current y(t), we first find the Karhunen-Loeve
modes of y(t), thereby expressing y(¢) as a sum of independent random vari-
ables. The convolution of the pdfs of these random variables then determines

the pdf of the current.

In Subsection 2.3.3 1 showed that the noise covariance matrix is a diag-
onal matrix when the noise is white. Hence, both the filter matrix ¥V and
the inverse noise covariance matrix X ~! are symmetric matrices and positive
definite, so that they may be simultaneously diagonalized. By doing so, we
manage to introduce the noise moments into the equation of the filtered cur-
rent. Next we apply the theory of simultaneous diagonalization [20], which

states that there exists a real matrix C' satisfying

K-'=c0"c, (3.12a)

W = CTAC, (3.12b)

where A is a time-independent diagonal matrix in which each element A
is real. In the case presented here in which one considers additive white
Gaussian noise at the receiver without transmission effects, the covariance
matrix K becomes an identity matrix multiplied by a scalar. The problem of
simultaneous diagonalization then reduces to a simple diagonalization. The

transformation C' yields the Karhunen-Loéve modes of y. From (3.11a) and
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(3.12b) we find,

y(t) = (A +r)TCTAC(A + 1),

y(t) = (Q+a)"A(Q+q), (3.13)

where Q(t) = Cy(t)A; represents the Karhunen-Loeve modes of the noise-
free signal and g (t) = Cj;(t)r; represents the noise modes. Expanding y(¢),

we obtain

N N
y(t) = Z Me(QF + 2Quqr + 7)) = nga (3.14)
k=1 k=1

where gp = M\(Q? + 2Qkqr + ¢7) represents a set of independent random
variables. Since y(t) can be written as a sum of independent random variables,

its pdf p,(¢) is a convolution of the pdfs of these random variables,

Py(U,t) = Pg1(g1,t) * Pg2(g2, 1) - % Pgan (92N, 1) (3.15)

We next exploit the Fourier transform property that convolution in one do-
main is multiplication in the other domain. Hence, this convolution may
be transformed into simple multiplications of characteristic functions. The
characteristic function and the pdf of a random variable h are related to each

other by the Fourier transform, so that,

¢,(¢) = /_00 exp(iCh)ppdh, (3.16a)
=g [ e(cicmoc (3.160)

To obtain the characteristic function of g (t), we first note that the pdf of
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any noise mode p,; is Gaussian with zero mean and unit variance. The
variance is unity because the covariance matrix is an identity matrix, so that
per(qr) = exp(—q2/2)/v/2m. Therefore, the characteristic function of gy, D
is

‘ng(C) = / eXP[iCQk]pgdek

[e.e]

——= ew =L@+ 20+ D). (317)

By making a change of variables, we can convert (3.17) into a complete gamma

function. It can be shown that

(3.18)

TN R w— LS

V1 =21\ (¢ 1—2i\C/

The characteristic function of y, ®,((,t) equals the product of the ® .
2N
t) — H (I)gk::
k=1
2N 2N
1 _ Qs

—~ — Rk 3.19

(IH ST =200 2iAkg)eXp (ZC; 1= 2\ (3:19)

The pdf p, can now be obtained by taking the Fourier transform of equa-

tion (3.19), so that

Py(y,t) = = / " exp(—iCy)ay (¢, H)dC. (3.20)

21 J_ o

One may attempt to evaluate (3.20) numerically by using a discrete Fourier

transform. However, this approach is impaired by round-off errors in numer-
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ical computation at low values of the pdf (< 107!%). A better approach is to
utilize the steepest descent method [3]. Essentially, we convert the real inte-
gral in equation (3.20) to a contour integral in the complex plane by making
a change of variables from ( to s, where, s = (. It is then possible to write

the integral in equation (3.20) as

py(y,t) = L/Cexp[@/)(s,y)]d& (3.21)

2

where (' is the contour path of integration. It can be shown that 1 is analyt-
ical over the complex plane except at certain points on the real number line
that correspond to 1/(2)\;). The contour of integration corresponds to the
curve on which Im(v)) is constant, corresponding to the path of steepest de-
scent or ascent for Re(¢)). It can also be shown that most of the contribution
to the integral in (3.21) is from a small part of the contour around the saddle
point and hence we can roughly approximate ¢ (s) around the saddle point
by considering only the first few terms of its Taylor series. The saddle point
of ¥ can be found numerically for each value of current and each instance of

time, and the final pdf has the form

1
27T¢H [U(y)} { }

where u(y) is the saddle point, which is computed numerically.

For every bit in the transmitted signal, p,(y) is found numerically at the
clock recovery time. The pdfs of the current in the marks and spaces are

then summed and averaged. From these curves of the average pdfs, the BER
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is computed numerically. The first two central moments of the pdfs of the
current in each individual bit are also found and the Gaussian-approximated

pdfs can then be found from these moments.

3.3 Algorithm

The computation of the pdfs and the BER of the electrical current in the
receiver has been implemented in C++4. I will describe the main steps in the

computation of the pdfs in this section.

1. Read in the noiseless optical signal A, the filter functions and their

bandwidths, and the OSNR value.

2. Compute the signal power. The noise power and noise spectral density
are then found. The elements on the diagonal elements of the covariance

matrix /C;; are directly proportional to the noise spectral density.
3. Compute the time independent part of the filter matrix W.
4. Find the clock recovery time using the carrier tone in the optical signal.
5. Build a time vector comprised of the sampling times in each bit.

6. Start a loop over all points in the time vector, for which the pdf is to
be computed.
(a) Compute the Hermitian matrix Wy(¢).

(b) Compute C' and A by solving the eigenvalue problem in (3.12a)
and (3.12b).
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(c) Start another loop over all points in the electrical current vector.

i. Find the saddle point of the function ¢ in (3.21).

ii. For every instant of time and for every current value, the pdf

is found using (3.22).

(d) Find the first two central moments in each bit and use them to

generate Gaussian pdfs.

7. Average the pdfs of the marks and spaces and compute the BER for all
values in the decision threshold vector. Find the minimum BER and

the corresponding decision threshold.

8. Asin 7, find the minimum BER and the corresponding decision thresh-

old when the Gaussian approximation of the current pdf is used.



Chapter 4

Results

In this chapter, I present the results of comparing the integrate-and-dump
receiver model consisting of an optical bandpass filter, a square law detector
and an integrate-and-dump electrical filter with a realistic receiver model con-
sisting of a three-mirror Fabry-Perot filter, a photodetector, and a fifth-order
Bessel filter. My colleagues and I compared the BERs and the corresponding
decision thresholds for the two receiver models, using two assumed current
distribution — the y? current distribution and the Gaussian current distrib-

ution.

We performed the comparisons of the two receiver models over an exten-
sive set of system parameters. The elements of this parameter set include
optical and electrical filter bandwidths, signal and noise power levels, signal
modulation format (RZ and NRZ), extinction ratio in the spaces of the signal,
rise time of NRZ pulses and pulsewidth of RZ pulses. The comparison be-
tween the two receiver models is achieved by looking at the impact of changing

the variables in the parameter set just described above and evaluating the

33
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BER produced by the two receiver models.

The simulations results are shown for a 10 Gb/s single-channel system.
To account for all 3-bit pattern dependencies in the receiver an 8-bit pulse
sequence 11101000 is transmitted, which is a de Bruijn sequence containing

all 3-bit combinations of zeros and ones.

4.1 Effect of varying electrical filter bandwidth

RZ pulse format

An RZ modulation format pulse sequence, with peak power 1 mW and
33 ps pulse duration is transmitted. The extinction ratio in the spaces of the
transmitted signal is 20 dB. The noise energy due to the optical pre-amplifier
is set so that the OSNR at the receiver input is 15 dB. For the realistic
receiver model, we kept the bandwidth of the Fabry-Perot filter fixed, and
we varied the 3-dB bandwidth of the Bessel filter over a range from 4-12
GHz. For the integrate-and-dump receiver model, we choose the bandwidth
of the rectangular optical filter is chosen such that it is equivalent to the B,
bandwidth of the Fabry-Perot filter. A 3-mirror Fabry-Perot filter having a
FWHM bandwidth of 50 GHz has an equivalent B, bandwidth of 55.46 GHz.
The bandwidth of the integrate-and-dump filter depends on the integration
time, which equals the bit period. Hence, if the bit period is constant, then
the integrate-and-dump filter bandwidth remains constant. In Fig. 4.1 and
Fig. 4.2, for the integrate-and-dump receiver, the BER and decision voltage
curves are shown as constant functions. These straight lines correspond to

a single data point, as the bandwidth of the integrate-and-dump filter is a
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Figure 4.1: RZ pulse format. BER as a function of the electrical filter band-
width. The BER variations for a realistic receiver model using a Gaussian
current distribution and a x? current distribution are shown by dashed and
solid curves, respectively. The results for the integrate-and-dump receiver
model using a Gaussian current distribution and a x? current distribution
are shown by straight lines, marked by circles and squares respectively.

constant.

In Fig. 4.1, one finds for Bessel filter bandwidths < 5 GHz that the BER is
large for the realistic receiver model. This BER is large because the pulses in
the noiseless filtered signal are highly distorted, so that a significant amount of
inter-symbol interference (ISI) is present. For filter bandwidths > 8 GHz, we
find that as one increases the filter bandwidth, more noise is allowed to pass
through the filter, which results in higher values of BER. In the bandwidth
region between 5 GHz and 8 GHz, there is a trade off between ISI effects

and noise effects. The region between 5 GHz and 8 GHz is the optimum
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bandwidth region.

In the optimum bandwidth region between 5 GHz and 8 GHz, the dif-
ference in BER between the realistic receiver model using a x? current dis-
tribution and the integrate-and-dump receiver model using either of the two

current distributions is about half an order of magnitude.
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Figure 4.2: RZ pulse format. Decision threshold as a function of the electrical
filter bandwidth. The decision threshold variations for a realistic receiver
model using a Gaussian current distribution and a x? current distribution are
shown by dashed and solid curves, respectively. The results for the integrate-
and-dump receiver model using a Gaussian current distribution and a y?
current distribution are shown by straight lines, marked by circles and squares
respectively.

In the bandwidth region between 5 GHz and 8 GHz, the decision voltage
difference between the realistic receiver model and the integrate-and-dump
receiver model with a y? current distribution varies from 2% to 8% of the

peak signal power at the transmitter. The difference between the realistic
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receiver model using a x? current distribution and the integrate-and-dump
receiver model using a Gaussian current distribution is significantly more and

is in the range of 8% to 14% of the peak signal power at the transmitter.

NRZ pulse format

An NRZ modulation format pulse sequence is transmitted with a rise time of
30 ps and an average power which is the same as that of an RZ pulse with 1
mW peak power and 33 ps pulse duration. The extinction ratio in the spaces
of the transmitted signal is set to 20 dB, and the OSNR at the receiver input
is set to 15 dB.

-6

log BER

b

6 8 10 12
Bessel Filter Bandwidth (GHz)

Figure 4.3: NRZ pulse format. BER as a function of the electrical filter band-
width. The BER variations for a realistic receiver model using a Gaussian
current distribution and a x? current distribution are shown by dashed and
solid curves, respectively. The results for the integrate-and-dump receiver
model using a Gaussian current distribution and a x? current distribution
are shown by straight lines, marked by circles and squares respectively.

In Fig. 4.3, the behavior of the BER curves as a function of filter band-
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width for the realistic receiver model can be attributed to ISI effects that are
dominant at bandwidths less than 4.5 GHz and noise at bandwidths greater
than 6.5 GHz. Since the NRZ signal has a smaller bandwidth than does the
R7Z signal, the optimum threshold level is reached earlier and the optimum
filter bandwidth region is much shorter. From Figs 4.1 and 4.3, we find that
the RZ modulation format yields significantly lower BERs than does the NRZ

format.

In the optimum bandwidth region between 4.5 GHz and 6.5 GHz, the
difference in BER between the realistic receiver model using a x? current
distribution and the integrate-and-dump receiver model using either of the

two current distributions is about three-tenths of an order of magnitude.

0.15

0.12F

Decision Voltage (mV)

~-

0.06

6 8 10
Bessel Filter Bandwidth (GHz)

Figure 4.4: Decision threshold as a function of the electrical filter bandwidth
for the NRZ pulse format. The decision threshold variations for a realistic
receiver model using a Gaussian current distribution and a x? current distri-
bution are shown by dashed and solid curves, respectively. The results for
the integrate-and-dump receiver model using a Gaussian current distribution
and a x? current distribution are shown by straight lines, marked by circles
and squares respectively.
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In Fig. 4.4, there is little difference between the decision thresholds that we
obtain with the integrate-and-dump receiver model and the realistic receiver
model using a x? current distribution. The difference in the decision voltage
between the integrate-and-dump receiver model using a Gaussian current
distribution and a realistic receiver model using a x? current distribution is

about 4% of the transmitted signal peak power.

4.2 Effect of varying signal rise time

10 20 30 20 50 60
Rise time (ps)

Figure 4.5: Variation of the BER with a change in rise time of the NRZ

pulse. The results for the realistic receiver model using a Gaussian current

distribution and a y? current distribution are shown by dashed and solid lines,

respectively. The results for the integrate-and-dump receiver model using a

Gaussian current distribution and a x? current distribution are shown by the
dotted lines, marked by circles and squares respectively.

In our simulations, NRZ pulses are produced from perfect rectangular

pulses that are filtered by Gaussian shape filters. The rise time of the NRZ
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pulse is a function of the Gaussian filter bandwidth. For an NRZ pulse, a

larger rise time implies a smaller signal bandwidth.

The extinction ratio in the spaces of the transmitted signal is set to 20
dB, and the OSNR at the receiver input is set to 15 dB. The bandwidths
of the optical and electrical filter in the realistic receiver are set to 50 GHz
(FWHM) and 6 GHz (3 dB bandwidth), respectively. In Fig. 4.5, as the
rise time of the NRZ pulse increases, the signal bandwidth decreases and the
signal power also decreases. As a consequence, the pdfs of the receiver current
spread out, and the BER increases. There is a significant difference between
the BER curves for the integrate-and-dump receiver model using a Gaussian
current distribution model and the realistic receiver model using a y? current

distribution. In Fig. 4.6, the disparity between the decision voltage results for

0.3F
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Figure 4.6: Variation of decision voltage with change in rise time of the NRZ
pulse. The results for the realistic receiver model using a Gaussian current
distribution and a y? current distribution are shown by dashed and solid lines,
respectively. The results for the integrate-and-dump receiver model using a
Gaussian current distribution and a x? current distribution are shown by the
dotted lines, marked by circles and squares respectively.
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the integrate-and-dump receiver model using a Gaussian current distribution

and the realistic receiver model using a x? current distribution is also large.

4.3 Effect of varying OSNR

An RZ modulation format pulse sequence, with a peak power of 1 mW and
a 33 ps pulse duration is transmitted. The extinction ratio in the spaces of
the transmitted signal is 20 dB. For the realistic receiver model, the optical
filter FWHM is set to 50 GHz and the electrical filter 3-dB bandwidth is
set to 8 GHz. The OSNR is varied by varying the noise power added by
the pre-amplifier to the receiver. As the OSNR increases, the noise power
decreases because the signal power is kept constant. Hence in Fig. 4.7, the

BER decreases as OSNR increases. The difference between BERs for the

12
OSNR (dB)

Figure 4.7: Variation of the BER versus OSNR for the RZ modulation format.
The BER variations for the realistic receiver model using a Gaussian current
distribution and a x? current distribution are shown by dashed and solid
curves, respectively. The results for the integrate-and-dump receiver model
using a Gaussian current distribution and a x? current distribution are shown
by dotted lines, marked by circles and squares respectively.
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realistic receiver model and the integrate-and-dump receiver model, using a
x? current distribution does not change significantly with OSNR. However,
there is a visible difference between the BERs for the realistic receiver model
using a x? current distribution and the integrate-and-dump receiver model
using a Gaussian current distribution. This difference increases as the noise

power decreases and the OSNR increases.
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Figure 4.8: Variation of the decision voltage versus OSNR for the RZ modula-
tion format. The decision threshold variations for the realistic receiver model
using a Gaussian current distribution and a x? current distribution are shown
by dashed and solid curves, respectively. The results for the integrate-and-
dump receiver model using a Gaussian current distribution and a x? current
distribution are shown by dotted lines, marked by circles and squares respec-
tively.



Chapter 5

Conclusion

In this thesis, I present a performance comparison between an ideal receiver
model and a realistic receiver model. In order to focus on the receiver, my
colleagues and I have modeled the optical noise at the receiver input as AWGN

and have not considered any transmission or inter-channel effects.

From the figures shown in Chapter 4, we conclude that over a broad set of
system parameters, the performance of the two receiver models are compara-
ble. A comparison between the integrate-and-dump receiver model and the
realistic receiver model with a current distribution model using generalized
x? pdfs shows that the minimum BERs differ only by an order of magni-
tude. Hence, one may use the integrate-and-dump receiver model which may
simplify the calculation of the current distribution in the receiver, without

significantly degrading the accuracy of the BER results.

The comparison between the integrate-and-dump receiver model with a
current distribution model employing a Gaussian approximation of the pdfs

and the realistic receiver model with a current distribution model using gen-
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eralized x? pdfs shows that the minimum BERs differ by about one to two
orders of magnitude. It has been shown in earlier work [4], [5] that the
Gaussian approximation of pdfs of the current in the receiver overestimates
the minimum BER by an order of magnitude. In our comparison, we observe
the same.

Further work on this topic could potentially focus on the impact of using
differential phase shift keyed (DPSK) modulation format and could consider

inter-channel effects.
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