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ABSTRACT

Title of Thesis: Light Propagation Into, Out of, and Through Mid-Infrared Optical Fibers

Robert Joseph Weiblen, Doctor of Philosophy, 2015

Dissertation directed by: Curtis R. Menyuk, Professor
Department of Computer Science and
Electrical Engineering

This dissertation studies the theory of mid-infrared (mid-IR) light (∼1–10 µm) trans-

mission into, out of, and through mid-infrared optical fibers. This work is broadly com-

prised of three separate topics — mid-IR supercontinuum generation in chalcogenide pho-

tonic crystal fibers (PCFs), moth-eye anti-reflective (AR) microstructures for mid-IR fibers,

and negative curvature fibers for broadband mid-IR transmission. Mid-IR radiation has a

number of military, biomedical, chemical sensing, and industrial applications that often

require high power and broad bandwidth. Consequently, the generation of this broad band-

width (using supercontinuum generation), its efficient coupling to waveguides (using moth-

eye structures), and low-loss transmission (using antiresonant fibers) are of important prac-

tical interest. This work has been carried out in collaboration with an experimental group

from the Naval Research Laboratory (NRL) specializing in mid-IR optics and chalcogenide

glasses.

Supercontinuum (SC) generation is a complex nonlinear process that uses highly non-

linear optical fibers to broaden the bandwidth of a narrow-band input laser source. We

extended earlier work in arsenic selenide (As2Se3) PCFs to arsenic sulfide (As2S3) and op-

timized the input parameters to maximize the output bandwidth as we changed the input

pulse peak power and pulse duration. We noticed that the output bandwidth was extremely

sensitive to small changes in the input parameters. However, this sensitivity is not visible in



experiments due to pulse averaging. We then employed several simulation methods short of

large-scale ensemble averaging to reduce the uncertainty in the output bandwidth. The use

of these methods offered only a slight reduction in the uncertainty of the output bandwidth;

so, we next undertook a large study to completely characterize the statistics of the output

spectrum from a supercontinuum source and to definitively determine the output spectrum

and corresponding bandwidth that might be observed in an actual experiment. We used a

large-scale ensemble average and determined the approximate number of realizations nec-

essary to obtain a converged bandwidth and spectrum.

Moth-eye structures are a biomimetic anti-reflective microstructure that can be etched,

milled, grown, stamped, or otherwise imprinted onto optical surfaces to reduce Fresnel

reflections. We validated several simulation methods by matching the experimentally-

recorded transmission spectrum of a particular moth-eye structure. Using these methods,

we investigated the effect of changing the shape, size, and period of a moth-eye structure

on its transmission spectrum in the region of 2–5 µm. We used this knowledge to design

optimal moth-eye structures that had greater than 99% transmission in this wavelength

range. We also investigated localized field enhancement effects in moth-eye structures to

determine the reason for their high laser-induced damage threshold. We found that local-

ized field enhancement occurs mostly in the air, rather than in the glass, allowing moth-eye

structures to melt before suffering catastrophic damage at nearly the same levels as un-

treated glass.

Antiresonant fibers (ARF) are a novel type of hollow-core optical fiber that guide light

in an air core by the convex curvature of the core wall. Previous work by others on ARFs

have focused on silica, but a design based on chalcogenide glasses such as As2Se3 will have

much lower loss in the mid-IR. We investigate and optimize the size of the core and other

dimensions of the fiber to minimize the fiber loss in the range of 1–10 µm. We also study



the effect of imperfect fabrication of As2S3 ARFs.
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Chapter 1

Introduction

Introduction

Mid-IR wavelengths (∼2–20 µm) are technically and scientifically interesting for

many reasons. The mid-IR spectrum is important for materials processing, chemical and

biological sensing, and spectroscopy because many important organic compounds have

strong resonances in this wavelength region [1]. Also, this spectral region includes two

atmospheric transmission windows from 3–5 µm and 8–13 µm; so, it is also of interest

for atmospheric science and sensing and remote explosive detection. Important industrial

applications include laser cutting and welding [2]. Mid-IR radiation can also be used for

tissue ablation and other medical therapies. Among a number of military applications, the

most important is perhaps infrared countermeasures, or the defense against heat-seeking

missiles [3]. Many of these applications require or benefit from a broad bandwidth of mid-

IR radiation with high average and peak power. However, due to the strong resonances of

many molecules in this region and the relatively high absorption loss of glasses in this wave-

length region, especially silica, these requirements are often difficult to achieve at mid-IR

wavelengths. This work will focus on optimizing technologies that improve the utility of

mid-IR optical fibers for these and many other applications by increasing bandwidth and

1
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reducing loss.

The first topic that I discuss in this dissertation is supercontinuum (SC) generation.

SC generation, the broadening of input laser light bandwidth using nonlinear optical fibers,

is potentially of use in the applications just described. Generating many wavelengths of

radiation at once can simplify and speed up sensing and spectroscopy, since sources do not

have to sweep through the wavelength range. Supercontinuum generation is essential to

infrared countermeasures, since heat-seeking missiles simultaneously detect a wide spectral

range. Supercontinuum generation works by using nonlinearities—principally the Kerr

effect and the Raman effect—and dispersion in optical fibers to broaden the bandwidth of

the input radiation, which is usually pulsed. Using a PCF for SC generation allows the

tailoring of the chromatic dispersion and the narrowing of the fiber core, both of which aid

in broadening the SC bandwidth. For mid-IR SC generation, it is necessary to use materials

that are transparent in the mid-IR spectral range. The chalcogenides As2S3 and As2Se3 are

well-suited to this task because of their low loss in the mid-IR spectral range and their high

nonlinear refractive indices compared to other glasses [3].

In initial work on SC generation, we extended work by Hu [4] to optimize the fiber

and input parameters to maximize the bandwidth of SC generation in As2S3 PCFs [5]. We

found that we could generate approximately 4 µm of output bandwidth using an input pump

wavelength of 2.8 µm that spans the wavelength range of 2–6 µm. Compared to previous

studies by Hu et al. [4], the longer input wavelength allowed for the use of a greater PCF

air-hole pitch, which increased the distance between the zero-dispersion wavelengths. This

increase allows the soliton self-frequency shift (SFSS) to occur over a broader bandwidth,

hence increasing the output bandwidth. However, we also found that the higher power

and longer input wavelength compared to previous studies [4] led to an extreme sensitivity

of the output bandwidth to small changes in the input parameters. This sensitivity of the
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numerical study leads to two major issues with modeling the experiments. First, this sen-

sitivity cannot be observed in an experiment due to averaging effects because the optical

spectrum analyzer (OSA) averages over many pulses from the input laser source. Secondly,

it makes it difficult to determine the optimal settings for maximum bandwidth. Addition-

ally, the spectrum that is produced by a single numerical simulation contains a large amount

of spectral fluctuations that cannot be observed in experiments because of averaging over

pulse-to-pulse variations in the pulse width and peak power, which can each vary by as

much as 10%. These spurious fluctuations and make the bandwidth difficult to define. For

these reasons, it is desirable to obtain a more certain measure of the output spectrum and

its bandwidth from a particular set of input parameters.

We attempted to reduce the uncertainty in the output bandwidth using a number of

methods [6]. First, we used an artificially large OSA filter bandwidth for greater spectral

smoothing. Second, we defined the output bandwidth in a recursive way that is more ro-

bust to fluctuations in the output spectrum as a function of wavelength. Finally, we used

small-scale (∼100 realization) ensemble averaging over one pulse parameter to reduce fluc-

tuations in bandwidth as a function of the input pulse parameters. These efforts yielded

approximately the same bandwidth as in the previous study, but with reduced uncertainty.

The bandwidth as a function of the input pulse parameters found in the previous

study is expected to be an approximation to the experimentally-expected bandwidth, but

not as quantitatively accurate as a large ensemble average would be. Additionally, the

spectrum found using the method just described is not expected to have converged to its

experimentally-expected value, since the modification of the spectrum is due to artificial

smoothing. In order to accurately determine the experimentally-expected spectrum and its

actual bandwidth, we next used a large scale ensemble average over thousands of output

spectrum realizations, varying the pulse parameters by 10% [7]. Initial estimates of the
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correlation of the SC spectra from numerical simulations suggested that as many as 106

realizations might be necessary to find a converged spectrum. Indeed, the variance of the

spectral fluctuations continues to decrease up to 106 realizations, but the spectrum and the

bandwidth are sufficiently converged after about 5000 realizations. This number of realiza-

tions is a reasonable number that can be computed on present hardware in a few hours.

The second topic that I discuss in this dissertation is moth-eye structures. Moth-eye

structures are a microstructured AR surface structure that are effective at reducing Fresnel

reflections. In the long wavelength limit, they work by providing a gradual change of the

effective refractive index as light propagates across the air-glass interface. They are es-

pecially useful for high-index materials, such as most mid-IR materials, including chalco-

genide glasses. Reducing Fresnel reflections from optical interfaces is extremely important

in mid-IR applications where high power and low loss are needed. High power laser radi-

ation that reflects from interfaces can damage instruments, while insertion losses can be a

major contributor to overall losses in a system. Hence, mid-IR systems can greatly benefit

by using moth-eye structures to reduce reflections from interfaces and increase transmission

through them. Scientists at the Naval Research Laboratory recently demonstrated a direct

stamping method for imprinting these moth-eye structures on the end-faces of chalcogenide

optical fibers [8]. The direct stamping method allows structures to be accurately replicated,

which means they must be accurately modeled. Because the microstructure feature di-

mensions are on the same order as the wavelength of the incoming radiation (∼1 µm),

neither the long-wavelength average refractive index model nor the short-wavelength ray

optics model is appropriate to describe transmission through moth-eye structures. Thus,

they must be modeled using rigorous methods, such as the finite-difference time-domain

(FDTD) method or the rigorous coupled-wave analysis (RCWA) method.
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In initial work on moth-eye structures, my colleagues and I built an exact model of

a particular moth-eye structure implemented in As2S3 glass and calculated the resulting

transmission spectrum as a function of wavelength from 1–5 µm. We found we could

match the experimentally observed transmission spectrum extremely well [9]. We used

this model to investigate the effects of changing the geometry of the microstructure. First,

we varied the dimensions of the structure. We found that, in general, increasing the height

of the structure increases the transmission. Next, we varied the shape of the microstructure

element, using cones, truncated cones, pyramids, half-ellipsoids, and sinusoidally shaped

elements. We studied both positive shapes, which are raised from the surface, and negative

shapes, which are depressed into the surface. We found that, as long as the dimensions were

optimized, any structure shape could give excellent transmission in the wavelength range

of interest. However, we found that some shapes, including pyramids and half-ellipsoids

could be designed to give up to 99.9% average transmission from 1–5 µm [10].

An interesting advantage of moth-eye structures is that surfaces with moth-eye struc-

tures suffer catastrophic damage at much higher laser fluences than traditional thin-film

AR coatings. This fact may seem counterintuitive since it might be expected that the mi-

crostructured surface causes field enhancement. This field enhancement should reduce

the amount of energy per unit area required to cause catastrophic damage. We used our

model to calculate the average Poynting flux density in and around the microstructures of

a moth-eye structured surface to investigate why moth-eye structures are resistant to laser

damage [11,12]. We found that, indeed, localized field enhancement does occur, but mostly

in the air side of the air-glass interface. This enhancement can be physically understood by

using the boundary conditions for electromagnetic waves from a medium with one index of

refraction to another. The reduction in energy density in the glass allows the glass to heat

up more slowly, which causes moth-eye structured surfaces to melt and suffer catastrophic
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damage at levels similar to untreated glass [13].

The final topic that I discuss in this dissertation is antiresonant fibers (ARFs). An-

tiresonant fibers (ARFs) or negative curvature hollow-core fibers (NCHCFs) [14, 15] are a

relatively recent (circa 2011) type of optical fiber with a hollow core and a microstructured

cladding. Guidance is achieved by the negative curvature of the core wall. Because these

fibers guide light in a hollow core, the loss can be greatly reduced over a broad wavelength

range, provided that light is well confined. Additionally, nonlinearity is greatly reduced

compared to a traditional solid-core fiber, which allows high power radiation to propagate

without interference. Finally, because there is no glass in the core, the fibers are more ro-

bust to high laser fluences that might damage a traditional fiber. All of these advantages

make ARFs an excellent choice for light guidance in high-power and broadband mid-IR

applications. Whereas hollow-core photonic bandgap fibers offer extremely low loss over

a narrow wavelength range and Kagome fibers offer a broad low-loss bandwidth at the

expense of higher loss than hollow-core photonic bandgap fibers, ARFs are an excellent

compromise in which low loss and broad bandwidth can be simultaneously achieved.

To date, most ARFs have been constructed from silica [16], principally because the

processing of silica fibers is extremely advanced. The only design to date in a mid-IR

material was made from Te20As30Se50 (TAS) and only optimized for CO2 laser power de-

livery at 10.6 µm [17]. We simulate chalcogenide ARFs with the goal of minimizing the

loss over a broad bandwidth from 1–10 µm by optimizing the core size, cladding structure,

and tailoring the resonance loss bands to match atmospheric loss peaks. We show that the

resonant absorption bands of an As2S3 ARF can be designed to coincide with atmospheric

absorption bands due to CO2. We show that fibers with 6 cladding tubes have lower loss

than fibers with 8 cladding tubes, as long as nested elements are included. Since we also

show that nested elements must be included to obtain acceptable loss levels, it stands to
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reason that chalcogenide ARFs should be designed with 6 cladding tubes. We also study

the effect of changing the core radius of an As2S3 ARF, and we show that increasing the

core radius decreases the loss, but at a decreasing rate.

We also study the influence of parameter variations on the loss spectrum for ARFs.

We study the effect of a nonconstant cladding tube wall thickness, additional structures in

the fiber jacket, variations in the cladding tube diameter, and variations in the cladding tube

wall thickness for a single tube.

The remainder of this dissertation is organized as follows: In the second chapter, we

study supercontinuum generation in chalcogenide PCFs. We show that it is possible to

generate 4 µm of bandwidth in an As2S3 fiber, but the maximum bandwidth and the opti-

mal parameters that correspond to it are difficult to determine exactly, due to the sensitivity

of supercontinuum generation to small fluctuations in the input parameters. We then de-

scribe methods for finding a reliable bandwidth and output spectrum and the corresponding

parameters with increased certainty.

In the third chapter, we design and optimize moth-eye antireflective nanostructures

for use on As2S3 glass, especially the end faces of As2S3 fibers. We show that moth-eye

structures can increase the average transmission through an As2S3 surface from ∼83% to

∼99.9%. We also explain the reason for the increased laser damage threshold in moth-eye

structures.

In the fourth chapter, we design and optimize negative-curvature hollow-core antires-

onant As2S3 fibers for mid-IR power delivery. In these fibers, the primary objective is to

have a wide bandwidth and low loss. We also investigate the robustness of these designs in

the presence of imperfect fabrication.

The fifth chapter contains conclusions that summarize the principal results of this

dissertation.



Chapter 2

Supercontinuum generation

Supercontinuum generation at mid-IR wavelengths is an area of great research interest

because of its importance for many applications, including biological spectroscopy [18],

optical frequency metrology [19], optical tomography [20], optical cutting and welding [2],

and aircraft defense [3].

To model SC generation, we use the same computational method as Hu et. al. [4, 21].

This method proceeds in two step. The first step is to calculate the loss and dispersion of

the PCF for a given geometry. The second step is to solve for the pulse evolution along the

fiber using the calculated loss and dispersion. The equation that governs the evolution of

a single SC simulation is the generalized nonlinear Schrödinger equation (GNLSE) given

by [22]:

∂A(z, t)

∂z
+
a

2
A− i IFT

{
[β(ω0 + Ω)− β(ω0)− Ωβ1(ω0)]Ã(z,Ω)

}
= iγ

(
1 +

i

ω0

∂

∂t

)[
A(z, t)

∫ t

−∞
R(t− t′)|A(z, t′)|2 dt′

]
, (2.1)

whereA(z, t) is the electric field envelope and Ã(z, ω) is its Fourier transform, a is the fiber

8
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loss, and γ is the Kerr coefficient. The Kerr coefficient is given by γ = n2ω0/(cAeff), where

n2 is the nonlinear refractive index, ω0 is the angular frequency of the optical carrier, c is

the speed of light, and Aeff is the fiber’s effective area. The quantity R(t) is the nonlinear

response function defined by R(t) = (1 − fR)δ(t) + fRhR(t), which includes both the

instantaneous Kerr contribution, δ(t), and the delayed Raman response, hR(t). We use

fR to denote the fraction of the nonlinear response function due to the Raman effect, and

we use IFT{} to denote the inverse Fourier transform. The Kerr nonlinearity in As2S3 is

given by n2 = 3.285 × 10−18 m2 W−1, the Raman fraction is given by fR = 0.2, and the

nonlinear coefficient γ is calculated for each air-hole pitch based on the effective mode area

of the numerically calculated mode. The Raman gain response of As2S3 was measured

experimentally, and we used the Kramers-Kronig relations to find the complete Raman

response function; the resulting data is published in Fig. 2 of [23]. The GNLSE is solved

numerically using the split-step Fourier method implemented in MATLAB [24].

In all our studies, we use a PCF with a hexagonal geometry, as shown schematically

in Fig. 2.1. The two fiber parameters that affect the dispersion are d, the air-hole diameter,

and Λ, the air-hole pitch. In order to keep the fiber endlessly single-mode, we fix the air-

hole diameter-to-pitch ratio in our simulations at d/Λ = 0.4. This value has been found

to be the largest that is consistent with single-mode operation [21]. It is advantageous to

maximize d/Λ to decrease the effective index of the cladding material, and hence increase

nonlinearity and modal confinement. Thus, we optimize the fiber geometry over the single

parameter of the air-hole pitch Λ. The input source wavelength is given as 2.8 µm. For

all simulations except when studying the effect of varying the fiber length, we use a fiber

length of 0.5 m. This value is currently used in experiments and gives a good balance

between the extra spectral power that is generated at longer wavelengths by the soliton

self-frequency shift as the length increases, and the negative effect of increased fiber loss.
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Figure 2.1: Hexagonal PCF air-hole geometry.

In optimization studies, we consider four air-hole pitches over the range of interest.

They are 2.5 µm, 3.0 µm, 3.5 µm, and 4.0 µm. The chromatic dispersion as a function

of frequency, β(ω), and leakage loss of a PCF with each of these pitches are plotted in

Figs. 2.2(a) and (b), respectively. As the pitch increases, the anomalous dispersion region

broadens and begins at slightly longer wavelengths. In general, larger pitches are advan-

tageous for a number of reasons. First, given a sufficiently long wavelength pump and

sufficient pump power, the phase matching condition for four-wave mixing has a wider

separation between Stokes and anti-Stokes wavelengths for larger pitches. This wider sep-

aration results in a wider bandwidth for the spectral broadening in the first few centimeters

of the fiber, which is dominated by four-wave mixing. Second, since the rate of the soliton

self-frequency shift is proportional to the chromatic dispersion, PCFs with a larger pitch

have more broadening from the soliton self-frequency shift. This shift is the dominant

source of the large spectral broadening that occurs after the initial four-wave mixing broad-
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ening [25]. However, a larger pitch in a PCF also leads to an increase in the effective mode

area, which decreases modal confinement and hence nonlinearity, which in turn is detri-

mental to the supercontinuum broadening process. A larger mode area also increases the

loss, since the mode extends further into the edge of the fiber.

Figure 2.2: (a) Chromatic dispersion and (b) loss for hexagonal PCFs with pitches of 2.5
µm (blue), 3.0 µm (red), 3.5 µm (green), and 4.0 µm (cyan).

2.1 Maximizing the bandwidth in As2S3

Hu et al. previously showed that a bandwidth of over 4 µm could be generated in an

As2Se3 chalcogenide photonic crystal fiber (PCF) with a 2.5 µm source [26]. Hu et al. also

showed that 25% of the input power can be shifted into the range of 3–5 µm using an As2S3

chalcogenide PCF [27].

2.1.1 Simulation parameters In the work presented in this section, we optimize the

fiber pitch and pulse duration in order to maximize the supercontinuum bandwidth in
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As2S3 chalcogenide PCFs with a hexagonal structure using a source at λ = 2.8 µm and a

hyperbolic-secant pulse shape. Intensities up to 3 GW/cm2 in the range 2.5–3.0 µm can be

obtained from commercial Ti:sapphire optical parametric amplifier femtosecond sources.

These experimental parameters set the limits for our input pulse parameters.

In our optimization studies, we varied the pitch (Λ) between 2.5 µm and 4.0 µm.

At each pitch, we set the peak intensity of the pulse to 1 GW/cm2 and then determined

the optimal pulse duration by varying the input pulse full-width half-maximum (FWHM)

duration between 100 and 1500 fs. We then varied the input pulse peak intensity between

1 and 3.5 GW/cm2 and verified that the pulse duration remained optimal.

2.1.2 Results In Figs. 2.3(a) and (b), we show the output bandwidth from the super-

continuum generation as a function of the FWHM pulse duration for different pitches at

peak intensities of 1 GW/cm2 and 3 GW/cm2 respectively. We find that the output band-

width is largest at a pitch of 4.0 µm and an intensity of 3 GW/cm2. In Fig. 2.4, we show

that the optimal bandwidth increases from about 2.5 µm to 4.0 µm as the intensity increases

from 1.0 GW/cm2 to 3.0 GW/cm2, beyond which the bandwidth does not significantly in-

crease. We attribute this saturation of the bandwidth with increasing input intensity to a

decrease in the soliton self frequency shift at larger wavelengths and a rapid increase in

the linear loss. As in previous studies [26, 27], we find that the number of solitons that are

generated is a sensitive function of the input intensity, pulse duration, and fiber parameters,

which leads to the lack of smoothness that is visible in Figs. 2.3 and 2.4.

In Fig. 2.5, we show the output spectral power with our optimal input peak intensity of

3.0 GW/cm2 and the optimal input pulse duration of 1150 fs. We find that a flat bandwidth

is achievable over a range between 2.5 µm and 6.5 µm where we used the points at which
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(a) 1 GW/cm2 (b) 3 GW/cm2

Figure 2.3: Output bandwidth vs. input pulse FWHM for Λ = 2.5 µm (cyan), Λ = 3.0 µm
(green), Λ = 3.5 µm (red), Λ = 4.0 µm (blue) and an input peak intensity of (a) 1 GW/cm2

and (b) 3 GW/cm2.

the spectrum falls below 20 dB from the peak to determine the bandwidth. The steep fall-

off around 7 µm is primarily due to the material loss of As2S3.

2.1.3 Discussion The optimal pitch of 4.0 µm is larger than the optimal pitch of

3.0 µm that was found in a prior study [27], where the goal was to optimize the power in

the range of 3–5 µm. While the larger pitch increases the effective mode area and hence de-

creases the nonlinearity, the larger pitch also increases the wavelength at which the second

zero dispersion wavelength is located and hence increases the bandwidth over which the

soliton self-frequency shift remains effective [22]. The decrease in the nonlinearity is more

than compensated by the increase in the bandwidth over which the soliton self-frequency

shift remains effective.

The lack of smoothness in Figs. 2.3 and 2.4 make a reliable maximum bandwidth diffi-

cult to determine with certainty. In the balance of this chapter, we will investigate methods

to reduce or eliminate this uncertainty for the purpose of finding an output bandwidth and
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spectrum that correspond to what would be expected in an experiment.

Figure 2.4: Output bandwidth vs. input pulse peak intensity.

Figure 2.5: The spectrum of the supercontinuum that is generated.
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2.2 Calculation of the experimentally expected bandwidth

One of the principal figures of merit by which a SC source is judged is the output band-

width, although there are other measures of the SC output that are important for specific

applications, such as the coherence properties of the spectrum [28] and the smoothness of

the output spectrum [29]. When optimizing the bandwidth computationally, it is important

to use a measure of the bandwidth that agrees with what would be obtained in an experi-

mental system. In this section, we investigate a method to provide a better estimate of the

bandwidth that would be observed in experiments, and we apply this method to optimize

the SC bandwidth of a mid-IR SC source using an As2S3 PCF. In the previous section,

studying the same SC source, we found a relatively large uncertainty in the optimum due to

large fluctuations in the calculated bandwidth across the range of fiber and input pulse pa-

rameters (system parameters) [5]. Here, we investigate the variation of the output spectral

bandwidth due to changes in the system parameters of the SC source. We use small steps

in the pulse parameters to reveal the large variations in the calculated output bandwidth.

These large variations would have led to false maxima if the sampling had been done less

finely, as is almost universally the case in studies up to the present work, including those in

the previous section.

A difficulty with the optimization of SC generation using an automated bandwidth

calculation is that only calculating the bandwidth over a limited set of points in the opti-

mization parameter space can lead to finding a false maximum. This difficulty becomes

apparent when we calculate the bandwidth for many finely resolved values of the pulse

duration, as shown in the next section. Large variations of the bandwidth for small changes

in the pulse duration are apparent.

Moreover, these variations are not representative of the experimental system. In any
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experimental system, the input pulse to the fiber will contain random quantum noise, and

the pulse duration and energy will also change from pulse to pulse. Experimentally, the

repetition rate of the laser pulse is much greater than the sampling rate of the spectral mea-

surement; so, the experimental output spectrum is a time average of the actual SC output

from many pulses. Therefore, the measured output spectra represents an ensemble aver-

age over quantum noise and random fluctuations in the system parameters, which consist

of the input pulse and fiber parameters. Furthermore, experimental measurements have a

finite spectral resolution, which also serves to smooth the spectrum and remove the large

variations in the output [30].

A typical SC spectrum, such as the spectrum shown in Fig. 2.6(a), has a complex

structure, which is a result of complicated soliton dynamics and depends on the number

of interacting solitons, their interactions, pulse durations and individual powers — all of

which are sensitive functions of the system parameters. This complex structure is changed

by noise on the input pulse, and it has been shown that ensemble averaging over incoherent

pulse noise leads to a smoothing of the output spectra [28].

2.2.1 Bandwidth calculation In practice, the bandwidth of a SC output spectrum is

calculated as the width between the points in the spectrum that are 20 dB down from the

peak value. In an experiment, the peak of the spectrum is always at the wavelength of the

input source. However, in a simulation, spectral fluctuations can make the peak value and

the 20 dB points difficult to determine.

Therefore, we can find a measure of the bandwidth that better represents the bandwidth

that is experimentally measured by numerically approximating the experimental variations

and noise on the pulse that can be expected in real systems by performing an ensemble

average. Assuming that the main effect of noise on the input is to smooth the spectrum, we
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may approximate the effect of this averaging on the output spectrum by artificially smooth-

ing the spectrum. Experimentally, an optical spectral analyzer (OSA) effectively convolves

the spectrum with a filter function of finite width. We can do the same computationally.

We first smooth the spectrum by convolving it in the spectral domain with a super-Gaussian

function of width λw,

Sf (λ) =

∫ λ+Λ

λ−Λ

exp
[
−
(
λ− ν
λw

)4]
S(ν)dν, (2.2)

where Sf (λ) is the filtered spectral density, S(λ) is the input spectral density and Λ is

chosen depending on the width of the filter function.

The effect of the OSA filter is shown in Fig. 2.6, in which one example of a SC

output spectrum is filtered with different filter widths (λw). In practice, typical OSAs have

a resolution bandwidth of approximately λw = 10 nm for SC generation experiments.

However, our goal here is to smooth the numerical spectrum sufficiently to make automatic

bandwidth calculations, so we choose a larger resolution bandwidth, namely λw = 100 nm.

To reduce the impact of peaks in the SC output affecting the bandwidth measurement

we define the average output power spectral density (PSD) of a spectrum as the PSD of an

equivalent ideal rectangular spectrum with the same total power and the same bandwidth

as the spectrum being measured. This rectangular output spectrum has an averaged PSD

(PSDav) calculated as

PSDav =
Ptot

BW
, (2.3)

where Ptot is the total power in the output spectrum, and the bandwidth (BW) is the width

of the spectrum between the points in the spectrum that are 20 dB lower than PSDav. This

definition is recursive; however, it converges in a few iterations. Figure 2.6(b) shows an

example spectrum, with the equivalent spectrum used in the bandwidth definition. This def-
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Figure 2.6: (a) Example spectra from an OSA with filter widths of λw = 10 nm (top),
λw = 50 nm (middle), and λw = 100 nm (lower). (b) Power spectral density (PSD) for the
same example spectrum (blue solid) and equivalent rectangular spectrum (green dashed)
that are defined in the text.

inition of the bandwidth is slightly more complicated than the usual definition, but should

be more robust to peaks in the output spectrum.

2.2.2 Bandwidth from averaging over pulse parameters We apply the bandwidth

calculation methods of Sec. 2.2.1 to the SC system that was previously described in

Sec. 2.1.1. Fig. 2.7(a) shows a plot of the output bandwidth versus the input pulse full-

width half-maximum (FWHM) for air-hole pitches of 2.5 µm, 3.0 µm, 3.5 µm, and 4.0 µm.

In all cases, the short wavelength end of the bandwidth that we observed was at 2.5 µm and

was defined by fiber loss [5]. The bandwidth for the PCF with a 2.5 µm pitch remains much

the same as the pulse duration changes. When the pitch is increased to 3.0 µm, however, the

output bandwidth increases markedly as the pulse duration increases. Also, the fluctuations

in the bandwidth become large. They are on the order of 300 nm, or about 10%, for very

small changes in the input pulse duration. These fluctuations in the measured bandwidth

are even larger for a pitch of 3.5 µm, where the bandwidth fluctuates by as much as 800 nm.
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Figure 2.7(b) shows a plot of the output bandwidth as a function of the input pulse peak

power at a resolution of 1 W for air-hole pitches of 2.5 µm, 3.0 µm, 3.5 µm, and 4.0 µm.

Again, the short wavelength end of the bandwidth is at 2.5 µm. Like Fig. 2.7(a), the output

bandwidth varies greatly for a small change in pulse power. Again, the fluctuations are not

as large for a pitch of 2.5 µm as they are for larger pitches. We note that for each pitch

the bandwidth increases relatively smoothly to a peak power of around 300 W, after which

there are large variations in the bandwidth.

Figure 2.7: Bandwidth versus (a) input pulse duration, and (b) input pulse peak power, for
air-hole pitches of 2.5 µm (blue), 3.0 µm (red), 3.5 µm (green), and 4.0 µm (cyan). In (a) the
peak power is 1500 W, while in (b) the pulse duration FWHM is 1500 fs. The bandwidth
is calculated for different pulse durations in steps of 1 fs. The peak power is varied in steps
of 1 W.

It is clear from Fig. 2.7 that even after the spectral smoothing discussed in the previous

section, corresponding to an average over the bandwidth of an optical spectrum analyzer,

there are still considerable variations in the measured bandwidth that do not appear in

an experimental system. As filtering the spectral output is not enough to remove these
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unphysical variations, we calculated an ensemble average of the supercontinuum output

for a range of pulse parameters that could be expected in an experimental system.

Figures 2.8(a) and 2.8(b) show the same data as Figs. 2.7(a) and 2.7(b), respectively,

for a 3.5 µm pitch. However, we calculate the bandwidth by first averaging the pulse output

for all simulations over a 10% variation in the input parameter (either pulse duration or

peak power), which is a typical value, and then using the method described in the previous

section. This bandwidth is plotted as a dashed line Figs. 2.8(a) and 2.8(b) and corresponds

to the bandwidth that would be experimentally observed with a variation in system parame-

ters of 10%. The bandwidth increases with increasing pulse duration and pulse peak power,

but still has significant fluctuations.

Figure 2.8 makes clear the necessity of ensemble averaging to find an expected band-

width. Spectral filtering alone is not enough to reduce the large-scale fluctuations in output

power. Trying to determine an optimum set of parameters from Fig. 2.7 is unreliable.

Figure 2.8: (a) Calculated bandwidth (solid) and ensemble-averaged bandwidth for a 10%
parameter variation (dashed) vs. pulse duration FWHM for a pitch of 3.5 µm. (b) Calcu-
lated bandwidth (solid) and ensemble-averaged bandwidth for a 10% parameter variation
(dashed) vs. peak input power for a pitch of 3.5 µm.
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2.2.3 Application to optimization In Fig. 2.9, we show the average bandwidth that

we calculated with the procedure described in Sections 2.2.1 and 2.2.2, applied to the data

of Fig. 2.7. We find that, by keeping the pulse duration fixed at 1.5 ps, we can obtain an

output bandwidth of about 4 µm for a pitch of 3.5 µm and powers greater than 1300 W.

However, we see in Fig. 2.9 that a pitch of 3.0 µm more reliably yields a larger bandwidth

than both 3.5 µm and 4.0 µm.

Figure 2.9: Bandwidth found using averaging method versus (a) input pulse duration and
(b) input pulse peak power, for air-hole pitches of 2.5 µm (blue), 3.0 µm (red), 3.5 µm
(green), and 4.0 µm (cyan). In (a) the peak power is 1500 W, while in (b) the pulse duration
FWHM is 1500 fs. The bandwidth is calculated for different pulse durations in steps of
1 fs. The peak power is varied in steps of 1 W.

In a previous optimization study of the same supercontinuum source that was de-

scribed in Section 2.1 [5], we found that the optimal parameters were a 4.0 µm pitch, a

pulse duration of 1150 fs, and a peak input power of 1280 W. These parameters yielded

an output bandwidth of about 4.0 µm, similar to the maximum bandwidth in this section.

The present results are a more reliable estimate of the expected maximum bandwidth and

optimal fiber and input pulse parameters, because in our previous work, we took large steps
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in the pulse parameters and neglected the sensitivity of supercontinuum generation to small

changes in the system parameters.

The uncertainty in choosing an optimum from Fig. 2.7 can be as high as 800 nm in

about 3.5 µm, or more than 22%. The uncertainty in choosing an optimum from Fig. 2.9

is evident because the results of averaging over one parameter does not agree with results

of averaging over the other. The bandwidth for a 3.5 µm pitch, 1430 fs pulse duration and

1500 W pulse peak power from Fig. 2.9(a) is about 3.7 µm. The bandwidth for a 3.5 µm

pitch, 1500 fs pulse duration, and 1430 W pulse peak power from Fig. 2.9(b) is about 4.2

µm. Using these values to estimate the error in the ensemble-average method gives about

500 nm in 4 µm or slightly more than 10%. Thus, this method reduces uncertainty by more

than 10%. Using this procedure, we find a reliable maximum bandwidth of 3.7 µm with a

pitch of 3.0 µm that extends between 2.5 and 6.2 µm with an uncertainty of ± 0.3 µm.

This uncertainty, though reduced from previous studies, is still high. The next sec-

tion describes how to find a reliable estimate of the output spectrum and its corresponding

bandwidth.

2.3 Calculation of the experimentally expected output spectrum

A common aim in SC generation, especially in the mid-IR, is to obtain a broad band-

width. Additionally, it is often desirable to generate a spectrum that is as flat as possible

over the wavelength range of interest. Several characteristics of single-shot simulation re-

sults appear to indicate that SC sources cannot achieve these goals when the input pulse

energies become large [6]. First, variations as large as 20 dB can exist over a single-shot

spectrum. Also, the frequency of these variations depends on the bandwidth resolution.

Finally, output bandwidths vary over a large range. This behavior when the input pulse en-

ergy is large contrasts strongly with the behavior when the input pulse energy is small, and
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supercontinuum generation is highly reproducible from shot to shot. It has been shown that

the number of solitons in the input pulse plays a critical role in determining the sensitivity

of the supercontinuum spectrum to small variations in the input parameters [22].

However, the theoretically-predicted shot-to-shot variations cannot be observed in ex-

periments, and we will show in this section that they are an artifact of single-shot sim-

ulations. In an experiment, the repetition rate of the input pulse source is much greater

than the sampling rate of the optical spectrum analyzer. Therefore, the measured output

spectrum of a SC source consists of an ensemble average over many thousands of pulse re-

alizations, which include laser noise and pulse parameter (pulse duration and peak power)

differences due to environmental effects. Because SC generation is extremely sensitive to

small changes in the input pulse when the input pulse energy is large, a single numerical

simulation will not yield an accurate representation of the experimental SC output or its

bandwidth.

To obtain an accurate representation, it is necessary to use an ensemble average. That

leads to the question of how large the ensemble must be in order to realistically simulate an

experimental system. It is desirable for computational efficiency to use the smallest number

of realizations possible. In the previous sections [5, 6] on mid-IR SC generation in As2S3

photonic crystal fibers, we found that changes of 0.01 % in either the pulse duration or the

peak power lead to a SC spectrum that appears almost completely uncorrelated with the

initial spectrum in the intermediate wavelength range of 2700–4600 nm. Since the pulse

duration and peak power can vary by 10 % or more in experimental systems, this result

suggests that the experiments generate as many as 103×103 = 106 independent realizations

and it may be necessary to simulate an ensemble with as many as 106 realizations to find

a converged spectrum. We will show, however, that a much smaller ensemble with 5,000

or fewer realizations is sufficient to reproduce the experimentally-expected spectral power
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density and bandwidth.

2.3.1 Simulation parameters The ensemble average is taken from realizations in the

two-dimensional parameter space defined by the input pulse duration and the input pulse

peak power. The parameter space is centered around the point with a 1 kW peak power and

a 1 ps pulse duration and includes a 10 % variation in each dimension. Thus, the parameter

space extends from 950 fs to 1050 fs in pulse duration and from 950 W to 1050 W in pulse

peak power. Realizations are chosen 100 at a time. Each set of 100 realizations forms

a uniform grid in the parameter space, such that realizations in each set are separated as

far apart as possible. Successive sets are created by shifting the sampling grid so that no

realization is repeated and each new set is as far away from previous sets as possible. We

show this gridding scheme schematically in Fig. 2.10. Each set of 100 is averaged, and

we repeated this 100-point sampling until we had 106 individual SC realizations, or 104

100-realization ensemble averages. Then, these 104 averages were averaged cumulatively

to investigate the behavior of the ensemble as more realizations are included.

We do not include white Gaussian noise in our simulations. While adding white Gaus-

sian noise does change the SC output spectrum that results from a particular set of input pa-

rameters, so does an extremely small change to one or both of the input parameters, which

is what we achieve in our sampling. Moreover, the noise spectrum of the pulses in an ex-

perimental mid-IR SC source is not well characterized. Additionally, a small-scale test of

1000 realizations showed that results that included white Gaussian noise were statistically

similar to results without noise. Since the statistical properties appear to be unchanged, we

omitted white Gaussian noise in our simulations.
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Figure 2.10: Uniform gridding scheme. Realizations indicated by the same color are aver-
aged.

2.3.2 Spectral correlation in parameter space Figure 2.11 shows a typical super-

continuum output spectrum with the approximate delineation of the three wavelength re-

gions. Region 1, the short wavelength region, from around 1.5 µm to 2.7 µm shows the

least change as the pulse parameters vary. Region 1 represents energy formed by early four-

wave mixing with a spectral shape determined primarily by material loss, which increases

rapidly for wavelengths shorter than 2 µm, and by the four-wave mixing resonances. Re-

gion 2, the middle wavelength region, from around 2.7 µm to around 4.6 µm shows the

most change as the pulse parameters vary slightly. However, while Region 2 shows a large

amount of variation, the effect on the bandwidth is small, since most of the variation is due

to a fine structure that varies rapidly with wavelength. Region 3, the long wavelength re-

gion, from around 4.6 µm and longer, changes rarely but significantly. The power spectrum

in this region is due almost entirely to the longest-wavelength, highest-energy soliton and
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has the greatest effect on the bandwidth of the SC output.

Figure 2.11: Example supercontinuum spectrum showing three regions.

In Fig. 2.12, we show the average Pearson correlation coefficient between realizations

with different pulse parameters from the parameter space for the short and middle wave-

length regions. The Pearson correlation coefficient is computed as

ρ =

∑λn
λ=λ1

(Xλ − X̄)(Yλ − Ȳ )[∑λn
λ=λ1

(Xλ − X̄)2
∑λn

λ=λ1
(Yλ − Ȳ )2

]1/2
, (2.4)

where X and Y are two different output spectra or output spectrum regions with corre-

sponding mean values X̄ and Ȳ , and Xλ and Yλ are the values of those output spec-

tra at a particular wavelength λ. For the short wavelength region, λ1 = 1000 nm and
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λn = 2700 nm. For the intermediate wavelength region, λ1 = 2700 nm and λn = 4600 nm.

In both cases, the values of λ are separated by 1 nm.

Figure 2.12(a) shows the average correlation coefficient for the short wavelength re-

gion and middle wavelength region between realizations where the input pulse peak power

is varied by 0.1 W. Figure 2.12(b) shows the average correlation coefficient for the short

wavelength region and middle wavelength region between realizations where the input

pulse duration is varied by 0.1 fs. The average correlation coefficient is taken over 1000

realizations between 950 W and 1050 W for the peak power plots and over 1000 realiza-

tions between 950 fs and 1050 fs for the pulse duration plots. These values represent a 10%

variation in pulse parameters for a 1 ps, 1 kW input pulse. The long correlation length for

the short wavelength region is evident for both dimensions of the two-dimensional pulse

parameter space. By contrast, the middle wavelength region has a very short correlation

length in both peak power and duration, but we note that its correlation does not go to zero.

Figure 2.12: Average correlation coefficient for short and middle wavelength regions when
(a) the peak power is varied and (b) when the pulse duration is varied.
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2.3.3 Spectral convergence Figure 2.13 shows a typical single-shot SC output spec-

trum for an input pulse with a peak power of 1 kW and a pulse duration of 1 ps, which

shows large fluctuations in output power, and the ensemble-averaged output spectrum for

the full ensemble including 106 samples taken from the parameter space as described in

Section 2.3.1. In addition to the large-scale fluctuations in output power present in the

single-shot result, it is readily apparent that this single-shot result has a slightly larger band-

width than the full ensemble — about 100 nm wider. This variability in the output spectrum

and its bandwidth, as demonstrated here, is the main source of uncertainty in the single-shot

results. We note that the short wavelength region still shows large, persistent fluctuations,

even in the full ensemble average, which we attribute to periodic phase-matching of the

four-wave mixing. Also visible in the ensemble-averaged result are some small-scale fluc-

tuations in the middle wavelength region, particularly on the short wavelength side, which

we attribute to residual soliton interactions, as we will discuss later.

Figure 2.13: Single-shot simulation output (blue) and full 106 ensemble average output
(red).
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As mentioned previously, the variations in wavelength region 3 are most responsible

for the variability in the output bandwidth. Figure 2.14 shows a comparison of two single-

shot output spectra, which are similar for most wavelengths except in the long wavelength

region. The difference in bandwidth between these two spectra is about 700 nm. The large

bandwidth of the spectrum shown in blue is due to an optical rogue wave [31] event. These

events occur rarely, but often enough to affect the ensemble average. The impact of rogue

events on the bandwidth is not made evident by the logarithmic scale of the ordinate axis.

The next figure better clarifies the behavior.

Figure 2.14: Comparison of output spectra with different bandwidths: 2.5 µm (green) and
3.2 µm (blue).

In Fig. 2.15, we show a histogram of the output bandwidth for 105 realizations using

50 bins. This distribution is bimodal. Most output spectra in the ensemble have a band-

width around 2.8 µm, while a smaller group of bandwidths is clustered around 2.5 µm.

However, even in this (relatively) limited sample space of noise-free simulations, spectra

with bandwidths greater than 3.2 µm, more than 25% greater than the average, exist in the

ensemble.
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Figure 2.15: Histogram of output bandwidths.

It has been shown [22, 28], that for SC systems with soliton numbers greater than

about N = 10, the mutual coherence between different realizations of SC generation will

decrease rapidly. Hence, the wavelengths of the SC outputs will be largely uncorrelated

from shot-to shot. The large soliton number for this system (N ≈ 30) is consistent with

the great sensitivity in the output spectrum that we observe when the input pulse duration

and peak power change. At the same time, the number is small enough that the residual

correlations remain visible. We attribute the bumps that are visible in the middle range

of wavelengths in the 106 ensemble-averaged spectrum in Fig. 2.13 to these residual cor-

relations. In Fig. 2.16, we show the spectrogram evolution for a single realization, and

in Fig. 2.17, we show the average spectrogram evolution for an average of 1000 realiza-

tions. The solitons that are visible in a single realization remain perceptible in the average,

although greatly diminished in amplitude relative to the background.

2.3.4 Statistical characterization The location and amplitude of the large-scale, fast

fluctuations in the spectrum appear to be randomly varying from one realization to the

next, although, as just noted, appearances are deceiving. If the samples from the parameter
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Figure 2.16: Single-shot spectrogram.

Figure 2.17: Average spectrogram for 1000 samples.

space were statistically uncorrelated, we would expect the variance of these fluctuations to

reduce with an increasing number of samples in the ensemble proportional to N−1, where

N is the number of samples in the ensemble. From the plots of the correlation coefficient

in Section 3, we might expect that the highly uncorrelated middle wavelength region would

show a reduction in variance that follows this rule. The short wavelength region has a much
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broader correlation function, and so we would expect the variance of the fluctuations in this

region to reduce more slowly as more realizations are included in the ensemble average.

To test this hypothesis, we computed the variance of the fluctuations in both regions,

using the final ensemble-averaged spectrum as a basis for comparison. The variance of the

fluctuations in a spectrum is computed as

σ2 =
1

n

λn∑
λ=λ1

[
(Xλ −Xλ)− µ

]2

, (2.5)

where n is the number of wavelengths, or the size of the region, under consideration, Xλ

is the amplitude of the spectrum at wavelength λ, and Xλ is the amplitude of the full

ensemble-averaged spectrum at that wavelength, and µ is the mean value of Xλ −Xλ. For

the short wavelength region, λ1 = 1000 nm and λn = 2700 nm. For the intermediate

wavelength region, λ1 = 2700 nm and λn = 4600 nm. Again, the values of λ are separated

by 1 nm.

The variances of the fluctuations in the short and middle wavelength regions are shown

in Fig. 2.18 and Fig. 2.19, respectively. In both cases, the variance decreases at a similar

rate, approximately equal to N−5/6. The variance decreases rapidly as the number of sam-

ples approaches 106 because the data are being compared to the ensemble average with 106

samples. While both regions have a similar overall rate of decrease, the decrease in variance

is relatively smooth for the middle wavelength region compared to the short wavelength re-

gion. The variance of the fluctuations in the short wavelength region decreases in jumps,

with a seemingly self-similar pattern that repeats approximately two times every decade.

We attribute the lack of smoothness in this case to the high correlation in this wavelength

range and the residual spectral structure that does not average out, which is due to a com-

bination of material loss and four-wave mixing resonances.
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Figure 2.18: Variance of the fluctuations in
the short wavelength region. Lines corre-
sponding to N−5/6 and N−1 are also shown
for comparison.

Figure 2.19: Variance of the fluctuations in
the middle wavelength region. Lines corre-
sponding to N−5/6 and N−1 are also shown
for comparison.

The N−5/6 rate of reduction for the middle wavelength region implies that with 5000

samples, the variance of the fluctuations has reduced by approximately two orders of mag-

nitude from its original value. This reduction is sufficient to yield a good quantitative

estimate of the shape, smoothness, and amplitude of the experimentally-expected output

spectrum. A comparison of the ensemble average including 5000 realizations and 106 re-

alizations is shown in Fig. 2.20. The corresponding spectra match almost exactly. The

differences between the output spectra are small scale fluctuations that are almost imper-

ceptible.

Because the rate of decrease for the middle wavelength region is slower than N−1,

we infer that there are residual correlations between the realizations due to fluctuations as

a function of wavelength that never average out. These residual fluctuations are visible in

Fig. 2.20 in both large-scale fluctuations that vary slowly as a function of wavelength and

small-scale fluctuations that vary rapidly as a function of wavelength. We attribute these

residual correlations to the restricted number of solitons that make up the spectrum and
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Figure 2.20: Ensemble average output for 5000 samples (red) and 106 samples (blue).

are visible in Figs. 2.16 and 2.17. The presence of these residual correlations is consistent

with the Pearson correlation coefficients in Fig. 2.12. The correlation coefficient does not

approach zero and diminishes slowly for separations greater than about ∆τ = ±2 fs in

pulse duration or ∆P = ±2 W in pulse peak power.

2.3.5 Long wavelengths and bandwidth convergence Figure 2.21 shows the band-

width of the ensemble-averaged output spectrum as the number of samples in the ensemble

increases. While the bandwidth comes within 5 nm of its final, converged value after

about 1000 realizations, it does not reach its final value until around 5000 realizations.

Even though there is still some settling down after 5000 realizations, the fluctuation in the

bandwidth is small after that point. This value of 5000 realizations is consistent with the

convergence of the middle wavelength region of the spectrum as described in the previous

section. We also found similar bandwidths using different sets of 5000 realizations.

In comparing Fig. 2.15, the histogram of bandwidths, and Fig. 2.21, we find that
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the bandwidth of the average spectrum is not the same as the average bandwidth. The

average bandwidth is around 2700 nm, while the bandwidth of the average spectrum is close

to 2900 nm. This difference indicates that, as expected, the ensemble average behavior

in the long-wavelength region is dominated by the large-bandwidth rogue events, even

though they occur much less frequently than the average-bandwidth output spectra. It is

the bandwidth of the average spectrum that would be observed in an experiment.

Figure 2.21: Average bandwidth versus number of samples in the ensemble average.



Chapter 3

Moth-eye structures

It has been known since the time of Lord Rayleigh that microscale structures on the sur-

face of optical interfaces are effective at reducing Fresnel reflections [32]. Periodic anti-

reflective (AR) microstructures are called “moth-eye” structures because of their similarity

to the microstructures on the eyes of nocturnal moths [33]. Figure ?? compares scanning

electron microscope (SEM) images of the so-called “corneal nipple array” from a moth’s

compound eye and a moth-eye structure imprinted onto a chalcogenide optical fiber.

Moth-eye structures are a biomimetic microstructured AR surface structure that are

effective at reducing Fresnel reflections [34]. In the long wavelength limit, they work by

providing a gradual change of the effective refractive index as light propagates across the

air-glass interface. They are especially useful for high-index materials, which includes most

mid-IR materials, such as chalcogenide glasses. Reducing Fresnel reflections from optical

interfaces is important in mid-IR applications where high power and low loss are needed.

High power laser radiation that reflects from interfaces can damage instruments, while in-

sertion or coupling losses can be major contributors to overall losses in a system [35].

Hence, mid-IR systems can greatly benefit by using moth-eye structures to reduce reflec-

tions from and to increase transmission through interfaces. They are useful in a number

36
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of applications, including laser systems [35], photovoltaics [36], LEDs [37], automotive

glass [38], electronics displays [39], and fiber optics [8].

Sanghera et al. [8] and MacLeod et al. [40] recently demonstrated a direct stamping

method for imprinting these moth-eye structures on the end-faces of chalcogenide optical

fibers, where AR interfaces are particularly useful because of the large refractive index dif-

ference between air and As2S3 (∼2.45 at a wavelength of λ = 2 µm). The direct stamping

method allows structures to be accurately replicated, and the reflection as a function of

wavelength depends sensitively on the structures and their parameters [9], which means

that they must be accurately modeled. Because in the structures studied in this work, the

microstructure feature dimensions are on the same order as the wavelength of the incom-

ing radiation (∼1 µm), the light in adjacent features interacts, and thus neither the long-

wavelength average refractive index model nor the short-wavelength ray optics model is

appropriate to describe transmission through moth-eye structures. Hence, they must be

modeled using rigorous computational methods [41], such as the finite-element method

(FEM), the finite-difference time-domain method (FDTD) [42, 43], or rigorous coupled-

wave analysis (RCWA) [44,45], where the results become exact in principle as the grid size

and step size tend to zero (FEM and FDTD) or the number of harmonics becomes infinite

(RCWA). We have simulated moth-eye structures using three methods, FEM, FDTD and

RCWA. We find that they agree perfectly, but that RCWA is the fastest and most accurate

method.

Moth-eye structures have several advantages over traditional thin-film AR coatings,

including environmental tolerance, surface adhesion, single material fabrication, minimal

surface preparation, and self-cleaning via the lotus effect [8, 38]. Additionally, it has been

shown in recent years that in many cases periodic moth-eye structures have a higher laser-

induced damage threshold (LIDT) than do traditional AR-coated surfaces [46–48].
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(a) SEM of a moth’s eye (from [49]). (b) Moth-eye structure (from [8]).

Figure 3.1: Comparison of a moth’s eye and a moth-eye structure.

3.1 Comparison of theory and experiment

The preliminary goal of the work described in this section is to create and validate a

theoretical model that agrees with the results for a particular moth-eye structure that was

experimental studied at the Naval Research Laboratory by Sanghera et al. [8]. We calcu-

late the transmission of the structured surface by simulating a plane-wave incident upon

the structured surface using the open-source finite-difference time-domain (FDTD) com-

puter software MEEP [50]. The simulation propagates a wave-packet of specific bandwidth

through the microstructure and then calculates the transmission and reflection spectra by

taking a harmonic transform of the time-domain flux through measurement surfaces that

are situated above and below the microstructured surface. We utilize the periodicity of the

structure and only solve for the fields in a single unit cell, using Floquet-Bloch boundary

conditions. The calculated transmission spectra have been verified by comparison with the

commercial software package DiffractMOD by RSOFT, which uses the rigorous coupled

wave algorithm (RCWA).

The experimental shape is modeled by a truncated cone with a hemispheric cap that is
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Figure 3.2: Schematic view of a moth-eye cone structure with parameters. (a) Side cross-
section view; (b) top view showing a unit cell.

fully determined by specifying the cone height, h; the base diameter, w2; the tip diameter,

w1; and the lattice constant of the packing, sx. Since the features are hexagonally packed,

sy =
√

3sx. These geometric parameters are shown diagrammatically in Fig. 3.2. The cone

approximation to the experimentally implemented feature has parameters w1 = 0.2 µm,

w2 = 0.7 µm, and h = 0.9 µm. For all theoretical models, we set the refractive index n

of As2S3 to be equal to n = 2.45, which is a good approximation to the experimentally-

measured value over the wavelength range of interest.

The calculated transmission spectra is shown in Fig. 3.3 for light that is coupled into

and out of an optical fiber. The spectra are very similar at longer wavelengths and differ for

shorter wavelengths for reasons that will be explained shortly. The output coupling exhibits

a sharp falloff at short wavelengths, while the input coupling does not. The transition from

high to low transmission as the wavelength decreases is called the diffraction edge, is sharp,

and occurs at 1.9 µm for this structure.

Figure 3.3 also shows that the experimentally-measured transmission for light coupled
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Figure 3.3: The theoretical transmission spectra of light coupled into and coupled out of
the fiber. The experimental transmission spectra of light coupled out of the fiber is also
shown. The Fresnel limit is the transmission spectra from a plane-wave coupling into or
out of a fiber with a flat end-face.

out of the fiber and the drop-off in transmission for shorter wavelengths match the theoret-

ical result. The measured transmission spectrum is somewhat lower at longer wavelengths,

which could be caused by a slightly different cone shape in the experimental system than

in our theoretical model and/or by material losses, which are not included in our theoretical

model.

Finally, Fig. 3.3 shows the transmission through a bare fiber end-face with no AR

structure for comparison. The Fresnel-limited transmission depends only on the refractive

indices of the incident and transmitting medium and, in this case, is approximately 83%.

3.1.1 Coupling into and out of a fiber The coupling of light into the fiber and

the transmission out of the fiber are two different problems, as schematically shown in

Fig. 3.4(a). For long wavelengths, the behavior of both input and output coupling can be

expected to be similar, as the electro-magnetic field will average over the moth-eye surface,
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Figure 3.4: (a) Coupling of light into and out of the fiber represented graphically. The
ray-optics pictures of light coupling (b) out of the structure, and (c) into the structure.

effectively homogenizing the refractive index transition and leading to similar transmission

properties in both directions.

For shorter wavelengths, we expect the transmission properties to be very different.

In the ray-optics limit, normally incident light will be totally internally reflected inside the

cones in the output coupling case, whereas light will be refracted directly into the fiber in

the input coupling case, as shown in Figs. 3.4(b) and 3.4(c). Total internal reflection occurs

when the angle that the incident light ray makes with the cone surface, θ, is greater than the

critical angle, 24◦, as is the case with all of the practical cone designs considered.

This argument gives an intuitive picture of how a structured surface can yield very

different behavior for light coupled into and out of the high index material. However, the

coupling at wavelengths close to the size of the structure is complicated due to the inter-

action of the electromagnetic field in adjacent cone structures. The wavelength at which

the input and output coupling differ is called the diffraction edge, because for wavelengths

below the diffraction edge, diffracted orders greater than zero exist in the transmitted spec-
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trum. Full numerical simulations of Maxwell’s equations are therefore required to obtain a

qualitative picture of the transmission spectra as well as a quantitative result.

3.2 Changing the dimensions

Next, we investigate changing the dimensions of the truncated cone to determine the

effect on the transmission spectrum. We vary each parameter independently, starting with

the tip width.

3.2.1 Tip width The calculated transmission spectra for input and output coupling for

different values of the cone tip diameter, w1, are shown in Fig. 3.5. All other parameters

are kept fixed at w2 = 0.7 µm, h = 0.9 µm, sx = 0.92 µm, and sy = 1.59 µm.

As the cone tip diameter is increased from w1 = 0.1 µm to w1 = 0.7 µm, the transmis-

sion for wavelengths above 3.5 µm increases. However, for wavelengths around 2.8 µm,

the transmission correspondingly decreases. For output coupling, the transmission drop-off

near 2 µm does not change significantly for different values of w1. For input coupling, the

transmission decreases below 2 µm as the tip diameter increases.

3.2.2 Base width In the second parameter study, we varied the diameter of the base

of the cone, keeping the other parameters fixed at w1 = 0.2 µm, h = 0.9 µm, and sx =

0.92 µm. The resulting transmission spectra versus wavelength are shown in Fig. 3.6.

We see that for very narrow cones, with w2 = 0.3 µm, the transmission is only slightly

increased above the Fresnel limit of a flat interface, which is approximately 83%. For

both input and output coupling the slopes of the transmission spectra become increasingly

steep, decreasing from almost 100% transmission near 2.5 µm to around 92% transmission

near 5 µm at the largest base diameter that we consider, w2 = 0.9 µm, where the base of
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(a) (b)

Figure 3.5: The transmission spectra of light coupled (a) into and (b) out of the fiber versus
the cone tip diameter w1. The other geometric parameters are w2 = 0.7 µm, h = 0.9 µm,
and sx = 0.92 µm.

the cones would be almost touching. For input coupling we see that as w2 increases, the

transmission increases for all wavelengths. Furthermore, for output coupling, we find that

as w2 increases, the cutoff at 2 µm becomes stronger.

3.2.3 Height The transmission spectra versus wavelength for different cone heights,

h, keeping the other parameters fixed, are shown in Fig. 3.7. The transmission above 3.5 µm

increases as the cone height increases; however, the transmission also decreases slightly

with increasing h near a wavelength of 3 µm. The same behavior is seen for both input and

output coupling. The height does not greatly affect the transmission below 2 µm for input

coupling; for output coupling the transmission increases, although it is still considerably

below the Fresnel limit of 83%, and the sharp cutoff is still present.

3.2.4 Period The final geometric parameter that we change in our model is the lattice

spacing or the period of the cones, sx. The lattice packing is kept hexagonal; deviations
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(a) (b)

Figure 3.6: The transmission spectra of light coupled (a) into and (b) out of the fiber
versus the cone bottom diameter w2. The other geometric parameters are w1 = 0.2 µm,
h = 0.9 µm, and sx = 0.92 µm.

(a) (b)

Figure 3.7: The transmission spectra of light coupled (a) into and (b) out of the fiber versus
the cone height h.

from this packing by choosing sy differently would cause different polarizations of light

to have different transmission spectra. The results are shown in Fig. 3.8. We find that

the transmission increases with decreasing sx. This result qualitatively agrees with the re-
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sults of changing the cone base diameter: In both cases, the packing density of the cones

increases, causing the interaction of the fields between cones to increase, which in turn in-

creases the resulting transmission. The results for output coupling are shown in Fig. 3.8(b).

In this case, we find that changing the lattice constant changes the cut-off or diffraction

edge wavelength, which increases as sx increases.

(a) (b)

Figure 3.8: The transmission spectra of light coupled (a) into and (b) out of the fiber versus
the cone hexagonal packing spacing sx.

3.3 Angle of incidence

The effect of changing the angle of incidence of the input plane wave is shown in

Fig. 3.9 for angles up to 30◦ for the same moth-eye structure that was discussed in the pre-

vious section. For input coupling, the transmission spectra is almost unaffected by changes

in the angle of incidence. This result makes sense conceptually, as argued previously from

the ray picture in Fig. 3.4(c). For output coupling, the transmission drops significantly for
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angles of incidence above 10◦, going to zero for wavelengths above 2 µm for an incidence

angle of 30◦.

For single mode fibers the low transmission at non-normal incidence for output cou-

pling would not be a problem since the angle of incidence for the fundamental mode would

be close to normal; however, for multimode fibers this issue should be taken into consider-

ation.

(a) (b)

Figure 3.9: The transmission spectra of light coupled (a) into and (b) out of the fiber versus
the incidence angle of the input plane-wave, φ.

3.4 Changing the shape

In this section, we study the effect of changing the shape of the moth-eye structure ele-

ment. The shapes we study are a half-ellipsoidal shape, a sinusoidal shape, and a truncated

pyramid. The truncated pyramid element is a flat-sided square pyramid with the top cut

off. The half-ellipsoid structure is the upper half of an ellipsoid oriented along the z-axis,
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Figure 3.10: Cross-section of (a) a sinusoidal structure, (b) a half-ellipsoid structure, and
(c) a truncated pyramid structure. (d) The pyramidal surface from the top, showing the
polarization angles used in the simulations.

whose height is given by the equation

z(x, y) = h

[
1−

( x

w2/2

)2

−
( y

w2/2

)2
]1/2

, (3.1)

where x and y are the axes parallel to the surface, z is the height perpendicular to the

surface, h is the element height, and w2 is the base width. The sinusoidal shape is given by

the upper half of a cosine rotated around the z-axis, which has a height

z(x, y) = h cos

{
π

w2

[( x

w2/2

)2

+
( y

w2/2

)2
]1/2}

, (3.2)

where again x and y denote the axes that are parallel to the surface, z denotes the height

perpendicular to the surface, h is the element height, and w2 is the base width. We show

cross sections of each feature shape in Fig. 3.10(a)–(c).

3.4.1 Positive structures First, we studied positive structures formed from these ele-

ment shapes. Positive structures correspond to the gray areas in Fig. 3.10 being As2S3, with
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the white areas (background) being air. We compare the transmission spectra for positive

elements of three different heights h = 0.8 µm, 1.2 µm, and 1.6 µm and two base widths

of w2 = 0.7 µm and 0.9 µm. The pyramidal element has an extra parameter compared

to the sinusoidal and half-ellipsoid elements, which is the top width w1; for the following

calculations, we set w1 = 0.15 µm. The pyramidal structure is also not rotationally sym-

metric about the z-axis, unlike the other two structures, and will therefore have different

transmission properties depending on the polarization of the incident light.

The calculated transmission spectra in the case of output coupling for the sinusoidal

and half-ellipsoid surfaces are shown in Fig. 3.11(a) and Fig. 3.11(b) respectively. For the

sinusoidal surface, the transmission is greater for larger base widths. The transmission is

generally flatter for taller elements, although there is little change between h = 1.2 µm and

h = 1.6 µm. For the half-ellipsoid surface, the transmission is greater for larger base widths

and is flatter for taller elements, and the highest transmission is obtained when the element

is widest and has a height h = 1.2 µm or h = 1.6 µm. However, for the half-ellipsoid

surface with w2 = 0.7 µm, as the height is increased, the transmission actually drops below

the transmission for shorter elements. A similar dip occurs with the sinusoid surface, but it

is less significant.

The calculated transmission spectra for the pyramidal surface are shown in Fig. 3.12(a).

The highest and widest pyramidal structure of h = 1.6 µm and w2 = 0.9 µm performs the

best of all the shapes considered and has a transmission of almost unity across the wave-

length range λ = 2–5 µm.

Figure 3.12(b) shows the transmission for different polarization states of the incoming

electric field. A polarization angle of φ = 0◦ corresponds to the electric field parallel to the

sides of the base of the pyramidal and a polarization angle of φ = 45◦ corresponds to the

electric field aligned diagonally to the base of the pyramidal, as shown in Fig. 3.10(d). The
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transmission drops slightly when φ = 45◦ compared to when φ = 0◦. We expect that the

transmission for all other polarizations lies in between these extreme cases.

In most cases, we found that increasing the base width and height of the element

increased the transmission across the wavelength range. However, this behavior was not

found for all element shapes in all height ranges; for example, the transmission for the

half-ellipsoid with base width of w2 = 0.7 µm is worse for taller elements. Also, for both

the sinusoidal and half-ellipsoid elements, there is no improvement in transmission when

the height increases from h = 1.2 µm to h = 1.6 µm. In fact, the transmission only

increases for the pyramidal element with a base width w2 = 0.9 µm when the height is

increased from h = 1.2 µm to h = 1.6 µm. For the tallest and widest pyramid shape,

the transmission is greater than 99.5% when the polarization angle φ = 0◦ and 99% when

φ = 45◦ over the wavelength range λ = 2–5 µm. This transmission is the highest for all

element shapes considered; however, with shorter element heights, the transmission for the

pyramidal shape is not better than the other structures at longer wavelengths.

Different shapes have significantly different transmission spectra, even for two rela-

tively similar smooth shapes like the sinusoid and the half-ellipsoid. Therefore, the exact

shape of the elements is required to match experimental and theoretical calculations.

3.4.2 Negative structures Here, we consider two different negative structure shapes,

sinusoidal and half-ellipsoid holes, which are shown schematically in Fig. 3.13. These are

similar to those as considered previously for positive surfaces, and the shapes are again

specified by Eqs. 3.3 and 3.2; however, now z specifies the depth of the hole below the

surface, rather than the height above it.

The holes are parameterized in the same way as the bumps, using the base width, w2,

and the depth, h. The lattice parameter is the same as previously used, sx = 0.9 µm, and
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Figure 3.11: The theoretical transmission spectra through a surface consisting of positive
(a) sinusoidal structures and (b) ellipsoid structures, both with w2 = 0.7 µm (thin lines)
and w2 = 0.9 µm (thick lines). The Fresnel transmission at around 83% is also shown for
reference in both figures.

the holes are again hexagonally packed.

The results for the transmission in the case of coupling out of the fiber for the sinusoid

and half-ellipsoid holes is shown in Figs. 3.14(a) and 3.14(b) respectively. The transmis-

sion is higher for the holes with width w2 = 0.9 µm than the holes with w2 = 0.7 µm

for both shapes. The transmission also increased as the width increased for the positive

surface, but this increase is even more significant here. Increasing the hole depth does not

significantly increase the transmission for most shapes. The notable exception is the half-

ellipsoid surface with w2 = 0.9 µm, where the transmission increases markedly as the hole

depth increases, reaching a transmission of almost unity across the wavelength range above

λ = 2 µm for the deepest hole considered.

The surface with sinusoidal holes has a cut-off that is around 1.2 µm rather than

1.9 µm, as is seen in the positive surface case, leading to a higher transmission in the

wavelength range λ = 1.2–1.9 µm for the sinusoidal surface, so that for the tallest and
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Figure 3.12: The theoretical transmission spectra for a surface with positive pyramidal
structures with w1 = 0.15 µm, with (a) the electric field polarized fixed at φ = 0 and the
parameters w2 = 0.7 µm (thin lines) and w2 = 0.9 µm (thick lines); (b) the incident electric
field polarized at φ = 0 (thin lines) and φ = 45◦ (thick lines) and the base width fixed at
w2 = 0.9 µm. The Fresnel transmission at around 83% is also shown for reference in both
figures.

widest hole the transmission remains above 95% when λ > 1.3 µm. This increased cut-off

is notable as the cut-off is tied to the periodicity of the lattice, and is not changed by any

other factor for the positive surfaces. The tallest and widest half-ellipsoid holes also display

an increased transmission in the cut-off region, as compared to the positive surface, only

decreasing below 85% for wavelengths below 1.3 µm.

The calculated transmission for coupling into the fiber for the two negative shapes

is shown in Figs. 3.15(a) and 3.15(b) respectively. The transmission is the same as for

coupling out of the fiber at wavelengths above 2 µm, but the spectra for input and output

coupling diverge below 2 µm.
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Figure 3.13: Schematic view of a negative structured surface consisting of holes with (a)
sinusoidal and (b) half-ellipsoid shapes.

Figure 3.14: The theoretical transmission spectra for output coupling through a dimpled
surface consisting of holes with (a) sinusoidal and (b) half-ellipsoid shapes.

3.5 Optimized cusp-like moth-eye structures

In this section, we computationally study two different moth-eye structure shapes,

half-ellipsoids and pyramids, to design an ideal moth-eye structure for maximum transmis-

sion in the wavelength range 2–5 µm. We find that the ideal structure, whether positive or

negative, has a cusp-like glass tip and a smoothly increasing cross-sectional width that be-
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comes equal to the period of the features. We show two examples of this kind of structure

in Fig. 3.16.

In the long wavelength limit, moth-eye structures provide a gradual change of the

effective refractive index as light propagates across the air-glass interface, akin to an

impedance transformer that matches the impedance of the optical surface to the impedance

of the vacuum [51]. This long-wavelength limit picture is inexact, especially as the incident

wavelength is on the order of the feature size, but it offers important insights that are useful

for designing optimal structures.

The intuition provided by this picture suggests that the effective (average) refractive

index of the layer at the highest point of the structure should be as close to that of the low

index medium (air or vacuum in this case) as possible. Similarly, the bottom layer should

have an effective index as close as possible to the index of the glass substrate. For layers

in between, the effective refractive index should increase as gradually and as smoothly as

possible. This intuition is consistent with our computational findings from Sec. 3.1–3.4.

Figure 3.15: The theoretical transmission spectra for input coupling through a dimpled
surface consisting of holes with (a) sinusoidal and (b) ellipsoid shapes.
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3.5.1 Structure shapes One way to create cusp-like structures is to imprint a negative

structure in the glass with a positive mold that has a packing ratio w2/sx = 1, i.e. the width

at the base of the mold (w2) matches its feature spacing (sx). Such a structure using a half-

ellipsoid shape is shown in Fig. 3.16(a). The half-ellipsoid structure is the upper half of an

ellipsoid oriented along the z-axis whose height is given by the equation

z(x, y) = h

[
1−

( x

w2/2

)2

−
( y

w2/2

)2
]1/2

, (3.3)

where the x and y dimensions are the axes parallel to the surface, z is the height perpen-

dicular to the surface, h is the element height, and w2 is the base width. Another way to

create such a cusp is to imprint a positive structure that comes to a fine point at its tip. One

such structure, defined by Southwell [52] but without a closed-form expression, is shown

in Fig. 3.16(b). This structure is not rotationally symmetric, and hence its transmissivity is

anisotropic, but the anisotropy is small, as shown in Sec. 3.4.1.

(a) Hexagonally-packed negative half-
ellipsoid structures.

(b) Square-packed positive pyramid struc-
tures.

Figure 3.16: Cusp-like moth-eye structure feature shapes.

3.5.2 Results Figure 3.17 and Fig. 3.18 show the transmission spectra found by rig-

orous coupled wave analysis (RCWA) for different element heights or depths and different

ratios of base width to element period (w2/sx). Figure 3.17 shows the results for negative
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half-ellipsoids, and Fig. 3.18 shows the results for positive pyramids. Qualitatively, the

highest transmissivity is obtained with the tallest/deepest elements and for the highest ratio

of w2/sx, which makes the negative features more cusp-like.

Figure 3.17: Negative half-ellipsoid transmission for depths of 1.2 µm, 1.4 µm, and 1.6 µm,
and packing ratios of 0.8, 0.9, and 1.0.

We introduce a quantitative metric for evaluating these moth-eye structures: the mean

(average) transmissivity for wavelengths between 2–5 µm. The average transmission for

each structure is shown in Table 3.1. Using this metric, we find that positive pyramids of

height 3.0 µm have an average transmissivity from 2–5 µm of 0.99878. Similarly, negative

half-ellipsoids of height 1.6 µm have an average transmissivity from 2–5 µm of 0.99885.

While both structures can achieve similarly high performance, positive pyramids require

much taller structures for optimal transmission.

Our results demonstrate that while these ideal cusp-like half-ellipsoid structures would

perhaps be difficult to achieve exactly in practice, they can provide excellent performance
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Figure 3.18: Positive pyramid transmission for depths of 1.2 µm, 1.4 µm, 1.6 µm, 2.0 µm,
and 3.0 µm. The packing ratio is 1.0.

Packing Height (µm) Positive pyramid Negative half-ellipsoid

w2/sx = 1

1.2 0.95033 0.99452
1.4 0.96518 0.99813
1.6 0.97635 0.99885
2.0 0.99011
3.0 0.99878

Table 3.1: Average transmission for each structure type from 2–5 µm.

with a reduced depth requirement compared to pyramid structures.

3.6 Increased laser-induced damage threshold

As previously mentioned, moth-eye structures have several advantages over traditional

thin-film AR coatings, including environmental tolerance, surface adhesion, single mate-

rial fabrication, minimal surface preparation, and self-cleaning via the lotus effect [8, 38].
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(a) Thin-film AR coating
showing catastrophic damage
at 20 J · cm−2.

(b) Moth-eye structure
showing localized melting at
100 J · cm−2.

(c) Untreated optical interface
showing catastrophic damage
at 170 J · cm−2.

Figure 3.19: Comparison of damage mechanisms in AR coated optics (from [13]).

Additionally, in recent years it has been shown that in many cases periodic moth-eye struc-

tures have a higher laser-induced damage threshold (LIDT) than do traditional AR-coated

surfaces [46–48]. In fact, the highest LIDT in fused quartz to date was recently demon-

strated using moth-eye structures [13]. While both traditional AR coatings and moth-eye-

structured surfaces usually have LIDTs lower than bulk material, damage in traditional AR

coatings can occur at low laser fluences due to surface imperfections, thermal coefficient

mismatch, and poor layer adhesion. In moth-eye-structured surfaces, however, higher laser

fluences cause localized melting of the surface structures before catastrophic damage oc-

curs, often allowing the optics to continue performing albeit with reduced transmission,

which can be very important in some applications. Fig. 3.19 shows SEM images compare-

ing damage mechanisms and LIDTs for thin-film AR, moth-eye, and untreated optics.

The increased LIDT in moth-eye structures may seem counterintuitive, since it might

be expected that the microstructured surface causes field enhancement. This field enhance-

ment should reduce the amount of energy per unit area required to cause catastrophic dam-

age. In this section, we show results for three particular moth-eye structures and calculate

the time-averaged Poynting flux density in and around the microstructured surface to inves-
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tigate why moth-eye structures are resistant to laser damage. Similar results with two other

structure shapes indicate that these results hold generally for any appropriately designed

moth-eye structure, regardless of feature shape or dimensions. We also give a physical ex-

planation for this behavior. We show that this behavior can be understood physically as a

consequence of the oblique incidence of the waves on the walls of the moth-eye structure

and the standard boundary conditions for electromagnetic waves at an interface.

Much theoretical work has investigated damage mechanisms in traditional thin-film

coatings, particularly “nodule” defects, cf. [53, 54]. The exact mechanisms for damage in

particular thin-film coatings may be unknown, and possibilities, including avalanche ion-

ization, dielectric breakdown, or thermal effects, can vary depending on the pulse duration,

pulse repetition rate, spot size, and peak power of the laser input [55].

Jing et al. [56] studied localized enhancement in two-dimensional (2D) moth-eye

structures with a triangular cross-section in the visible spectral region. They showed that

the field enhancement is highly dependent on the aspect ratio of the microstructure for the

TE polarization, but does not vary significantly for the TM polarization. It can be shown,

for a circularly symmetric three-dimensional (3D) microstructure in a square or hexagonal

packing scheme, such as the structures we study here, that there should be no dependence

on polarization as long as the incident light is normal to the surface [51, 57]. Therefore, in

our work, it is sufficient to study a single polarization.

3.6.1 Computer model In our computer model, we study moth-eye surfaces that are

either “positive,” i.e., raised from the surface, or “negative,” i.e., depressed into the surface.

We calculate the time-averaged Poynting flux for both positive and negative structure sur-

faces using RCWA with diffraction orders up to ±9 included in the calculation. We have

verified that increasing the number of harmonics does not influence the results.
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(a) Positive truncated cone.
(b) Negative truncated cone.

Figure 3.20: Comparison of positive and negative moth-eye structures used in the computer
simulation. Green areas indicate the As2S3 microstructure, while blue areas indicate the
As2S3 substrate.

The Poynting flux is given by S = E×H. Its time average over one period is given by

〈S〉 = (1/T )
∫ T

0
S(t)dt. The time-averaged Poynting flux, also called irradiance, measured

in W m−2, represents rate of energy transfer per unit area. Areas that experience a higher

energy flux density (a higher Poynting flux) should experience damage first.

We first consider a moth-eye structure with the shape of a truncated cone, which has

a base width of 400 nm, a height of 800 nm, and a tip width of 200 nm. The features

are square-packed with a period of 920 nm. Figure 3.20 shows the shape of the moth-

eye structure models used for this study. The computational region includes the incident

medium, air, on top of the As2S3 microstructure, which sits on an infinitely thick substrate

of As2S3. The features shown here represent a single unit cell in an infinite two-dimensional

array. The positive shape is similar to the structure used to validate our model in Sec. 3.1.
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The positive and negative shapes are mirror images; the negative shape is the feature that

would be created if the positive shape were stamped into the As2S3 glass and vice-versa.

Figure 3.21 shows the total transmission spectrum, including all diffracted orders, of

the positive truncated cone features for light incident on the microstructured surface from

the air above it. The transmission increases rapidly as the wavelength decreases below

1.8 µm because higher diffracted orders increase in number and intensity as the wavelength

decreases. While it is true that diffraction orders greater than zero are predicted to exist

for wavelengths below 2.25 µm, we have verified that higher diffracted orders do not carry

energy at λ = 2 µm, the wavelength used for these studies, as described in more detail

in Sec. 3.6.5. While other structures have better anti-reflective performance [9, 52], this

structure remains partially anti-reflective above 2 µm since the transmission of a plane

surface is 0.83.

Figure 3.21: Transmission spectrum of the truncated cone moth-eye structure.
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The input field is a CW plane wave with a wavelength of λ = 2 µm, normally incident

on the structure in a p-polarization, so that the electric field is oriented in the x-direction.

We take the refractive index of As2S3 to be n = 2.45 at 2 µm. We do not consider absorption

in this work, i.e. Im(n) = 0. As2S3 has a linear loss at 2 µm of about 0.5 dB/m, which

means that a wave traveling through the tallest part of the microstructure considered here

would lose a fraction 10−7 of its power to absorption over the region considered in this

work. Thus, an input with a power of 1 kW would cause absorption of less than 0.1 mW

over the region of these calculations.

3.6.2 Results Figure 3.22 shows the time-averaged Poynting flux 〈S〉 (irradiance) in

the microstructure as a function of position for the two structures. The figures show a

slice through the unit cell, with the black lines delineating the microstructure. In all plots,

the incoming field propagates downward from the top of the figure — for the negative

structures, near the base of the cone, and for positive structures, near the tip of the cone.

Figures 3.22(a) and 3.22(b) show the case of the positive cone feature, while Figs. 3.22(c)

and 3.22(d) show the case of the negative cone feature. Figures 3.22(a) and 3.22(c) are in

the plane of the incoming electric field, while Fig. 3.22(b) and 3.22(d) are oriented along a

plane that is orthogonal to the plane of the incoming electric field.

For a positive cone, Figs. 3.22(a) and 3.22(b) show a large enhancement of the ir-

radiance around the outer sides of the cone, with greatly decreased irradiance around the

inner sides. For a negative cone, Figs. 3.22(c) and 3.22(d) show the greatest enhancement

around the inner sides of the cone, with cool spots outside the depression and inside the

As2S3 glass. The narrow end of the cone, the deepest part of the negative feature, shows

the highest concentration of field energy, whereas, for a positive structure, the opposite is

the case. Since the materials in the positive and negative case are inverted, we find in both
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(a) Positive cone at y = 0 (x-slice). (b) Positive cone at x = 0 (y-slice).

(c) Negative cone at y = 0 (x-slice). (d) Negative cone at x = 0 (y-slice).

Figure 3.22: Average Poynting flux density in truncated cone structures with p-polarized
incident light (electric field oriented along the x-direction)

cases that the air sides of the lateral cone surface have the greatest Poynting flux, while the

glass sides of the lateral cone surface have the lowest Poynting flux. Additionally, there

is a small area of slightly increased Poynting flux near the center of the glass part of the

microstructure, corresponding to the center of the base of the cone in the positive structure.

We find that the positive truncated cone structure shows greater localization of the en-

hancement compared to the negative structure. The slices out of the plane of the incoming

electric field also show greater localization of enhancement.
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To demonstrate how the flux density changes from one orthogonal plane to another,

we show a top-down view of the irradiance corresponding to a horizontal slice through the

middle of the cone structure at z = 0.4 µm in Fig. 3.23. This view should be compared to

Fig. 3.22(a) and (b), which show the same result in the other two orthogonal planes.

Figure 3.23: Top-down view of the average Poynting flux density for a positive cone at
z = 0.4 µm (x-y slice).

3.6.3 Physical explanation We may physically understand the decreased irradiance

inside the glass by first noting that the propagation is highly oblique with respect to the sides

of the microstructures, i.e., the angle of incidence with respect to the normals is nearly 90◦.

We next recall that the normal displacement field D will be continuous across an interface,

so that the electric field E = D/ε is reduced in the higher index material. Since the

irradiance or Poynting flux S is proportional to the electric field according to S = E×H,
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it will be reduced in the lower index material in the plane of the electric field, regardless

of whether the microstructures are positive or negative. Conversely, the irradiance will

be enhanced out of the plane of the electric field since the total irradiance is fixed. This

principle is used to guide radiation in the low-index region of slot waveguides [58]. These

results are consistent with experimental results, which show catastrophic damage at higher

laser fluences; the glass part of the microstructure is subjected to less irradiance as a result

of the field enhancement.

3.6.4 Additional results To verify the intuition that similar results will hold for other

moth-eye structures with different feature shapes and dimensions, we calculated the time-

averaged Poynting flux 〈S〉 in a positive half-ellipsoidal element with the same base width,

height, and feature spacing, using the same input source and model setup. The results,

shown in Fig. 3.24, are similar to those for the truncated cone: The areas of highest irradi-

ance are on the air side of the air-glass interface on the lateral sides of the microstructure.

We have seen similar results with pyramids and sinusoidally-shaped elements. Hence it is

reasonable to conclude that any properly designed moth-eye structure will exhibit similar

behavior.

For an ideal thin-film AR coating, there will be no reflection at the design wavelength,

and all of the flux density will be equal through the air above the coating, each layer of

the coating, and the substrate below. In an ideal case, there will be no enhancement of

the irradiance, which also means no decrease in irradiance in the coating, as is seen in

moth-eye structures. This ideal behavior is shown in Fig. 3.25 for a two-layer thin-film

coating. However, in the case of a defect in the coating, there will be enhancement around

that defect [54]. Also, if the layers of the coating expand at different rates, gaps may occur

between the layers or the substrate, and these gaps may experience irradiance enhancement.
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Figure 3.24: Average Poynting flux density in a half-ellipsoidal structure at x = 0 (y-slice).

3.6.5 Is this enhancement a diffraction effect? According to the theory of diffrac-

tion gratings [59], the one-dimensional scalar diffraction equation, given by

λ =
nid

m
, (3.4)

predicts that, for an element spacing of d = 0.92 µm and refractive index of ni = 2.45, in

addition to the m = 0 order, diffracted orders of m = ±1 will in principle be transmitted

in this structure for wavelengths below λ = 2.25 µm, which includes the λ = 2.0 µm

wavelenth used in this study. However, this fact does not imply that those higher diffracted

orders will carry any energy. In fact, we will show here that only the zeroth (on-axis)

diffracted order has energy.

First, Fig. 3.21 shows the transmission spectrum of a wave traveling into the positive
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Figure 3.25: Average Poynting flux density in a two-layer thin-film coating. The top layer
has a refractive index n = 1.5 and the second layer has n = 2.0. Both of these layers have
a quarter wavelength thickness, which is refractive index dependent. The top and bottom
layers in the structure are perfectly-matched layers (PMLs) to eliminate reflections from
the edges of the simulation.

truncated cone features that we study in this Sec. 3.6.1. The transmission is approximately

constant for wavelengths between 1.8–3 µm and increases as the wavelengths decreases

below 1.8 µm. The reason for this increase is that higher diffracted orders, which are

readily coupled into the higher index material, increase in number and intensity for shorter

wavelengths. The transmission spectrum for the case of output coupling, where the wave

is traveling from the higher index material to the air, shows the opposite effect; higher

diffracted orders that exist for shorter wavelengths cannot couple out of the microstructure,

and the transmission decreases in this case for wavelengths less than 1.8 µm. This result

shows that even though higher diffracted orders are predicted to exist for wavelengths below

about 2.2 µm, they have no effect on the transmission (because they carry no energy) until

the wavelength decreases below 1.8 µm.
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Second, the electric field below the microstructure maintains the plane-wave nature

of the input. Figure 3.26 shows a plot of the electric field propagating in the high index

material below the microstructure. There is no change in the electric field below the mi-

crostructure along the y-direction. A horizontally alternating electric field in the y-direction

would indicate the influence of a grating momentum, and hence higher diffracted orders,

but this behavior is not evident in Fig. 3.26.

Figure 3.26: Electric field distribution at x = 0 (y-slice).

Finally, if higher diffracted orders were present in the transmitted spectrum and were

causing the irradiance enhancement by an interference effect, we would expect different

results for wavelengths longer than the longest wavelength where nonzero diffracted orders

are predicted to be present, for example, λ = 2.5 µm. Fig. 3.27 shows the irradiance for a

positive cone in out of the plane of the electric field for a wavelength of 2.5 µm. This plot
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can be compared to Fig. 3.22(b), which is the same except that the wavelength is λ = 2.0

µm in Fig. 3.22(b). Fig. 3.27 shows qualitatively the same irradiance enhancement as the

shorter wavelength, with approximately the same position and intensity of the enhance-

ment. Therefore, the irradiance enhancement effect is not due to higher-order diffraction.

Figure 3.27: Time-averaged Poynting flux density for a positive cone at x = 0 for a wave-
length of 2.5 µm.

All these results lead to the conclusion that, although the ±1 transmitted diffraction

orders exist for a wavelength of 2 µm, they carry no energy and therefore have no effect on

the results or the calculation.

3.6.6 Further considerations This work may have practical applications beyond ex-

plaining the increase in laser damage threshold. For example, surface-enhanced Raman

scattering (SERS) is due to the field enhancement facilitated by the microstructuring of the
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surface. Using this method, SERS structures could be designed to increase the enhance-

ment and optimize its location.

In the future, a careful study should be conducted to determine if these enhancement

results hold for different feature shapes, dimensions, pitches/spacings, materials, and input

wavelengths and angles. In this dissertation, we explained these enhancement results in

terms of the boundary conditions for Maxwell’s equations, and an important part of our

interpretation of the results is that the sidewalls of the structure were nearly orthogonal

to the direction of the incident electric field. This condition would not hold for angles of

incidence much larger than normal or for structures with curved sides, such as hemispheres,

or structures with a very wide base and narrow tip, such as a short perfect cone. However,

the resistance to laser damage has been demonstrated in random AR surface structures,

where, presumably, our explanation for this resistance no longer applies.

A careful study would include features of various shapes and dimensions from tall to

short, narrow to wide, rounded and straight sided, with close and far packing, and different

wavelengths and angles of incidence to simulate the entire range of possible AR surface

structures. If indeed the results are similar for very different shapes and wavelengths, the

physical interpretation may need to be revised. However, if the results are not similar

for different structures and there is an optimal shape or size, this information would be

important to the scientific community.

A quantitative analysis of the energy flux density for different feature shapes and sizes

would also be useful. Particular questions include:

1. How does the intensity of the enhancement change as the features change?

2. How does the location of the enhancement change as the features change?
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3. How does the location/intensity of the enhancement change as the angle of incidence

changes?

4. How does the location/intensity of the enhancement change as the wavelength

changes?

Answers to these questions could be useful for applications such as surface-enhanced Ra-

man scattering, where the location and intensity of the enhancement can be optimized for

better operation.

3.7 Optimal structures for short and long wavelengths

A trade-off exists in moth-eye structures between the location of the diffraction edge,

which, for a particular material, depends only on the feature spacing or pitch, and the

optimal properties of a wide base and gradually increasing refractive index profile. Trans-

mission rapidly decreases for output coupling and rapidly increases for input coupling for

wavelengths below the diffraction edge. Additionally, it is advantageous for the moth-

eye structure feature to have as wide a base as possible, especially for positive features.

However, when the feature spacing increases, for example to accommodate a wider-based

structure, the diffraction edge moves to longer wavelengths, which effectively decreases

the transmission for short wavelengths.

An ideal AR surface structure would have very high transmission and no diffraction

edge. It would be useful to investigate is whether the diffraction edge can be pushed to

shorter wavelengths or even eliminated by changing the structure. We now describe several

approaches for achieving such a structure.

Very tall structures with a very small period have been shown to perform well over

the range from near-IR wavelengths to mid-IR wavelengths. Huang et al. [60] showed
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random silicon nanotips could increase transmission from air to silicon to over 99% from

the visible to near-IR. The nanotips were characterized by a base width of 200 nm and a

height of 1–16 µm. It should be investigated if similar nanotip arrays on fused silica or

As2S3 can provide similar transmission properties over the wavelength range of interest.

This possibility could be efficiently investigated using an approximate method, particularly

effective medium theory (EMT).

It is also possible that a moth-eye structure that achieves good performance from 2–5

µm can have the effect of the diffraction edge mitigated in some way, possibly by adding

a small-scale random variation on top of the underlying moth-eye structure. It has been

observed experimentally that adding small-scale height fluctuations to a moth-eye anti-

reflective surface adds oscillations to the transmission below the diffraction edge, elimi-

nating its monotonic decrease for short wavelengths. This behavior indicates it may be

possible to reduce the effect of the diffraction edge through an appropriate small-scale

structuring of the moth-eye surface. Given the possibly random nature of the small-scale

structuring necessary for this effect, this study might lend itself well to optimization by

a genetic algorithm. The important parameters to investigate are the optimal underlying

large-scale moth-eye structure and the location and height/depth of the small-scale varia-

tion on top of it.



Chapter 4

Chalcogenide antiresonant fibers

The concept of antiresonance has long been understood as a method of confining light in a

low refractive index material [61]. However, with recent advances in PCFs and microstruc-

tured optical fibers, there is renewed interest in using this guidance mechanism to realize

low-loss, broadband, hollow-core optical fibers. Several such antiresonant fibers (ARFs)

have been studied since the perfection of production methods for PCFs in the late 1990s,

including those described in [62, 63].

Recent hollow-core antiresonant fibers are mostly “tube-lattice” fibers, meaning

that the fiber is constructed of a hollow core surrounded by a circular array of hollow

tubes. These fibers are sometimes called “negative-curvature” fibers, or negative-curvature

hollow-core fibers, meaning that the surface normal vectors at the wall of the microstruc-

tured cladding are anti-parallel to a radial unit vector. The negative wall curvature changes

the boundary conditions between core modes and cladding modes so that coupling between

them is far weaker than is the case with positive curvature. As a consequence of this “in-

hibited coupling” effect, the core mode is guided, rather than leaking out [64].

The recent resurgence in interest in antiresonant fibers dates to 2010 when Wang et

al. [14] discovered that silica Kagome fibers with a hypocycloid core shape had much lower

72
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loss than structures with a normal circular core shape. An example of the hypocycloid

Kagome fiber geometry is shown in Fig. 4.1. This fiber geometry leads to a relatively

low loss of around 150 dB/km, which was comparable to state-of-the-art photonic-bandgap

hollow-core PCFs at the time, yet over a much wider bandwidth, from ∼1–1.7 µm — a

measurement that was limited by the bandwidth of the OSA used in the experiment. In this

work, the authors found a trade-off between bandwidth and loss. That is, by reducing the

thickness of the walls of the web of supporting structures in the cladding, the bandwidth

could be increased at the expense of increased loss.

Figure 4.1: Hypocycloid Kagome fiber geometry from Fig. 1 of [14].

The next advance came when Pryamikov et al. [15] at the Russian Academy of Sci-

ences showed that the Kagome lattice was unnecessary for wave guidance if the core shape

had a negative curvature. This work used a circular outer jacket supporting a cladding of

eight adjacent circular silica capillaries, leaving a hypocycloid air-core wall with a negative

curvature, as shown in Fig. 4.2. In this work, transmission bands of relatively low loss were

found from approximately 0.8–4 µm in wavelength, but the loss was higher than in [14],

on the order of several dB/m. Although the loss was higher, the pioneering advance of this

work was to demonstrate that a relatively simple geometry could support guided modes

over a broad wavelength range. The authors also argued that the physical reason for guid-
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ance was the negative curvature of the core wall, which weakens the coupling between the

core and cladding modes. Further, this work coined the term “negative curvature fiber.”

Figure 4.2: NCHCF geometry from Fig. 4 of [15].

Later, Yu et al. [16] demonstrated a low-loss structure using silica for 3–4 µm using

a noncircular cladding structure, as shown in Fig. 4.3. This work showed two geometries:

one optimized for low loss and one optimized for mid-IR transmission. The low-loss op-

timized geometry resulted in a loss of 34 dB/km at 3 µm. The fiber optimized for mid-IR

transmission had a loss of 0.5 dB/m at 4 µm. This work also explored the effect of fiber

bends on the loss and showed that loss was low for bend radii greater than 40 cm. Ad-

ditionally, the authors explained the spectral dependence of the transmission in terms of

resonances between core modes and cladding modes created by the core wall and gave a

mathematical expression for the dependence of these resonant wavelengths as a function of

the core wall thickness.

More recently, Kolyadin et al. [65] showed that eliminating intersections of the

cladding structure elements further reduces the loss in negative-curvature ARFs. The ge-

ometry in this paper is similar to the geometry in [15], except that the silica capillaries are

smaller in diameter relative to the diameter of the outer jacket so that the capillaries do
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Figure 4.3: NCHCF geometry from Fig. 1 of [16].

not touch each other, as shown in Fig. 4.4. Hence, the capillaries create a negative cur-

vature core wall, while reducing the thickness of the cladding structure. This reduction

of the cladding structure thickness reduces the optical density of states in the cladding,

weakening the coupling between core and cladding modes, which reduces loss. In compar-

ing similar geometries with touching and non-touching capillaries, the authors showed that

both exhibit a similar band-structure in the transmission spectrum, but within those bands,

the non-touching capillaries had an order of magnitude lower loss.

Figure 4.4: NCHCF geometry from Fig. 3 of [65].
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Also recently, Belardi and Knight [66] computationally investigated the effect of

changing the curvature of the core wall in silica teardrop cladding fibers similar to the

one shown in Fig. 4.3. They showed again that the negative curvature of the core wall is

essential for guidance and showed that as the negative curvature of the core-wall increases,

the guidance improves. They also showed that loss peaks in the transmission spectrum are

due to resonances between degenerate modes in the air core, in the silica cladding, and in

the air cores of the cladding tubes. While previous work [65] had suggested this physical

origin for the loss peaks, it had not been demonstrated experimentally.

Belardi and Knight [67] have also recently investigated the bending loss of these sil-

ica ARFs using a geometry of circular capillaries (see Fig. 4.5) similar to the geometry

described in [65]. They showed that they could design and build a fiber with an optimized

geometry to realize a low bending loss of 0.25 dB per turn at a wavelength of 3.35 µm and a

bend radius of 2.5 cm. The fiber also had less than 200 dB/km loss from 2.8 µm to 3.5 µm.

Figure 4.5: NCHCF geometry from Fig. 4 of [67].
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More recently, Poletti [68] demonstrated that the loss of NCHCFs could be further

reduced by orders of magnitude by introducing more, smaller cladding tubes nested in the

larger ones, as shown in Fig. 4.6. These new tubes increase the geometric dissimilarity

of the core mode and the cladding air modes, which reduces their coupling. Poletti also

showed that further nesting cladding tubes inside of the nested cladding tubes, making a

so-called “doubly-nested” ARF can decrease the loss even more.

Figure 4.6: Singly nested antiresonant fiber geometry (quarter section) from Fig. 10
of [68].

Later, Habib et al [69] showed that the loss of of singly-nested fibers can be further

reduced to levels below the doubly-nested fiber by adding two more nested cladding tubes,

not inside the nested tubes, but adjacent to them. An example of these so-called “adjacent-

nested” ARFs are shown in Fig. 4.7.

Since negative curvature ARFs are a relatively recent advance, significant advances

using chalcogenide materials for fabrications have yet to be realized. Only one experimen-

tal study to date [17] used a chalcogenide ARF, and it was only designed for use at around

10.6 µm, although there have been theoretical studies at shorter wavelengths [70]. The ge-
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Figure 4.7: Adjacent nested antiresonant fiber geometry (quarter section) from Fig. 4
of [69].

ometry of the fiber used in [17] is shown in Fig. 4.8. The eccentricity of the capillaries in

Fig. 4.8 compared with, for example, Fig. 4.2 demonstrate the difficulty in working with

chalcogenide materials, in this case Te20As30Se50. The authors of this work computation-

ally designed an optimized geometry to theoretically obtain loss that is less than 1 dB/m

near the CO2 laser radiation wavelength of 10.6 µm. The experimentally-realized fiber

has a loss of about 11 dB/m at this wavelength and a loss of less than 17 dB/m over the

wavelength range of 8–11 µm.

Figure 4.8: NCHCF geometry from Fig. 3 of [17].
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An optimal structure in chalcogenide glass has yet to be found for the wavelength

range of 1–10 µm. In the proceeding chapter, using lessons learned from fabrication of

ARFs in silica, we optimize the fiber structure to find a low loss As2S3 ARF in the mid-IR

spectral range by simulating different geometries in COMSOL. We will also investigate the

tolerance of these designs to perturbations in the parameters.

4.1 Simulation methodology

To simulate these fibers, we use COMSOL Multiphysics, a finite-element mode solver.

COMSOL approximates the two-dimensional wave equation by discretizing the entire ge-

ometry with finite elements and solving the resulting eigenvalue equation for the propa-

gation constant of a limited number of modes. We simulate one quarter of the circular

geometry and use periodic boundary conditions to reduce the computation requirements of

the model, which can be extremely high, due to the fine spatial discretization necessary to

obtain accurate results.

A typical geometry is composed of an outer jacket, or cladding support, which is

a cylindrical shell made of As2S3, that keeps a number (usually 6–8) of cladding tubes,

which are smaller cylindrical shells also made of As2S3, in place. Further, there may be

more cladding tubes of smaller radius inside the larger cladding tubes. Between the largest

cladding tubes is a hollow air-core which supports guided modes because of the antireso-

nant geometry. We take the refractive index of the air-cores to be the same as the lossless

vacuum, n = 1.

The jacket layer of the fiber is set as a “perfectly-matched layer,” a lossy element that

simultaneously 1) reduces the size of the model by eliminating the need for an infinite

transverse extent and 2) simulates the fiber’s confinement loss. The refractive index and

loss of the material, As2S3, is set as a function of wavelength according to data measured
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at NRL. The loss of a particular mode is computed by transforming the imaginary part, ki

of its effective refractive index, neff = n+ iki, according to the equation

Loss (dB/m) =
40πki
λ0 ln 10

. (4.1)

The set of modes in these fibers is dense because of the large number of air-cores and

the large radii of the cladding tubes. The cladding tube walls support many modes of high

azimuthal mode order due to their circular shell geometry. Additionally the air-cores of the

cladding tubes support modes that are similar in effective index to the core mode, which is

an avenue for increased loss in ARFs. Examples of some low-order modes are shown in

Fig. 4.9. In order to efficiently discriminate between the central, lowest-order HE11 core

mode and other modes with a similar effective refractive index, it is necessary to design

an automated algorithm for tracking the central core mode in these fibers. Here, in HEµν ,

the parameter µ corresponds to the numbers of periods in the azimuthal direction, while ν

corresponds to the number of maxima and minima in the radial direction.

The first approach is to find the mode with the largest fraction of its power in the center

of the central core. This method will discriminate between the HE11 core mode, which has a

spatial profile proportional to J0, the zeroth-order Bessel function of the first kind, as shown

in Fig. 4.9(a), and the HE21, TE01, and TM01, which have a spatial profile proportional to

J1, the first-order Bessel function of the first kind, as shown in Fig. 4.9(c)–(d). This method

may fail, however, when the core mode is strongly coupled with a cladding tube air mode,

as shown in Fig. 4.10.

A second approach is to choose the mode with the lowest loss. However, this method

also fails when the core mode couples strongly to either cladding-tube air-core modes or

cladding tube dielectric wall modes. A third approach is to choose the mode with the
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(a) HE11 (fundamental) mode. (b) Dielectric cladding mode.

(c) TM01 mode. (d) HE21 mode.

Figure 4.9: Low order modes in a typical ARF showing the x-component of the electric
field (color) and the transverse magnetic field (arrows): (a) HE11 with neff = 0.99979, (b)
dielectric cladding mode with high azimuthal mode order with neff = 0.99937, (c) TM01

with neff = 0.99907, and (d) HE21 with neff = 0.99907. Note in (c)–(d) the relatively large
amount of mode energy in the air cores of the cladding tubes compared to (a).

highest real part of the effective refractive index. Again, this method will fail, even if

only modes with effective refractive index less than one are considered, when a cladding

dielectric mode with low azimuthal order is close in effective index to the central core
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Figure 4.10: A cladding tube air-core mode that couples strongly with modes in the central
air core with neff = 0.99897 showing the x-component of the electric field (color) and the
transverse magnetic field (arrows).

mode, as shown in Fig. 4.9(b), or if the central core mode couples strongly with cladding

air-core mdoes, as shown in Fig. 4.10. Cladding dielectric tube wall modes have higher

effective refractive indices because they are guided in a dielectric of a higher refractive

index.

We find that the most accurate method is to consider the two modes with the highest

percentage of power in the central air core, and then choose the one with the lowest loss.

Care must also be taken to search for modes that are near the appropriate value of neff .

To do this, we begin by setting the eigenvalue solver shift to a number slightly less than one
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and search for a relatively large number of modes, e.g. 12, so that the solver is certain to

return the fundamental core mode. For subsequent solutions for the same fiber at different

wavelengths, we set the eigenvalue solver shift to be equal to the real part of neff of the core

mode that was previously found, and we search for a reduced number of modes, e.g. 6, in

order to reduce the computation time.

We have validated these models using published results for silica fibers [15, 68, 71].

4.2 Geometric considerations

Fig. 4.11 shows a quarter of a typical negative curvature antiresonant fiber geometry.

The most important quantities, shown in the figure and discussed here, are the core radius,

Rcore, the cladding tube radius, Rclad, the cladding tube wall thickness, t, the cladding

tube separtion, d, and the core-to-nested-tube distance, z. Another important quantity, not

expressly designated in the figure, is the number of cladding tubes in the fiber, Ntubes. The

following sections describe each of these parameters in detail.

4.2.1 Cladding tube wall thickness The thickness of the cladding tube walls, t, af-

fects both the overall confinement loss of an ARF and the locations of resonant absorption

peaks in the transmission spectrum. In general, the cladding tube thickness should be as

small as possible. This reduces the loss in two ways. First, it reduces the number of reso-

nant absorption peaks in the spectrum, and second, it reduces the optical density of states,

or the number of modes in the cladding tube walls that can overlap with the core mode.

The second consideration is the most important for reducing the overall loss of an ARF.

At certain wavelengths, the mode in the core of an ARF will leak out to the cladding

tubes through a resonant tunneling effect [72]. This results in resonant absorption peaks

in the transmission spectrum of an ARF. According to the anti-resonant reflecting optical
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Figure 4.11: A quarter section of a typical fiber geometry with important parameters.

waveguide (ARROW) model of Litchinitser et al. [72], the wavelengths, λm, at which these

peaks appear depend only on the cladding tube thickness, t, and on the refractive index of

the material (n ≈ 2.44 in the case of As2S3 used in this work), according to the equation

λm =
2t
√
n2 − 1

m
, (4.2)

where m is an integer denoting the resonant peak. Guided modes with low loss exist for

wavelengths longer than the first absorption peak, albeit with potentially increased loss,



85

and for wavelengths between absorption peaks, but they do not exist for wavelengths close

to these peaks. Thus, since guidance occurs over a broad spectrum, the best way to mitigate

the impact of these absorption peaks is to reduce the thickness of the cladding tube walls

until the first resonant peak, corresponding to m = 1, is at a wavelength shorter than the

shortest wavelength of interest. However, reduction to this limit is often not practical, es-

pecially with a high-index material, such as As2S3, in which case the impact of these peaks

can be reduced by aligning them with absorption peaks in the atmosphere, i.e. at wave-

lengths where transmission is already highly lossy due to the absorption of atmospheric

gases.

Figure 4.12: Wavelength of absorption peaks λm as a function of cladding tube wall thick-
ness t, for m = 1 (blue), m = 2 (green), m = 3 (red), m = 4 (cyan). The wavelengths for
a thickness of 0.95 µm are delineated with black lines.

Fig 4.12 shows the location of absorption peaks as a function of thickness for a refrac-

tive index of n = 2.45. It can be seen that the first two absorption peaks can be roughly
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aligned with absorption peaks of CO2 at 4.25 µm and 2.5 µm by choosing a thickness of

t = 0.95 µm. This value of t yields a good trade-off between the necessity to keep the

cladding tube thickness low and the desire to align loss peaks with already-existing atmo-

spheric peaks.

In the case of a low-index glass, such as silica with n = 1.44, the resonant absorption

peaks occur at shorter wavelengths and more closely together than is the case for As2S3,

as shown in Fig. 4.13. Hence, it is easier to operate exclusively in the long wavelength

transmission band in silica.

Figure 4.13: Wavelength of absorption peaks λm as a function of cladding tube wall thick-
ness t, for m = 1 (blue), m = 2 (green), m = 3 (red), m = 4 (cyan) for refractive indices
of n = 1.44 (dashed lines) and n = 2.44 (solid lines).

4.2.2 Cladding tube separation If there is no separation of the cladding tubes, i.e.

d ≤ 0, the optical density of states in the cladding will be high and more cladding modes
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will overlap with the core mode, causing increased loss. Therefore, in general, it is advan-

tageous to have some separation between the cladding tubes. Fibers for which the cladding

tube separation d > 0 are called “nodeless” [68] because the intersection points of the

cladding tubes form nodes that are detrimental to the overall loss of the fiber.

Increasing the cladding tube separation presents a trade-off, as it increases the overall

bandwidth of the fiber, but simultaneously increases the minimum loss. The opposing

effects are 1) that the separation eliminates nodes, whose presence leads to more modes

that can couple to the core mode, and 2) increasing the separation allows energy from the

core mode to leak out to the jacket through the gaps. An acceptable balance between these

effects [68] is achieved for a ratio of 1 < d/t < 6. For the designs presented in this work,

we chose a value of d/t = 4.2 or d = 4.0 µm.

4.2.3 Cladding tube number The question of how many cladding tubes to include in

an ARF is still open. To some degree, the debate is about the trade-off between decreasing

the minimum loss and increasing the higher-order mode extinction ratio (HOMER). Many

previous studies used 8 cladding tubes because the original design of Pyramikov et al. used

eight cladding tubes, but most state-of-the-art designs use six tubes because such designs

increase the distance between the core and the jacket, which increases the loss of higher-

order modes and may reduce the overall loss.

For an ARF with no separation between the cladding tubes, i.e. d = 0, the cladding

tube radius depends only on the core radius according to the equation

Rclad =
Rcore

(sinα/2)−1 − 1
, (4.3)

where α is the angle between tubes, or 360◦/Ntubes. We find α = 45◦ for ARFs with 8



88

cladding tubes and α = 60◦ for ARFs with 6 cladding tubes. Specifically, the ratio of

Rclad/Rcore = 1 for Ntubes = 6 and Rclad/Rcore ≈ 0.62 for Ntubes = 8. Thus, it can be

seen that a design with six cladding tubes has a greater distance between the lossy jacket

or cladding support and the core mode than a design with eight cladding tubes.

While a greater distance between the jacket and the core increases the computational

complexity of the simulation, it should also decrease the overall loss. However, six-tube

designs also have larger cladding air-cores, which may support more modes, thus increas-

ing the overlap with core modes, which may also increase loss. This additional effect is

expected to be more evident in fibers without nested elements, since core modes will couple

more readily to cladding air-core modes in that case.

A ratio of core-radius to cladding-radius of about 0.65 — close to the value found in an

eight-tube fiber — can be shown to be theoretically optimal according to a semi-analytical

Bragg reflection theory [71]. However, simulations and experiments have shown that this

value is not ideal [68, 71]. A different theoretical and numerical investigation [73] showed

that fibers with seven cladding tubes have a lower minimum loss than do six- or eight-tube

designs. Also, it has been shown that designs using six cladding tubes also have a larger

HOMER [68].

Using a cladding tube thickness of t = 0.95 µm, we investigate the effect of using

six or eight As2S3 cladding tubes, both with and without nested elements. Figure 4.14

shows the results for fibers with six and eight cladding tubes without nested elements.

The core size is 54 µm, and the separation between cladding tubes is d = 4.0 µm. Thus,

the six-tube design has a cladding radius Rclad = 48 µm, while the eight-tube design has

Rclad = 31.25 µm.

Contrary to previous published results for fibers with nested elements [68], when there

are no nested cladding tubes, the loss is lower for a fiber with eight cladding tubes com-
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pared to six cladding tubes. Note that loss values near the absorption peak are difficult to

determine accurately, due to the mixing of modes that occurs there. The loss is lower on the

short wavelength side of the absorption peak because this area marks what is traditionally

known as the “first” transmission band of the fiber according to the ARROW [72] model,

even though guidance (transmission) is possible at longer wavelengths.

Figure 4.14: Loss as a function of wavelength for an ARF with 6 tubes (blue) and 8 tubes
(red) both without nested elements.

This result can be expected since, as mentioned previously, without nested elements,

core modes are more likely to couple to cladding-air core modes, especially if those

cladding air-cores have a larger radius, as is the case with a six-tube fiber.

Figure 4.15 shows the results for six and eight cladding tubes with nested elements.

The results are calculated for a distance between the outer cladding tube and the nested

element of z/Rcore = 0.5, z/Rcore = 0.7, and z/Rcore = 0.9. The remaining parameters

are the same as for Fig. 4.14. For z/Rcore = 0.5 and z/Rcore = 0.7, the differences between
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the six-tube design and the eight-tube design are minimal. However, when z/Rcore = 0.9,

the 8-tube fiber has much higher loss, especially for long wavelengths. This result contrasts

strongly with the results of [68], which shows orders of magnitude less loss for six-tube

fibers than for eight-tube fibers if they both contain nested elements.

Figure 4.15: Loss as a function of wavelength for an ARF with 6 tubes (blue) and eight
tubes (red) that both have nested elements. The distance between the outer cladding tube
and the nested elements are z/Rcore = 0.5 (solid), z/Rcore = 0.7 (dashed), and z/Rcore =
0.9 (dash-dot).

One reason for this discrepancy may be the lower loss of As2S3 compared to silica.

When an ARF contains nested elements, the loss of the central core mode comes mostly

from coupling to modes in the cladding dielectric tube walls, rather than modes in the

cladding air-core. If the absorption loss of the dielectric (glass) cladding tube walls is

significantly lower than the confinement loss, which may be about the same for the two
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geometries, the confinement loss will dominate and there will be little difference between

fibers with a different number of cladding tubes.

The loss for the fibers with nested elements are lower in both cases than for the fibers

without nested elements. Since the results are approximately the same for all cases with

nested elements, except the eight-tube fiber with nested elements and z/Rcore = 0.9, all

fibers used in the rest of this work will use six cladding tubes.

An additional advantage is that six-tube fibers are much easier to fabricate than eight-

tube fibers due to the reduced geometric complexity.

4.2.4 Nested elements Poletti [68] showed that including so-called “nested” ele-

ments, or additional, smaller cladding tubes nested inside of the larger cladding tubes can

reduce the overall loss of an ARF by 1–2 orders of magnitude.

Figure 4.16 shows the effect of including nested elements. Indeed, in the chalcogenide

case, the minimum loss is reduced by about 1.5 orders of magnitude, and the overall loss

is consequently also reduced. We therefore find that nested elements are essential to a

low-loss ARF.

Figure 4.17 shows a particularly lossy case of the fundamental core mode for a fiber

with and without nested elements. It is clear that the loss in the fiber with nested elements is

due to coupling of the core mode with modes in the glass walls of the cladding tubes, while

in the fiber without nested elements, the core mode couples to modes in the air-core of the

cladding tubes, which have a greater spatial extent. This greater spatial extent means there

is more mode energy in the lossy jacket of the fiber, which increases the loss compared to

the nested element fiber. An additional advantage is that the locations of the mode coupling

to glass structures is closer to the center of the fiber for the fiber with nested elements than

for the fiber without nested elements. This fact also reduces the loss since the absorption
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Figure 4.16: Loss as a function of wavelength for an ARF with 6 tubes with nested ele-
ments (blue) and without nested elements (red). The distance between the outer cladding
tube and the nested elements is z/Rcore = 0.7 in both cases.

in the glass is fixed and independent of its spatial location, while the loss in the jacket is

greater for modes closer to the outer edge of the fiber.

4.2.5 Core radius In general, increasing the core radius increases the bandwidth of an

ARF, especially for longer wavelengths, because it increases the distance between the core

and the lossy jacket. However, increasing the core radius also decreases the mode quality

of the fiber by allowing more higher-order core modes. These higher-order modes will also

couple more readily to cladding modes due to their spatial proximity, which increases the

overall loss of a fiber. Therefore, we expect that there should be a decreasing marginal
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(a) Without nested elements. (b) With nested elements.

Figure 4.17: Fundamental core mode (the norm of the electric field) for a fiber with and
without nested elements at λ = 3.9 µm. The color scale is the same for both figures.

efficacy to increasing the core size.

Figure 4.18 shows the effect of increasing the core size for a fiber with a geometry

similar to the 8-cladding tube design originally presented by Pyramikov et al. [15], except

with As2S3 instead of silica. The ratio of the inner cladding tube diameter to the outer

cladding tube diameter, which sets the thickness, t, of the cladding tubes, is kept fixed

at 0.76. Additionally, the ratio of the cladding tube diameter to the core diameter is also

fixed. Although this cladding tube wall thickness is not optimal and the fixed ratio increases

the cladding tube thickness as the core radius is increased, which increases the number of

absorption peaks, this figure does exhibit the predicted behavior. Both the average loss,

shown in Fig. 4.19, and the minimum loss decrease, but at a decreasing rate, as the core

size is increased. The average loss increases for a core radius of 250 µm due to the increased

number of absorption peaks present for a larger cladding tube thickness. The diminishing

returns would not be so pronounced in Fig. 4.19 if the cladding tube thickness was kept
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Figure 4.18: Loss as a function of wavelength for different core radii for fiber parameters
taken from [15].

constant.

Figures. 4.18 and 4.19 show that the benefit of increasing the core size of an eight-

tube fiber levels off after ∼ 200 µm. It is important to note that modeling an eight-tube

ARF with a core size greater than 200 µm is very difficult and cannot yield accurate results

for short wavelengths. For six-tube designs, this limitation is even stronger because of the

increased size of the cladding relative to the core radius.

Again, the fiber parameters taken from [15] are not optimal. Particularly, the fixed

ratio of the inner to outer cladding tube diameters increases the cladding tube thickness as

the core radius increases. This parameter choice increases the number of absorption peaks

present in the spectrum and increases the overall loss. Thus, to truly isolate and elucidate

the effect of increasing the core radius, the cladding tube thickness should be kept constant.



95

Figure 4.19: Average loss over 3–6.5 µm as a function of core radius for the suboptimal
fiber design, which increases t as Rcore increases.

Figure 4.20 shows the effect of increasing the core radius for a fiber with six cladding

tubes, containing nested elements with z/Rcore = 0.7, and with a constant cladding tube

wall thickness of t = 0.95 µm. The loss decreases as the core radius increases from 25 µm

to 100 µm, but, again, at a decreasing rate.

The saturation of the loss as the core radius increases is especially visible in the first

transmission band between 2.2–4µm. In this band, the decrease in minimum loss saturates

for core radii of Rcore > 50 µm. That is, increasing the core radius past 50 µm does not

significantly decrease the minimum loss over this wavelength range.

However, increasing the core radius does increase the bandwidth of this transmission

band. This increased transmission bandwidth is due to decreased coupling between core

modes and cladding tube wall dielectric modes for larger core radii. This effect is demon-
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Figure 4.20: Loss as a function of wavelength for the lowest-loss mode of a six-tube fiber
with different core radii and t = 0.95 µm, z/R = 0.7, and d = 4.0 µm.

strated by Fig. 4.21, which shows the fundamental core mode for a wavelength of 3.6 µm

for a fiber with a 25 µm core radius and fiber with a 100 µm core radius. Though the mode

in the 100 µm fiber extends farther toward the cladding tubes, the mode is relatively well

confined to the central core and does not couple strongly to cladding tube wall dielectric

modes, as in the case of a 25 µm core.

It should be recalled that the effective refractive index of a mode is always less than

the refractive index of the medium in which it is confined, in this case, neff < 1. The degree

to which the effective index is less than the guiding medium (vacuum) index indicates how

well-confined the mode is. Therefore, the mode in Fig. 4.21(a), which has an effective

refractive index n = 0.99882, is less well-confined than the mode in Fig. 4.21(b), which

has an effective refractive index n = 0.99992.
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(a) Fundamental mode for Rcore = 25 µm
and λ = 3.6 µm.

(b) Fundamental mode for Rcore = 100 µm
and λ = 3.6 µm.

Figure 4.21: Fundamental core mode for a fiber with a core radius of (a) 25 µm and (b)
100 µm (not to scale). The wavelength in both cases is λ = 3.6 µm.

4.2.6 More nested elements As demonstrated by [68,69], including more nested ele-

ments in some configuration can significantly reduce the confinement loss of an ARF. This

effect is achieved by further reducing the overlap between core modes and modes in the

cladding tube air-cores and cladding tube dielectric walls. Figure 4.22 shows the effect of

including doubly-nested elements and adjacent nested elements. In this study, all geomet-

ric parameters are the same as for the previous studies for each fiber, except that different

numbers of nested elements are included. For the fiber with doubly-nested elements, the

second nested elements have a diameter that is equal to half of the diameter of the first

nested element. For the adjacent nested element fiber, the ratio of the radius of the inner

adjacent nested tubes, Ri, to the radius of the larger, outer tubes is given by

Ri

Rclad

=
1

2(1 +
√

2)
. (4.4)
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From this nominal value, the radius is decreased by 1 µm, to eliminate nodes. This adjacent

nested ARF has very similar dimensions to the fiber proposed in [69].

Figure 4.22: Loss as a function of wavelength for a fiber with double-nested elements
(green) and adjacent nested elements (red) and single-nested elements (black).

It can be seen that including these further nested elements does not significantly de-

crease the overall loss of the fiber. A similar result was found in [69], which showed that,

while including doubly-nested or adjacent-nested tubes does indeed decrease the confine-

ment loss of the fiber, the overall loss of the fiber was dominated by material absorption in

silica. Hence, reducing the confinement loss could not significantly reduce the overall loss

of the fiber. The same appears to be true for As2S3.

It has also been shown that fibers with adjacent nested elements are robust to variations

in the location of the adjacent nested elements [69]. This fact increases the advantage

gained by incorporating these elements into a fiber design, compared to a fiber with singly-
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nested elements. However, these results show that the best way to decrease the loss of an

As2S3 ARF is to increase the core radius, rather than to add complexity to the geometry,

especially for longer wavelengths.

4.3 An optimal fiber geometry

From the results of the preceding section, a design for an optimal As2S3 fiber can be

deduced. The fiber parameters chosen for this optimal design are listed in Table 4.1. The

core radius was chosen to be as large as possible, while still being manageable on a com-

puter. The cladding radius is approximately equal to the core radius, which is determined

by the 6-tube design. The cladding tube wall thickness was chosen to match atmospheric

absorption peaks, and the cladding tube separation was chosen to give a balance between

the transmission bandwidth of the fiber and its minimum loss.

Parameter Value Unit Description
Rcore 100 µm Core radius
Rclad 98 µm Cladding tube radius
t 0.95 µm Cladding tube wall thickness
d 4.0 µm Cladding tube separation
d/t 4.2 – Cladding tube thickness to separation ratio
Ntube 6 – Number of cladding tubes

Table 4.1: Parameter values used for initial ARF design.

This fiber uses single-nested elements, since such a fiber should be easier to fabricate

than an adjacent-nested or doubly-nested fiber, with no significant increase in overall loss.

The transmission spectrum of the proposed geometry is shown in Fig. 4.23. As ex-

pected, the loss increases rapidly for wavelengths near the designed resonant absorption

peak around 4.25 µm.
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Figure 4.23: Loss as a function of wavelength for the proposed fiber design with parame-
ters shown in Table 1 (blue). The fiber proposed by Habib et al. in [69] (red) is shown for
comparison.

Figure. 4.23 also compares this fiber design to the adjacent nested antiresonant fiber

(ANAR) design in silica proposed by Habib et al. [69]. The fiber proposed in this disser-

tation has a larger core radius than the fiber in [69], and it also has single nested elements

as opposed to adjacent nested elements. The material differences and the different thick-

ness of the cladding tubes (0.95 µm vs 1.26 µm) also place the resonant absorption peaks

at different wavelengths. While the absorption peak for the silica fiber is at 2.5 µm, the

absorption peak for the fiber proposed in this dissertation is at 4.25 µm. Aside from this

resonant absorption peak at 4.25 µm, the loss for the As2S3 fiber proposed here is lower

than that in [69], especially for longer wavelenghts. Indeed, at a wavelength of 6 µm, the

fiber proposed in this dissertation has a loss that is lower by 5 orders of magnitude. This

decrease in loss is mostly due to the decreased absorption in As2S3 as compared to silica.
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The change in the real part of the effective refractive index of the fundamental core

mode for the optimal As2S3 fiber is shown in Fig. 4.24. Note that the effective refractive

index does not change smoothly near the resonant absorption peak since mode coupling is

strong and variable for those wavelengths.

Figure 4.24: Fundamental mode effective refractive index as a function of wavelength for
the proposed fiber design.

The change in neff over the wavelength range considered (2.0–6.5 µm) is less than

0.025%. Thus, the dispersion of this fiber low. Specifically, even including the resonant

absorption peak, the group velocity dispersion parameter, D, defined as

D = −λ
c

d2n

dλ2
(4.5)

is less than one part in 10−10.
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4.4 Fabrication tolerance

In this section, we perturb some parameters of the fiber to study the effect of imperfect

fabrication. Imperfect fabrication is more likely to be a problem with soft glasses like

As2S3 than with silica. Therefore, it is important to know how the performance of a fiber

will degrade with perturbations to the parameters. The perturbations we study are 1) a

nonconstant cladding tube wall thickness on all cladding tubes, 2) a single cladding tube

with a different diameter, 3) a single cladding tube with a different wall thickness, and 4) a

“key” structure in the jacket to support the nested cladding tubes.

The fibers we study in this section have a 54 µm core radius. Though this value is

suboptimal, the effect of the perturbations on the fiber should be essentially unchanged

as the core radius changes. Therefore, to reduce the computational complexity, a smaller

diameter fiber was used to study these effects.

4.4.1 Nonconstant cladding tube thickness The first such parameter we study is the

thickness of the cladding tube walls. In this study, the thickness of the cladding tube wall

is equal to its design value on the core-side of the cladding tube but increases towards the

jacket-side of the cladding tube. This imperfect structure is implemented by decreasing the

radius of circle that delineates the inner-cladding tube wall and shifting it along the radial

direction towards the center of the fiber. Figure 4.25 shows the structure of the fiber for

tdiff = t2 − t1 = 4 µm, where t2 is the thickness on the jacket-side of the cladding tube,

and t1 is the thickness on the core-side of the cladding tube. In this study, all the cladding

tubes have this same imperfection. We study three particular perturbed fibers, where the

difference between the thickness on the jacket-side of the cladding tube, t2, is tdiff = 1, 2,

and 4 µm thicker than on the core-side of the cladding tube, t1 = 0.95 µm. We study the

cases of fibers having these imperfections with and without nested elements.
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Figure 4.25: Geometry of a fiber with nonconstant tube thickness. The cladding tube wall
thickness increases from its nominal value on the core-side of the cladding tube, t1, towards
the jacket-side of the cladding tube where it is equal to t2.

The results for the fibers without nested elements are shown in Fig. 4.26. Increasing

the cladding tube wall thickness on the jacket-side of the cladding tube increases the band-

width of the high-loss resonant absorption peaks, especially on the long-wavelength side

of the peak. Additionally, it increases the minimum loss in the transmission bands between

the peaks. As expected, the effect is worse when the thickness difference increases. How-

ever, even for a thickness difference of tdiff = 1 µm, the minimum loss in the transmission

bands increases by almost an order of magnitude over the baseline result, where the wall
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thickness is constant over the circumference of the cladding tube.

Figure 4.26: Loss as a function of wavelength for the a fiber with a nonconstant cladding
tube thickness and no nested elements for tdiff = 1 (blue), tdiff = 2 (green), tdiff = 4 (red),
tdiff = 0 or a constant wall thickness (black).

This effect is not entirely expected. For core modes to couple to lossy cladding tube

modes, they must resonantly tunnel through the cladding tube walls. This tunnelling should

only happen on the core side of the cladding tube wall, where the cladding tube thickness

is the same as the baseline study. This indicates that for wavelengths in the transmission

bands, the core modes couple more readily to modes in the cladding tube walls, as opposed

to modes in the cladding tube hollow cores.

The results for the fibers with nested elements are shown in Fig. 4.27. In this case,

the nested elements have a constant cladding tube wall thickness, even though the outer

cladding tubes do not. Still, as in the case with no nested tubes, a small difference in
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the thickness of the cladding tube wall on one side of the cladding tube results in greatly

increased loss, especially on the long-wavelength side of the absorption peaks near 2.1 µm

and 4.25 µm.

Figure 4.27: Loss as a function of core radius for the a fiber with a nonconstant cladding
tube thickness and constant-thickness nested-elements for tdiff = 1 (blue), tdiff = 2 (green),
tdiff = 4 (red), tdiff = 0 or a constant wall thickness (black).

4.4.2 A single cladding tube with a different diameter In this section, we simulate

the effect of having a cladding tube with a diameter that is different from the design value.

We simulate this by including half of the geometry with appropriate periodic boundary

conditions and change one tube that is half-included in the geometry, so that only one

cladding tube in the total geometry has a different size. We show a picture of the simulated

geometry, which is half of the actual fiber, showing the different cladding tube dimension

in Fig. 4.28. Note, on the left side of the figure, the increased distance between cladding
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tubes of different diameter as opposed to cladding tubes of the same diameter. Also, since

the ratio of z/R is fixed, the nested tube inside the tube with a different diameter will also

have a different diameter than the nested tubes in the rest of the fiber.

Figure 4.28: Half-fiber geometry with a single differently-sized cladding tube. In this
figure D1 < D2, but we also study the case of D1 > D2.

Figure 4.29 shows the loss for a fiber with a single cladding tube radius increased by

10%, decreased by 10%, and with no change (for reference). Both the perturbed fibers

have a larger loss almost everywhere in the transmission band than does the the baseline

fiber. Interestingly, however, the perturbed fiber with a 10% increase in cladding tube

radius shows a smaller increase in loss almost everywhere in the spectrum as compared to

the perturbed fiber with a 10% smaller cladding tube radius. Also, the loss is only slightly

increased at all for certain wavelengths.

This result shows the relative robustness of the cladding tube separation parameter,

d, to variations. As shown in [68], loss is minimized for 1 < d/t < 6, so the increase in

cladding tube diameter, which decreases the cladding tube separation between two tubes

beyond its design value to d/t ≈ 1 does not increase the loss significantly. However, when
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Figure 4.29: Loss as a function of core radius for the a fiber with a single cladding tube of
a different size when the cladding tube radius is increased by 10% (blue), or decreased by
10% (red), relative to a fiber with no change in the cladding tube radius (black).

the cladding tube diameter is decreased, we obtain d/t ≈ 8, which is outside the range of

values previously found to be acceptable. Hence, the loss increases by a greater amount,

especially at longer wavelengths, which are more likely to leak out through a gap between

cladding tubes because of the larger effective mode area.

However, in both cases, the difference between the baseline result and the results for

the perturbed fiber are small, especially compared to the effect of a nonconstant cladding

tube wall thickness as in Sec. 4.4.1. Further, a varying cladding tube diameter may influ-

ence the mode quality of the core mode, so that it is no longer circularly symmetric, which

could be detrimental for some applications.
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4.4.3 A single cladding tube with a different thickness In this section, we simulate

the effect of having a cladding tube with a tube wall thickness, t, that is different from the

design value. This study is carried out in a similar manner to the previous study, except

that instead of changing the diameter of a single cladding tube, we change its tube wall

thickness. In this study, we do not change the tube wall thickness of the nested tube inside

the perturbed tube. Figure 4.30 shows the loss for a fiber with a single cladding tube wall

thickness increased by 10%, decreased by 10%, and with no change (for reference).

Figure 4.30: Loss as a function of core radius for a fiber with a single cladding tube
with a different wall thickness for a cladding tube wall thickness decreased by 10% (blue),
increased by 10% (red), or unchanged (black).

As expected, changing the tube wall thickness increases the loss near the transmis-

sion band. Increasing the thickness increases the loss on the long-wavelength side of the

absorption peak, while decreasing the thickness increases the loss on the short-wavelength
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side of the absorption peak. This behavior can be predicted from the ARROW [72] model,

as explained in Sec. 4.2.1. In an actual fiber, if the tube wall thickness both increases and

decreases for different cladding tubes, the increase in loss will be spectrally broadened on

both sides of the absorption peaks, which is a worst-case scenario.

Decreasing the cladding tube thickness should decrease the loss in the transmission

bands, because the reduced-thickness cladding tubes support fewer modes that can couple

to core modes. This effect is evident in Fig. 4.30, especially for longer wavelengths. How-

ever, the decrease in loss at longer wavelengths is still small, and does not compensate for

the increase in loss from the broadening of the transmission band. Hence, the fiber with a

larger tube wall thickness has significantly higher loss in the transmission bands than either

the baseline fiber or the fiber with a smaller wall thickness.

4.4.4 “Key” sections The orientation of the nested tubes inside the cladding tubes can

be difficult to maintain in practice while drawing a fiber. A way to minimize the movement

of the nested tubes relative to the larger tubes is to include so-called “key” sections in the

fiber jacket or outer cladding that hold the nested tubes in place. An example of such a fiber

geometry is shown in Fig. 4.31.

In this section, we study the influence of these key sections on the loss of the fiber.

We use a fiber with six cladding tubes and a core radius of Rcore = 54 µm. All the other

parameters are the same as in Sec. 4.2.4, except that for the inclusion of the extra key

sections. In this model, we take the outer ring of the key section to have a refractive index

of n = 1.5− i1×10−4, which approximates the refractive index of silica. The inside circle

of the key sections is assumed to be As2S3.

Figure 4.32 shows the results for a fiber with and without key sections. Aside from

the inclusion of the key sections, all other fiber geometric and material parameters are the
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Figure 4.31: Fiber geometry showing nested elements with corresponding “key” sections.

same. Except for a slight broadening of the resonant absorption peak, the key sections do

not significantly influence the loss of the fiber. The reason is that the key sections are far

away from the central core mode of the fiber and are included in an already lossy section

of the fiber. We therefore find that the inclusion of these key sections in a practical fiber

design should not greatly influence the loss of the fundamental core mode as compared to

a design that does not include these sections.

4.5 Further considerations

Future work should also investigate the higher-order mode extinction ratio, which is

important for studying the trade-off between low loss for the fundamental core mode and

effectively single-mode operation. The bend loss of these fibers should also be studied for

different bending radii to study the effect of bending on the loss of the fiber, in order to

design a fiber with minimal bending loss.
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Figure 4.32: Loss as a function of wavelength for a fiber with (red) and without (blue)
“key” sections.



Chapter 5

Conclusion

The mid-IR wavelength range is a scientifically interesting region of the electromagnetic

spectrum because of the strong resonances of many molecules and the atmospheric trans-

mission windows. These characteristics enable many interesting applications for devices

in the mid-IR, especially sensing and defense applications. Many such applications require

a broad bandwidth of high power mid-IR radiation. Therefore, technologies that generate

broadband mid-IR radiation and methods for directing this radiation efficiently are of great

importance.

Supercontinuum (SC) generation can be used to generate a broad bandwidth in the

mid-IR using nonlinear chalcogenide optical fibers. Moth-eye structures can be used to

couple broadband mid-IR radiation from one medium to another with minimal reflection

loss over a wide range of wavelengths and incident angles. Hollow-core antiresonant fibers

(ARFs) can be used to guide a broad bandwidth of mid-IR radiation from its generating

source to another location with low loss and low spectral aberration. We have studied

each of these technologies — SC generation, moth-eye structures, and antiresonant fibers

— with the purpose of optimizing the parameters of their operation to obtain broadband,

low-loss, and low spectral variance devices.

112
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We investigated SC generation in As2S3 PCFs with a 2.8 µm input wavelength to

maximize the output bandwidth. We found that it is theoretically possible to generate a

4-µm bandwidth using a PCF with a 4-µm pitch. However, we found that the optimum

pulse parameters that give the absolute maximum bandwidth were difficult to determine

exactly from numerical simulations, due to the extreme sensitivity of SC generation to

small fluctuations in the input parameters.

In order to more accurately determine the experimentally-expected output bandwidth

by numerical simulations, we devised a number of methods for calculating the output band-

width of a SC source that are more robust to small changes in the input parameters. Using

these methods, including a new bandwidth definition, spectral smoothing, and an ensemble

average over one pulse parameter, we found that we could reduce the uncertainty in the out-

put bandwidth from 22% to just over 10%. However, we still found that fluctuations in the

output bandwidth persisted, continuing to make it difficult to find the optimal parameters.

In order to accurately determine the optimal parameters, we used a large ensemble

average over pulses with a 10% variation in both the pulse duration and peak power to

replicate the output spectrum that would be seen in an experiment. In order to do this,

we completely characterized the statistical properties of output spectra from our numerical

simulations and studied the effect of increasing the number of samples in the ensemble

average. In so doing, we found that we could reproduce the experimentally-expected output

spectrum using 5000 samples. This method can be used to determine the optimum pulse

and fiber parameters for mid-IR SC generation numerically in a reasonable amount of time.

We built an exact computer model of a moth-eye structure using several different

methods — FEM, FDTD, and RCWA — in order to study the anti-reflective properties of

these microstructured optical surfaces. We found that we could obtain excellent agreement
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between the theoretical results of our model and the experimentally-measured transmission

spectrum of moth-eye structures.

We used these computer models to investigate the effect of changing the dimensions,

shape, angle-of-incidence, and packing scheme of moth-eye structures on As2S3 glass sur-

faces. We found general rules for maximizing the transmission properties of moth-eye

structures, and we used these rules to design and optimize nearly ideal structures that give

99.9% average transmission over a broad wavelength range from 2–5 µm.

We also investigated irradiance enhancement effects in moth-eye structures to deter-

mine the reason for the increased laser damage threshold in these structures. We found

that irradiance enhancement occurs mostly on the air-side of the air-glass interface, which

keeps the irradiance in the glass surface structures low, thereby avoiding catastrophic dam-

age. We found that this effect occurs in all reasonably designed moth-eye structures and

that the effect is not due to constructive interference of higher diffracted orders in the struc-

ture.

We studied hollow-core antiresonant fibers (ARFs) to design an optimal chalcogenide

ARF with low loss over a broad bandwidth in the mid-IR. We determined that we could

align the resonant absorption peaks in the spectrum of an As2S3 ARF with the naturally

occurring absorption peaks in the atmosphere due to gases, such as CO2. We demonstrated

that nested elements in an ARF are essential to achieving low loss. We determined the loss

in fibers with both six and eight cladding tubes, both with and without nested elements. We

also investigated increasing the core radius of an ARF and explained the physical reason

for the decreasing marginal efficacy of increasing the core radius, and we investigated the

effect of including more nested elements in an ARF, including doubly-nested ARFs and

adjacent nested ARFs. We showed that including such elements would not significantly

reduce the overall loss in a fiber, since the loss is dominated by material absorption.
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We showed the loss and refractive index as a function of wavelength for the funda-

mental mode of an optimized fiber. We found that the loss was lower than a state-of-the-art

silica ARF and that the dispersion in these fibers is extremely low.

We then investigated fabrication tolerances of these fiber designs by simulating per-

turbations of ideal fiber structures. We studied the effect of a nonconstant cladding-tube

wall-thickness and showed that this this perturbation is detrimental to the low-loss prop-

erties of an ARF. We also investigated perturbations to a single cladding tube, including a

change in the tube diameter by ±10% and a change in the cladding-tube wall-thickness by

±10%. We showed that the effect of these changes is small, but not negligible. Therefore,

if these effects were compounded by multiple imperfect cladding tubes, the results could

significantly increase the loss of an ARF. Finally, we investigated the effect of including a

“key” structure in the fiber cladding support or jacket to maintain the registration between

cladding tubes and their nested elements. We showed that including these structures does

not significantly change the guidance and or add to the loss of an ARF.

In this dissertation, we did not exactly determine the optimal parameters for SC gen-

eration in As2S3 PCFs — only a method for doing so. In the future, using this method,

a careful investigation into the influence of changing the input and fiber parameters on a

mid-IR SC source that is not influenced by the extreme sensitivity of SC simulations could

be useful and enlightening.

In the future, an investigation into moth-eye structures that have anti-reflective prop-

erties at wavelengths below their diffraction edge would be scientifically interesting and

important. This dissertation outlines some possible ways to achieve such structures.

Additionally, future work on irradiance enhancement in moth-eye structures that an-

swers specific questions about the effect of changing the structure parameters on the lo-

cation and magnitude of the irradiance enhancement effect will be useful for designing
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moth-eye structures with an even higher laser damage threshold and for optimizing surface

enhancement effects in technologies such as surface-enhanced Raman scattering.

Future work can also investigate the trade-offs in ARFs between obtaining a low,

broadband loss spectrum and 1) achieving effectively single-mode operation by higher-

order mode out-coupling and 2) optimizing the bending loss.
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